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Abstract

Muscle proprioceptive afferents provide feedback critical for successful execution of motor

tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles,

supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib

afferents. The morphology of these proprioceptors and their associated afferents has been

studied extensively in the cat soleus, and to a lesser degree, in the rat; however, quantitative

analyses of proprioceptive innervation in the mouse soleus are comparatively limited. The

present study employed genetically-encoded fluorescent reporting systems to label and

analyze muscle spindles, Golgi tendon organs, and the proprioceptive sensory neuron sub-

populations supplying them within the intact mouse soleus muscle using high magnification

confocal microscopy. Total proprioceptive receptors numbered 11.3 ± 0.4 and 5.2 ± 0.2 for

muscle spindles and Golgi tendon organs, respectively, and these receptor counts varied

independently (n = 27 muscles). Analogous to findings in the rat, muscle spindles analyzed

were most frequently supplied by two proprioceptive afferents, and in the majority of instances,

both were classified as primary endings using established morphological criteria. Secondary

endings were most frequently observed when spindle associated afferents totaled three or

more. The mean diameter of primary and secondary afferent axons differed significantly, but

the distributions overlap more than previously observed in cat and rat studies.

Introduction

Continual monitoring of alterations in muscle length, corresponding joint angle changes, and

forces produced during muscle contraction are critical for execution of motor tasks. Proprio-

ceptive sensory neurons (PSNs) encode and relay this information to the central nervous sys-

tem for interpretation and response via spinal circuits and ascending pathways into the brain

[1,2]. Axons extending into the periphery from PSN cell bodies localized in the dorsal root

ganglia (DRG), supply specialized sensory receptors located in skeletal muscle, known as mus-

cle spindles (MS) and Golgi tendon organs (GTOs).

MS and GTOs are both encapsulated, stretch-activated sensory receptors found within skel-

etal muscles. As a consequence of their differing intramuscular location and architecture,
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however, the PSNs that innervate each receptor respond to distinct physical stimuli. For exam-

ple, MS are located in the belly of the muscle, positioned in parallel with extrafusal muscle fibers

causing them to respond to muscle stretch [3]. Conversely, GTOs are found at myotendinous

junctions, and their arrangement in series with muscle fibers enables their sensitivity to muscle

contraction [4]. Other morphological features are also distinguishing. GTOs are innervated by a

single afferent (group Ib) which branches extensively and intercalates with collagen fibers inside

the capsule at the point where muscle meets tendon. A typical GTO is associated with a small

group of muscle fibers and not all muscle fibers feed into GTOs [4–6]. Based on ratio calcula-

tions performed in cat hindlimb experiments, it is thought that the relatively small number of

GTOs populating a given muscle is enough to adequately track motor unit activity [7].

MS are structurally more complex and are generally comprised of three types of intrafusal

muscle fibers (termed bag1, bag2, and chain fibers according to nuclear arrangement) sur-

rounded by a capsule structure [3]. The MS is supplied by at least one Ia afferent, variable

numbers of group II afferents, and gamma-motor neuron axons that control intrafusal muscle

fiber contraction. The Ia afferents contact each type of intrafusal fiber and form primary end-

ings that have a characteristic annulospiral morphology. Terminations of group II afferents are

referred to as secondary endings, and are found predominantly on chain intrafusal fibers with

either spiral-like or flower-spray morphology [8–11].

As a result of their distinct endings on the muscle spindle, group II afferents encode

stretch-evoked stimuli differently than Ia spindle afferents. For example, Ia afferents display a

supralinear action potential firing response during passive muscle stretch, together with a

characteristic pause in firing when the muscle is shortened [12]. Firing rates of group II affer-

ents, on the other hand, are linear with muscle length, whether the muscle is being passively

stretched, held at a new length, or shortened [12–14]. As a result, group Ia afferents better

encode stretch velocity or dynamic stretch, whereas group II afferents relay information

regarding maintained or static stretch [15].

To date, knowledge of the anatomy and physiology of MS and GTO has come primarily

from work in the cat, and secondarily from studies in rat [3,8,10,16]. There is limited anatomi-

cal data beyond receptor counts for rodents, and more particularly for the mouse, despite the

opportunities afforded by transgenic mouse models to investigate both the form and function

of these receptors [16,17]. In this study we exploited mouse genetic tools to analyze the struc-

ture and afferent supply of MS and GTOs in a whole-mount preparation of the soleus muscle,

a muscle thoroughly examined in the cat literature. Using intact muscles, we were able to sys-

tematically classify Ib endings in GTOs and both primary and secondary proprioceptive end-

ings in MS, revealing similarities and differences in proprioceptive innervation between these

two important animal models.

Materials and Methods

Animals

All animal experimental procedures were approved by the Wright State University Institu-

tional Animal Care and Use Committee. A Cre-dependent conditional tdTomato fluorescent

reporter mouse line (Rosa26tdTom/+ termed here R26-tdT; JAX Stock 007908) was crossed with

two Cre-driver lines to label either all peripheral sensory neurons (Advillin-Cre (Adv-Cre);

[18]) or the subset of neurons innervating proprioceptive endings in muscle (Parvalbumin-Cre
(PV-Cre); JAX Stock 008069; [19]). Both male (n = 13) and female (n = 12) mice from two

postnatal stages were used in this study. PV-Cre; R26-tdT animals were used from postnatal

day 3 to 7 (P3—P7). Analysis of MS and GTOs in older animals (P19—P20) was performed

using Adv-Cre; R26-tdT mice.

Proprioceptive Innervation of the Mouse Soleus
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Whole-Mount Soleus Muscle Preparation

Animals were anesthetized on ice (up to P7) or by Euthasol injection (older than P7) and trans-

cardially perfused with 5 mL of ice-cold oxygenated (95% O2; 5% CO2) artificial cerebrospinal

fluid (ACSF) containing: 127 mM NaCl, 1.9 mM KCl, 1.2 mM KH2PO4, 1 mM MgSO4�7H2O,

26 mM NaHCO3, 16.9 mM D(+)-glucose monohydrate, and 2 mM CaCl2. The animals were

then decapitated and soleus muscle dissections were performed with the animal preparation

submerged in a recirculating bath of cold, oxygenated ACSF. Following excision, soleus muscles

to be analyzed for proprioceptive afferent quantification and diameter measurement were care-

fully pressed between two glass slides (25 x 75 mm, 1.0 mm thick), each prepared with a layer of

filter paper and 40 μm cell strainer mesh, and then secured together with adhesive tape (method

adapted from Vult von Steyern et al., 1999). This entire compression apparatus was immediately

submerged in 40 mL of 4% PFA solution for 1 hour at 4˚C. In this manner, muscle compression

and fixation were accomplished simultaneously as the filter paper wicked the PFA in between

the two slides, while the cell strainer mesh provided a PFA-accessible yet non-traumatic protec-

tive covering for the soleus muscle. After fixation, the compressed soleus muscle was rinsed

three times with 1X PBS, mounted on a Superfrost Plus microscope slide with Vectashield

medium (H-1000, Vector Laboratories, Burlingame, CA) and a glass coverslip in preparation

for imaging and analysis.

Soleus muscles intended only for rapid muscle proprioceptive receptor quantification were

mounted on a slide using Vectashield and a glass coverslip following transcardial perfusion

and quick isolation in cold 1X PBS. No fixation was used in these preparations. Images of fresh

dissected muscles were immediately acquired using an Olympus BX51 microscope (4x and

10x objectives) with SPOT RT Slider 2.3.0 color camera and SPOT Advanced software version

5.1 (Diagnostic Instruments, Inc.).

Immunohistochemistry

Age P3 PV-Cre; R26-tdT and age P22 Adv-Cre; R26-tdT mice were anesthetized as described

above and transcardially perfused with 10 mL of ice-cold 1X PBS followed by 10 mL of 4%

paraformaldehyde (PFA) solution. The animals were then decapitated and all musculature

superficial to the soleus muscle (hamstrings, lateral and medial gastrocnemius muscles) was

removed from the hind limbs, and the branch of the tibial nerve supplying the soleus muscle

was cut proximal to the point where the thin branch defasciculates. The entire lower hind

limb, including exposed soleus muscle, was then submerged in 15 mL of 4% PFA for 2 hours

at 4˚C. After fixation, the lower hind limb was washed two times with 1X PBS and then equi-

librated in sucrose solution (30% in PBS) overnight at 4˚C for cryoprotection. The soleus

muscle was then removed from the limb, embedded in tissue freezing medium and stored

at -80˚C until sectioning. Using a HM 550 cryostat, 20 μm-thick serial longitudinal sections

were obtained and mounted on slides in preparation for immunohistochemistry. The soleus

muscle sections were washed three times with 1X PBS and then incubated overnight at 4˚C in

an antibody solution (1X PBS with 1% bovine serum albumin and 0.3% Triton X-100) contain-

ing guinea pig anti-VGLUT1 polyclonal antibody diluted 1:10,000 (Chemicon AB5905, Lot

LV1567574). Slides were then washed three times with 1X PBS and incubated for 45 minutes

at 22˚C in antibody solution containing Alexa Fluor 488 goat anti-guinea pig antibody diluted

1:1000 (Invitrogen A11073, Lot 455283). Following the secondary incubation, the slides were

washed three times with 1X PBS. Vectashield mounting medium was then applied to the

sections for fluorescence preservation prior to placement of a glass coverslip. High magnifica-

tion images of proprioceptive receptors and afferent axons were acquired using an Olympus

FV1000 confocal microscope with a 60X oil-immersion objective.

Proprioceptive Innervation of the Mouse Soleus

PLOS ONE | DOI:10.1371/journal.pone.0170751 January 25, 2017 3 / 18



Analysis of Muscle Spindle and GTO Afferents

MS and GTOs were identified by distinguishing morphological characteristics, namely

the hallmark annulospiral structure of MS and the highly branched endings of GTOs [5,8–

11]. Furthermore, careful attention was paid to whether proprioceptive axons supplying a

given MS or GTO reached the ending via the soleus nerve thick branch, thin branch, or

both.

Images collected to quantify proprioceptive afferents associated with MS and GTOs were

acquired using an Olympus FV300 confocal microscope (20x and 60x objectives). Quantifica-

tion of the number of proprioceptive axons per spindle was accomplished using Fluoview soft-

ware (Olympus) together with 3D image visualization software as needed (Imaris 7.7.0,

Bitplane). Composite images covering several fields of view were constructed with Photoshop

(CS3, Adobe) from maximal intensity projections from confocal image stacks. Using these

images, each spindle afferent was reviewed and classified as a primary or secondary ending

according to morphological criteria as follows. As every muscle spindle must be supplied by at

least one Ia afferent, single afferents solely associated with a MS were classified as primary end-

ings. In spindles with multiple associated afferents, primary endings were identified by classi-

cally defined large and small annulospirals indicating extensive wrapping of all three intrafusal

muscle fiber types. Secondary endings were distinguished by smaller spirals likely encircling

chain fibers as well as by the previously described flower-spray terminal arrangement [8–10].

Group II afferents, however, are also known to contact all three intrafusal muscle fiber types

yet the morphology of these endings is overall less extensive than primary endings [10]. In

addition to terminal morphology, the spacing of termination points along the MS was also

used to classify spindle afferents. Group II endings occupy juxta-equatorial positions at a dis-

tance from the equatorial Ia termination zone. Two afferents having Ia morphology and equa-

torial terminations in close proximity on a given MS were thus classified as multiple primary

endings in this study.

Composite images from high magnification (60x objective) confocal scans were also used

for intramuscular PSN axon diameter measurements performed by a second reviewer blinded

to the receptor innervation and ending of each axon. The blinded reviewer placed markers

individually sized to the width of the axon at 5 μm intervals along the length of each axon

using Neurolucida (Version 9, MBF). Output data from Neurolucida Explorer was used to cal-

culate the average diameter of all markers placed on an axon, as well as the total length mea-

sured (average length measured: 351 ± 238 μm (standard deviation); range: 25–1394 μm;

n = 138 axons). Three axons were excluded from analysis because the boundaries between

labeled axons and background were obscured.

The diameter data was analyzed with Hartigan’s dip test of unimodality and a logistic

regression in R Studio (package = ‘diptest’, Version 0.75–7). Hartigan’s Dip test searched for a

statistically significant “dip” in the histogram of diameters to determine whether the data was

bimodal [20]. Using a custom script in R, a logistic regression was then applied to estimate the

likelihood of correctly classifying a single axon as either a Ia or group II afferent, based on

diameter alone. The regression model was also used to determine diameter cut-offs that would

provide the best fit with our designation of primary and secondary endings based on morpho-

logical criteria. Finally, the diameter data was manually examined by both reviewers and com-

pared with the morphological data. An F-test was conducted in Microsoft Excel to compare

the variance of Ib axon diameters to the variance of Ia axon diameters (MS with one axon

only, n = 18). A second F-test compared variances between diameters from primaries (Ib and

Ia, n = 33) and secondaries (n = 15). Using the results of the F-tests, two separate 2-tailed t-

tests were done to compare the same groups of diameters.

Proprioceptive Innervation of the Mouse Soleus
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Results

Assessment of Transgenic Animal Model

A goal of this study was to devise a method for analyzing PSN axons and their specialized end-

ings in a whole muscle preparation. A molecular identifier of PSNs is expression of parvalbu-

min, a calcium binding protein [21,22]. We therefore employed a Cre/lox strategy combining

existing transgenic mouse models to produce PV-Cre; R26-tdT mice in which all parvalbumin-

expressing neurons, primarily PSNs, are labeled with a red fluorescent protein [19,23]. Robust

tdTomato signal persisted even after tissue fixation, allowing visualization of PSN axons in

whole muscles without signal amplification. Restricted tdTomato expression in muscle PSN

was particularly useful for quantification of PSN axons and endings in the soleus of neonatal

animals. Parvalbumin is also expressed in extrafusal muscle fibers postnatally [24]. We noted

muscle fiber expression already obscured the signal from PSN axons at P0 in muscles with a

large proportion of fast-twitch extrafusal fibers, like rectus femoris. The soleus contains a

larger percentage of slow-twitch fibers, but in our hands, extrafusal tdTomato signal made it

impractical to analyze PSN axons in this muscle after P7. An alternate Cre-driver was thus

used to facilitate MS and GTO analysis in older animals. Advillin is expressed by>90% of

DRG neurons, including both PSN and non-PSN, but is not expressed in muscle tissue [18].

As with PV-Cre controlled tdTomato expression, robust fluorescence was observed even after

fixation using the Adv-Cre driver line, minus the confounding expression in muscle fibers.

Using this Cre-driver, axons of non-PSN (groups III and IV) were also visible in the soleus

muscle, although they were not the focus of this study.

To assess the reporter efficiency of our transgenic labeling strategies, we compared immu-

noreactivity for vesicular glutamate transporter 1 (VGLUT1) to the tdTomato fluorescence of

PSN axons and endings in both the PV-Cre; R26-tdT and Adv-Cre; R26-tdT animals. Represen-

tative confocal images in Fig 1 show VGLUT1 expression was largely restricted to the hallmark

annulospiral structure of the MS and the branched morphology of the GTO as previously

reported [23,25]. Expression of the tdTomato reporter was visualized in proprioceptive end-

ings as well as axons. All VGLUT1 positive MS and GTO structures were innervated by tdTo-

mato axons using either Cre-driver, thus validating these genetic strategies for labeling MS and

GTOs in the mouse soleus.

Quantification of Proprioceptive Receptors

Using these genetic tools, we sought to quantify the numbers and distribution of MS and

GTOs contained within the intact soleus muscle. Imaging unfixed and lightly compressed

soleus muscles from neonatal animals allowed us to rapidly document MS and GTO counts in

the entire muscle (Fig 2A). Therefore, the majority of muscles surveyed (23 of 27) were

obtained from PV-Cre; R26-tdT mice ages P3 to P7. Four muscles were also included from P20

Adv-Cre; R26-tdT animals. In total, we found the soleus muscle to contain 11.3 ± 0.4 MS and

5.2 ± 0.2 GTOs (data reported as mean ± SEM; Fig 2B). Our MS and GTO counts for the soleus

muscle agreed with previously reported data collected from serial sections (see Discussion).

The soleus muscle is innervated by two small nerves that arise through bifurcation of the

common soleus nerve prior to muscle entry (Fig 2A). One branch is consistently thinner than

the other and exclusively supplies sensory endings (both MS and GTO) found in the proximal

compartment of the muscle. This branch lacks α-motor neuron axons which innervate extra-

fusal muscle fibers, but does contain γ-motor neuron efferents to MS in the proximal compart-

ment [26]. The thick branch contains all α-motor neuron axons, along with γ-motor neuron

and sensory axons that supply the remainder of the muscle. We found on average 1.6 ± 0.2 MS

Proprioceptive Innervation of the Mouse Soleus

PLOS ONE | DOI:10.1371/journal.pone.0170751 January 25, 2017 5 / 18



Fig 1. MS and GTO morphology in both neonatal and mature mouse soleus muscles are accurately reported using PV-Cre; R26-tdT

and Adv-Cre; R26-tdT mouse models. Examples of native tdTomato fluorescence in representative muscle spindles (A-C, G-I) and GTOs

Proprioceptive Innervation of the Mouse Soleus
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and 2.6 ± 0.2 GTOs innervated by axons from the thin branch (Fig 2C). In 7 of the 27 muscles

examined (25.9%) a MS located in the proximal compartment was supplied by PSN axons

from both the thick and thin branches of the soleus nerve. In two of the 27 muscles (7.4%) the

proximal compartment of the muscle was supplied by two thin branches that diverged prior to

entry into the muscle, and each supplied MS and GTOs.

Given the individual variability we observed in the numbers of MS and GTOs contained

within the whole soleus nerve, we asked whether above average MS counts were linked to

below average GTO counts. Our data suggests that this is not the case (Fig 2D). Animals with

above average total MS counts still tended to have GTOs either equal to or above our calcu-

lated average number of GTOs. Animals with below average MS counts still maintained the

average number of GTOs. Likewise, above average GTO counts did not necessarily indicate

fewer MS, and fewer GTOs did not appear to indicate elevated MS. In summary, our analysis

showed that numbers of MS and GTOs in the soleus muscle vary independently (Spearman

correlation rs(25) = -0.167).

Analysis of Proprioceptive Sensory Axons

Another aim of the project was to determine the number and identity of PSNs that project to

the soleus muscle. The full complement of MS, GTOs, and associated sensory afferents in a

muscle are established before birth in mice [27,28]. Consequently, muscles from both neonatal

(PV-Cre; R26-tdT) and mature (Adv-Cre; R26-tdT) animals were included in this analysis.

Intact soleus muscles were again used in these experiments, but muscles were briefly fixed to

prevent degradation of the sensory endings. First, the entire muscle was scanned at low magni-

fication to generate composite images to serve as a general map of the proprioceptive innerva-

tion (Fig 3A). Second, MS, GTOs, and their associated afferents in each muscle from neonatal

and mature animals were scanned at high magnification to obtain detailed images of sensory

axons supplying a given proprioceptive receptor (examples in Fig 3B–3D). In these experi-

ments, we analyzed 135 MS and 50 GTOs from 14 muscles (7 PV-Cre; R26-tdT and 7 Adv-Cre;
R26-tdT).

In every case, confocal imaging confirmed individual GTOs were innervated by a single

PSN axon, namely a Ib afferent (n = 50 GTOs; Fig 3B). In only one case, two GTOs were inner-

vated by branches of the same Ib afferent that bifurcated more than 200 μm from the point of

entry at the GTOs. The number of PSN axons innervating individual MS varied from 1 to 5

axons. Innervation by two proprioceptive axons was the most common arrangement for sen-

sory supply to MS (41.5% of the 135 MS surveyed; Fig 3C and Fig 4A). In a subset of muscles,

all PSN axons were traced back to the main nerve bundles to document the total number of

PSN axons projecting via the thin branch as well as the whole soleus nerve. In these experi-

ments, we found the soleus nerve to contain 21 to 36 (30.1 ± 1.5; n = 9 muscles [7 PV-Cre;
R26-tdT and 2 Adv-Cre; R26-tdT]) PSN axons in total. Our analysis further revealed 2 to 7

(4.6 ± 0.5; n = 9 muscles) PSN axons within the thin branch. In all cases, Ib axons were present

in the thin branch of the soleus nerve. Spindle afferents, however, were not always present in

the thin branch, ranging from 0 to 5 axons (2.1 ± 0.6; n = 9 muscles).

Possessing complete knowledge of the number of MS and GTOs, along with the number of

PSN axons innervating these structures in multiple soleus muscles, we investigated the rela-

tionship between PSN axons and associated endings in muscles with varying numbers of MS

(D-F, J-L) from each of the mouse models utilized in this study. VGLUT1 expression was largely restricted to the proprioceptive receptor

terminals, while tdTomato expression was observed in both proprioceptive receptor terminals and their respective axons. Scale bars represent

50 μm.

doi:10.1371/journal.pone.0170751.g001
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and GTOs. Larger numbers of MS and GTOs were associated with increased numbers of pro-

prioceptive afferents innervating the muscle, although the correlation was weak (Spearman

correlation rs(7) = 0.498; Fig 4B). Next we asked if the average number of PSN axons innervat-

ing a MS varies with the total number of MS found in individual muscles. We found a modest

trend for muscles with more MS to have fewer afferent axons on average (Spearman correla-

tion rs(7) = -0.536; Fig 4C).

We sought to determine the frequency of primary and secondary MS endings in our dataset

using distinctive morphological criteria (see Methods for details). Because overlap of Ia and

group II terminations have been observed in neonatal rats [29], only muscles from P20 Adv-
Cre; R26-tdT animals were included in this analysis. High magnification scans of 60 MS from

whole-mount soleus preparations were analyzed to determine the type of each afferent ending.

Seventy-five percent of muscle spindles in our dataset fell into one of three categories in terms

of sensory innervation. First, the most common arrangement (18/60 MS) was innervation by a

single primary afferent. The frequency of the other two main categories, innervation by only

two primary afferents (PP; 14/60) or by a primary with two secondary afferents (PSS; 13/60),

were similar (see Table 1 and Fig 5 for examples). Among the three MS innervated by 4 or 5

afferents, two received multiple primary endings. No instances of a single, bifurcated axon

having more than one ending were noted.

Representative MS (n = 60) from age P19-20 soleus muscles were sorted according to their

number of total associated proprioceptive afferents (n = 126 afferents, range = 1 to 5 per MS).

Varying configurations of primary (P) and secondary (S) endings identified from morphologi-

cal criteria were observed when MS had two or more associated afferents. In cases where two

afferents supplied a MS, two primary endings (PP) were most frequently observed (14/22 MS).

When three afferents supplied a MS, however, the configuration shifted to favor multiple sec-

ondary endings (PSS, 13/17 MS).

In addition to characteristic differences in contacts with intrafusal fibers, Ia afferents in cats

also have a larger average axonal diameter than group II afferents [10]. We next determined if

a similar relationship existed between Ia and group II afferents in the mouse by analyzing pro-

prioceptive axon diameters in mature (P20) mice. A reviewer blinded to receptor ending type

measured the intramuscular diameters of all proprioceptive sensory axons supplying 60 MS

and 15 GTOs from 7 soleus muscles from P20 Adv-Cre; R26-tdT mice. We first analyzed the

distribution of diameters for multimodality and found the data to be statistically normal. Next

we compared the axon diameters of afferents that must be either group Ia (afferents supplying

the 30.0% of MS receiving a single afferent axon) or group Ib afferents innervating GTOs. The

variances of the Ib afferent and Ia afferent diameter samples were equal. Therefore equal vari-

ance, two-tailed t-tests were performed, indicating that the average diameter of Ib afferents

(3.68 ± 0.18 μm; n = 15 axons) was not statistically different from the average diameter of Ia

afferents supplying single-axon spindles (3.30 ± 0.11 μm; n = 18 axons; p = 0.07).

To be conservative in the initial assessment of group II afferents, only the smallest axon

taken from the subset of MS innervated by three axons was analyzed (n = 17). After unblinding

the reviewers, 15 of these 17 axons were shown to have been classified as secondary endings

Fig 2. Quantitative analysis of proprioceptive receptors within the mouse soleus muscle. (A)

Schematic representation of the extramuscular bifurcation of the soleus nerve into a proximal thin branch and

a distal thick branch and the typical distribution of MS and GTOs within the muscle. (B) A survey of 27

muscles from PV-Cre; R26-tdT mice and Adv-Cre; R26-tdT mice (P3 to P7 and P19 to P20, respectively)

found the soleus muscle to contain 11.3 ± 0.4 MS and 5.2 ± 0.2 GTOs (mean ± SEM). (C) Alone, the thin

proprioceptive branch of the soleus nerve was found to contain 1.6 ± 0.2 MS and 2.6 ± 0.2 GTOs. (D)

Proprioceptive receptor class populations within the mouse soleus varied independently (Spearman

correlation rs(25) = -0.1).

doi:10.1371/journal.pone.0170751.g002
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Fig 3. Whole-mount muscle preparation enabled detailed examination of intact proprioceptive

innervation of the mouse soleus. (A) Composite 20X confocal image from a P5 female PV-Cre; R26-tdT

mouse soleus. Representative composite 60X confocal images of a GTO and two MS are shown in (B-D),

identified by red boxes. (B) Invariably, GTOs were supplied by a single Ib afferent. (C) Example of a MS

supplied by two afferents. (D) Example of a MS supplied by three afferents. Scale bars represent 100 μm.

doi:10.1371/journal.pone.0170751.g003
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Fig 4. Quantitative analysis of proprioceptive afferents supplying the mouse soleus muscle. (A) The

number of proprioceptive afferents supplying a given MS ranged from 1 to 5 (n = 135 neonatal and mature MS

supplied by 295 proprioceptive afferents in total). Most often, MS were supplied by 2 proprioceptive afferents.

(B) Total proprioceptive afferent population per muscle was weakly correlated with total number of receptors

(Spearman correlation rs(7) = 0.498). (C) Total number of MS per muscle displayed a modest negative

correlation with the number of average afferents per MS (Spearman correlation rs(7) = -0.536).

doi:10.1371/journal.pone.0170751.g004

Table 1. Shift in proprioceptive afferent configuration observed with increasing number of associated afferents per muscle spindle.

Total Associated Afferents 1 2 3 4 5

Afferent Configuration P PP PS PPS PSS PPSS PSSS PPPSS

Number of MS 18 14 8 4 13 1 1 1

Subtotals 18 22 17 2 1

doi:10.1371/journal.pone.0170751.t001
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based on morphological criteria. The two axons whose morphological classification and diam-

eter-based prediction differed were removed from the group of presumed group II axons. The

average diameter of the remaining group II axons was significantly smaller than the population

of presumed primaries (2.49 ± 0.14 μm; n = 15 axons; p < 0.0001). A logistic regression was

then applied to all spindle afferents to estimate the likelihood of correctly classifying a single

Fig 5. Morphological identification of spindle afferents in the mature mouse soleus. Representative

composite 60X confocal images obtained from P19-20 Adv-Cre; R26-tdT soleus muscles using the whole-

mount muscle preparation. Proprioceptive ending types are labeled in red. P indicates primary afferent

ending, and S indicates secondary afferent ending. (A) Example of a MS supplied by two afferents. The

primary afferent forms large annulospirals around intrafusal bag fibers, while the secondary afferent

terminates primarily in the region of smaller chain fibers. (B) Example of a MS supplied by two primary

afferents terminating within close proximity of each other. (C) Example of a MS supplied by four proprioceptive

afferents. Scale bars represent 100 μm.

doi:10.1371/journal.pone.0170751.g005
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axon as either a Ia or group II axon, based on diameter alone. MS afferents were first classified

as primary or secondary endings based on morphological criteria and then these identifications

were compared to those predicted by the logistic regression model. The model demonstrated

that afferents could be correctly classified by diameter alone 67% of the time (p = 0.0011). To

determine diameter cut-offs that would most accurately predict a spindle afferent’s subtype,

threshold values were varied. The model had the strongest specificity and sensitivity, 74% and

72% respectively, when the thresholds were set to probabilities greater than 65% and less than

30%. These threshold values corresponded with the diameter measurements of 2.91 μm and

2.46 μm (see Fig 6). Thus, axons with diameters greater than 2.91 μm were at least 65% likely to

be Ia afferents. Furthermore, the probability that an ending was a primary afferent increased as

the axon diameter increased. For example, any axons with diameters larger than 3.38 μm (32

out of 78 morphologically identified Ia afferents) had a 90% or greater probability of being a Ia

afferent based on diameter. Axons with diameters less than 2.46 μm were less than 30% likely to

be a Ia, therefore at least 70% likely to be a group II. Predictions of axon type among axons with

diameters larger than 2.46 μm and lower than 2.91 μm (19 axons out of 123) were near chance

levels (30–65% probabilities) and therefore cannot be classified as Ia or II based on diameter

alone. The model revealed an odds ratio of 46, demonstrating that an axon was 46 times more

likely to be a Ia afferent with every 1 μm increase in diameter.

The logistic regression was conducted because Hartigan’s dip test determined that the com-

bined population of all spindle afferents was statistically normal even though previous literature

has reported that axon diameters follow bimodal distributions in the cat [30]. Conversely, the

logistic regression demonstrated that axon diameter could classify axons into two distinct groups,

with a high degree of accuracy. We found the diameters of each afferent subtype spanned almost

the entire range of diameters; the range of primary endings was 2.16–4.54 μm and the range of

secondary endings was 1.73–3.86 μm. In addition to these large ranges, 70% of the axon diame-

ters for both subtypes fell within the range of 2.75–3.75 μm. This high degree of overlap created a

normal distribution despite the statistically significant differences between groups.

Both morphological and axon diameter approaches contribute to our understanding of the

afferent types innervating individual MS. Applying this information to the total complement

Fig 6. Axon diameter for both morphologically classified spindle afferent subtypes. (A) Histogram of axon diameters for afferents that

were classified as primary or secondary endings based on morphological criteria. (B) Logistic regression model used to predict proprioceptive

afferent subtypes based on diameter. Black dots represent the diameters of afferents that were classified as primary afferents based on

morphologic criteria and therefore they have a 100% probability of being a primary afferent. The open circles illustrate the morphologically

classified secondary endings, which have a 0% probability of being a primary ending. The gray line indicates the probability of an afferent

being a primary based on diameter. The dotted lines illustrate the cut-off diameters (2.46 and 2.91 μm) for classifying afferents. Axons with

diameters left of the first dotted line (diameter < 2.46 μm) were classified as group II afferents, axons with diameters between the dotted lines

could not be classified based on diameter alone, and axons with diameters to the right of the second dotted line (diameter > 2.91 μm) were

classified as Ia afferents.

doi:10.1371/journal.pone.0170751.g006
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of MS (11.3) and GTOs (5.2) found in the soleus, it was possible to estimate the total number of

Ia, Ib, group II axons that innervate the soleus. Given GTOs were always observed to be inner-

vated by a single Ib afferent, approximately 5 Ib afferents project to the soleus muscle. From the

subset of MS analyzed in Table 1, 81 of the 126 MS axons analyzed were found to make primary

endings, while the minority of afferents (45 of 126) formed contacts consistent with secondary

endings. The combination of these ratios suggests a MS on average is innervated by 2.1 afferents

and that primary afferents outnumber group II afferents approximately 2:1 (1.35 Ia: 0.75 group

II per spindle). Thus, for an average soleus muscle (11.3 MS), 15.3 Ia and 8.5 group II axons

would make up the afferent supply to MS. The combined total of 23.8 MS afferents and 5 Ib

afferents supplying GTOs (28.8 PSN axons total) is in agreement with the average number of

PSN axons in whole soleus determined in our study (30.2 ± 1.5; n = 9 muscles).

Discussion

In this study we used a transgenic reporter system to analyze the sensory innervation of MS

and GTOs using an intact mouse soleus muscle preparation. Robust fluorescence in PSN

axons permitted visualization of afferent pathways and terminations within a muscle with a

minimum of specimen preparation and no tissue sectioning, representing a substantial gain in

efficiency compared with serial section or teased preparation techniques. This whole-mount

muscle approach enabled quantification of proprioceptive receptors and their respective affer-

ents as well as comparison of spindle sensory ending classifications obtained via morphological

identification and intramuscular axonal diameter measurement.

When controlled by either PV-Cre or Adv-Cre driver lines, the R26-tdTomato reporter line

generated strong fluorescence in sensory axons that required no amplification following brief

fixation. Use of the PV-Cre was desirable because among muscle sensory afferents, parvalbu-

min expression is limited to only proprioceptive axons [19,23]. During postnatal maturation,

however, expression of parvalbumin in extrafusal muscle fibers [24] leads to widespread tdTo-

mato signal in the muscle, rendering proprioceptive axons indistinguishable from the sur-

rounding fibers. Driving tdTomato expression with Adv-Cre eliminated expression in muscle

fibers, and revealed a dense network of sensory axons and endings throughout the muscle. In

addition to PSN axons, smaller caliber axons (likely group III and IV) were widely distributed

in the muscle [31]. These axons were never found within MS capsules and did not interact

with Ib afferent endings at GTOs. Recently developed genetic tools offer the possibility of even

greater selectivity in reporter expression using intersectional strategies that employ two dis-

tinct recombinase proteins (Cre and Dre, for example) to restrict expression to only a subset of

cell types that would be labeled using only a single recombinase [32]. Such a strategy could be

utilized in this system to eliminate tdTomato (or other reporter) expression in extrafusal mus-

cle fibers, while still limiting neuronal expression to only proprioceptive afferents in muscles.

MS in the mouse soleus have been quantified in previous reports, usually as part of a larger

research question with fewer replicates than the present study. Our reported average of

11.3 ± 0.4 MS occupies the middle of the range of numbers from 10 to 12 MS reported else-

where [17,33–38]. GTO numbers in mouse soleus have been less frequently quantified, but

again numbers reported here (5.2 ± 0.2) agree with published reports [36,39]. Thus, the whole-

mount muscle preparation used in these experiments allowed not only for rapid quantification

of proprioceptive receptors and larger sample sizes, but also yielded equally accurate measures

compared with more labor-intensive techniques.

Analysis of MS and GTOs using an intact muscle allowed us to readily quantify endings

from a relatively large sample of muscles, revealing a wide range of natural variability in both

the number of MS, GTOs, and the PSN axons supplying these structures. Could the natural
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range of proprioceptive endings, two-fold for MS (8 to 16) and GTOs (3 to 7) influence the

proprioceptive sensitivity of individual animals? Total loss of muscle spindles has an obvious

impact on locomotor behavior, but intermediate reductions in spindle number have less obvi-

ous effects. Muscle spindles do not form in mice lacking neurotrophin-3 (NT-3), a trophic fac-

tor necessary during embryogenesis for PSN survival, and approximately half the normal

complement of muscle spindles are found in mice heterozygous for the mutation [39]. Never-

theless, no obvious behavioral phenotypes are observed in NT-3 heterozygous animals [39].

This suggests sufficient feedback can be derived from a limited set of muscle spindles and

implies spinal circuits can adapt to varying levels of feedback present during development.

Conversely, overexpression of NT-3 in skeletal muscle increases the number of PSNs in the

DRG and can result in increased numbers of spindles in limb muscles. Less favorable adapta-

tion of the nervous system occurs in this condition, however, as evidenced by measurable dis-

turbances in gait and coordination in these animals [40,41]. Nevertheless, the contribution of

increased numbers of spindles to such phenotypes is speculative as the specificity of afferent to

motor neuron connections in the spinal cord is disrupted in these animals and is likely a major

contributor to coordination deficits [42].

The uncorrelated variability in MS and GTO numbers in individual muscles suggests no

consistent ratio of MS and GTOs is maintained in the soleus. While the mechanisms involved

in MS and GTO induction remain unclear, alterations in gene expression can favor develop-

ment of one receptor type at the expense of the other. In mice lacking Er81, an ETS-family

transcription factor expressed by all PSNs and also induced in intrafusal fibers during develop-

ment, the number of MS in the soleus increased while the number of GTOs decreased [43,36].

Dual expression of Er81 in both the PSNs and their intrafusal muscle fiber targets makes it dif-

ficult to parse out the specific role of Er81 in sensory neurons. However, the fact that Er81

selectively increases the number of MS in the soleus supports our findings that MS and GTO

numbers can vary independently and further, suggests that transcription factors like Er81 may

play a role in the variability of MS and GTO numbers.

We found muscle spindle primary (Ia) and secondary (II) afferent populations of mature

mice are significantly different in terms of intramuscular diameter, but the distributions share

substantial territory. Overlap in the diameters of group Ia and II axons is also observed in the

cat, with up to 75% of soleus group II axons being found within the range of Ia afferent axon

diameters [10]. The degree of overlap in our data is even higher with only 13% (6/45) of group

II axons having axon diameters smaller than any muscle spindle primaries. Evidence of overlap

is also observed at the upper end of the range, with only 6% (5/81) of Ia afferents extending

beyond the group II range. More separation between the diameters of spindle afferent subtypes

is evident in cats with ~18% of MS primaries being larger than secondaries [10]. In our study,

axon diameters were measured only from P20 mice, a stage when MS have morphologically

matured. Further divergence in axon diameters may occur in older animals. Nevertheless, a

study with rats also found the distribution of conduction velocities, a physiological parameter

related to axon diameter, to be not as distinctly bimodal as it is in cats [12].

To date, the most detailed anatomical analysis of the afferents supplying MS in rodents has

come from rats, and this data suggested spindles in the soleus muscle frequently receive multi-

ple primary afferent endings (~65% of spindles), a finding in agreement with our results, but

which contrasts with the predominant single primary afferent pattern observed in the classic

feline animal model [16]. The prevalence of multiple primary spindle afferents varies between

muscles. Nearly all spindles (94%) in the rat masseter muscle, but only 45% in the lumbrical

muscles, are supplied by multiple primaries [16]. It has been suggested that the more tempo-

rally compressed developmental sequence of spindle initiation and innervation in rodents

compared with cats may lead to increased prevalence of multiple primary afferents at a spindle
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[16]. Physiological characterization of MS afferents in the rat masseter muscle indicated most

afferents have intermediate responses that are not clearly classifiable as primary or secondary

in nature, suggesting MS supplied by multiple Ia afferents may not encode muscle stretch in

the same way as a single Ia afferent supplied MS [44].

In summary, genetic reporter lines were used in this study to comprehensively analyze the

proprioceptive components of the mouse soleus muscle. These mouse lines enabled us to exam-

ine a whole soleus muscle, accelerating the process of quantifying MS and GTO counts. Receptor

counts demonstrated that there are approximately twice as many MS as GTOs on average, and

that the number of each receptor type varies independently from the other in the soleus. Morpho-

logical analysis of PSN axons revealed that most muscle spindles are innervated by two or three

axons, with variable numbers of primary and secondary endings. Overall, morphological classifi-

cations of spindle afferent subtypes matched classifications by axon diameter. However, due to

the substantial degree of overlap in the diameters of Ia and II axons, over a third of afferents

could not accurately be classified by their diameters. Combined with findings in the rat, the over-

lapping ranges of Ia and II axon diameters in this study suggest that in the rodent, conduction

velocity and axon diameter only distinguish afferent subtypes at the farthest extremes of data dis-

tributions, and therefore reinforce the need for careful morphological characterization or more

robust electrophysiological techniques to accurately classify primary and secondary endings [12].

Taken together, these results demonstrate the utility of genetic reporter lines to facilitate rapid

and accurate analysis of proprioceptive receptors in whole-mount muscle preparations. Future

studies could exploit advantages of transgenic mouse models to investigate potential differences

in stimulus encoding between MS supplied by single or multiple primary afferents.
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17. Lionikas A, Smith CJ, Smith TL, Bünger L, Banks RW, Bewick GS. Analyses of muscle spindles in the

soleus of six inbred mouse strains. J Anat. 2013; 223: 289–96. doi: 10.1111/joa.12076 PMID:

23834369

18. Hasegawa H, Abbott S, Han B- X, Qi Y, Wang F. Analyzing somatosensory axon projections with the

sensory neuron-specific Advillin gene. J Neurosci. 2007; 27: 14404–14. doi: 10.1523/JNEUROSCI.

4908-07.2007 PMID: 18160648

19. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, et al. A developmental

switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005; 3: e159.

doi: 10.1371/journal.pbio.0030159 PMID: 15836427

20. Hartigan JA, Hartigan PM. The Dip Test of Unimodality. Ann Stat. 1985; 13: 70–84.

21. Copray JC, Mantingh-Otter IJ, Brouwer N. Expression of calcium-binding proteins in the neurotrophin-

3-dependent subpopulation of rat embryonic dorsal root ganglion cells in culture. Brain Res Dev Brain

Res. 1994; 81: 57–65. PMID: 7805287

22. Honda CN. Differential distribution of calbindin-D28k and parvalbumin in somatic and visceral sensory

neurons. Neuroscience. 1995; 68: 883–92. PMID: 8577381

23. de Nooij JC, Doobar S, Jessell TM. Etv1 inactivation reveals proprioceptor subclasses that reflect the

level of NT3 expression in muscle targets. Neuron. 2013; 77: 1055–68. doi: 10.1016/j.neuron.2013.01.

015 PMID: 23522042

24. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin is associated with fast contracting mus-

cle fibres. Nature. 1982; 297: 504–6. PMID: 6211622

25. Wu S-X, Koshimizu Y, Feng Y-P, Okamoto K, Fujiyama F, Hioki H, et al. Vesicular glutamate trans-

porter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Res.

2004; 1011: 247–51. doi: 10.1016/j.brainres.2004.03.047 PMID: 15157812

Proprioceptive Innervation of the Mouse Soleus

PLOS ONE | DOI:10.1371/journal.pone.0170751 January 25, 2017 17 / 18

http://dx.doi.org/10.1016/j.brainresbull.2007.03.010
http://www.ncbi.nlm.nih.gov/pubmed/17562384
http://www.ncbi.nlm.nih.gov/pubmed/4668766
http://www.ncbi.nlm.nih.gov/pubmed/5115910
http://www.ncbi.nlm.nih.gov/pubmed/1626033
http://www.ncbi.nlm.nih.gov/pubmed/6129666
http://www.ncbi.nlm.nih.gov/pubmed/2962697
http://dx.doi.org/10.1152/jn.00153.2002
http://dx.doi.org/10.1152/jn.00153.2002
http://www.ncbi.nlm.nih.gov/pubmed/12522192
http://dx.doi.org/10.1111/j.1748-1716.1962.tb02451.x
http://www.ncbi.nlm.nih.gov/pubmed/14451215
http://www.ncbi.nlm.nih.gov/pubmed/2194221
http://www.ncbi.nlm.nih.gov/pubmed/6459449
http://dx.doi.org/10.1111/j.1469-7580.2009.01072.x
http://dx.doi.org/10.1111/j.1469-7580.2009.01072.x
http://www.ncbi.nlm.nih.gov/pubmed/19538631
http://dx.doi.org/10.1111/joa.12076
http://www.ncbi.nlm.nih.gov/pubmed/23834369
http://dx.doi.org/10.1523/JNEUROSCI.4908-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.4908-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18160648
http://dx.doi.org/10.1371/journal.pbio.0030159
http://www.ncbi.nlm.nih.gov/pubmed/15836427
http://www.ncbi.nlm.nih.gov/pubmed/7805287
http://www.ncbi.nlm.nih.gov/pubmed/8577381
http://dx.doi.org/10.1016/j.neuron.2013.01.015
http://dx.doi.org/10.1016/j.neuron.2013.01.015
http://www.ncbi.nlm.nih.gov/pubmed/23522042
http://www.ncbi.nlm.nih.gov/pubmed/6211622
http://dx.doi.org/10.1016/j.brainres.2004.03.047
http://www.ncbi.nlm.nih.gov/pubmed/15157812


26. Vult von Steyern F, Martinov V, Rabben I, Njå A, de Lapeyrière O, Lømo T. The homeodomain tran-

scription factors Islet 1 and HB9 are expressed in adult alpha and gamma motoneurons identified by

selective retrograde tracing. Eur J Neurosci. 1999; 11: 2093–102. PMID: 10336678

27. Zelena J. Nerves and mechanoreceptors: the role of innervation in the development and maintenance

of mammalian mechanoreceptors. London: Chapman & Hall; 1994.

28. Kozeka K, Ontell M. The three-dimensional cytoarchitecture of developing murine muscle spindles. Dev

Biol. 1981; 87: 133–47. PMID: 7286415

29. Kucera J, Walro JM, Reichler J. Innervation of developing intrafusal muscle fibers in the rat. Am J Anat.

1988; 183: 344–58. doi: 10.1002/aja.1001830408 PMID: 3218622

30. Hunt CC. Relation of function to diameter in afferent fibers of muscle nerves. J Gen Physiol. 1954; 38:

117–31. PMID: 13192320

31. Stacey MJ. Free nerve endings in skeletal muscle of the cat. J Anat. 1969; 105: 231–54. PMID:

5802932

32. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, et al. Transgenic mice for inter-

sectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;

85: 942–58. doi: 10.1016/j.neuron.2015.02.022 PMID: 25741722

33. Johnson MI, Ovalle WK. A comparative study of muscle spindles in slow and fast neonatal muscles of

normal and dystrophic mice. Am J Anat. 1986; 175: 413–27. doi: 10.1002/aja.1001750403 PMID:

2940857

34. Yellin H. Spindle induction and differentiation in murine dystrophy. Experientia. 1974; 30: 286–7. PMID:

4274760

35. Tourtellotte WG, Keller-Peck C, Milbrandt J, Kucera J. The transcription factor Egr3 modulates sensory

axon-myotube interactions during muscle spindle morphogenesis. Dev Biol. 2001; 232: 388–99. doi:

10.1006/dbio.2001.0202 PMID: 11401400

36. Kucera J, Cooney W, Que A, Szeder V, Stancz-Szeder H, Walro J. Formation of supernumerary muscle

spindles at the expense of Golgi tendon organs in ER81-deficient mice. Dev Dyn. 2002; 223: 389–401.

doi: 10.1002/dvdy.10066 PMID: 11891988

37. Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, et al. Peripheral NT3 signaling is

required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron.

2003; 38: 403–16. PMID: 12741988

38. Wright DE, Zhou L, Kucera J, Snider WD. Introduction of a neurotrophin-3 transgene into muscle selec-

tively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3. Neuron. 1997; 19:

503–17. PMID: 9331344

39. Ernfors P, Lee KF, Kucera J, Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral

nervous system and loss of limb proprioceptive afferents. Cell. 1994; 77: 503–12. PMID: 7514502

40. Taylor MD, Vancura R, Williams JM, Riekhof JT, Taylor BK, Wright DE. Overexpression of neurotro-

phin-3 in skeletal muscle alters normal and injury-induced limb control. Somatosens Mot Res. 2001; 18:

286–94. PMID: 11794730

41. Taylor MD, Vancura R, Patterson CL, Williams JM, Riekhof JT, Wright DE. Postnatal regulation of limb

proprioception by muscle-derived neurotrophin-3. J Comp Neurol. 2001; 432: 244–58. PMID: 11241389

42. Wang Z, Li LY, Taylor MD, Wright DE, Frank E. Prenatal exposure to elevated NT3 disrupts synaptic

selectivity in the spinal cord. J Neurosci. 2007; 27: 3686–94. doi: 10.1523/JNEUROSCI.0197-07.2007

PMID: 17409232

43. Arber S, Ladle DR, Lin JH, Frank E, Jessell TM. ETS gene Er81 controls the formation of functional con-

nections between group Ia sensory afferents and motor neurons. Cell. 2000; 101: 485–98. PMID:

10850491

44. Masri R, Ro JY, Dessem D, Capra N. Classification of muscle spindle afferents innervating the masse-

ter muscle in rats. Arch Oral Biol. 2006; 51: 740–7. doi: 10.1016/j.archoralbio.2006.03.006 PMID:

16616886

Proprioceptive Innervation of the Mouse Soleus

PLOS ONE | DOI:10.1371/journal.pone.0170751 January 25, 2017 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/10336678
http://www.ncbi.nlm.nih.gov/pubmed/7286415
http://dx.doi.org/10.1002/aja.1001830408
http://www.ncbi.nlm.nih.gov/pubmed/3218622
http://www.ncbi.nlm.nih.gov/pubmed/13192320
http://www.ncbi.nlm.nih.gov/pubmed/5802932
http://dx.doi.org/10.1016/j.neuron.2015.02.022
http://www.ncbi.nlm.nih.gov/pubmed/25741722
http://dx.doi.org/10.1002/aja.1001750403
http://www.ncbi.nlm.nih.gov/pubmed/2940857
http://www.ncbi.nlm.nih.gov/pubmed/4274760
http://dx.doi.org/10.1006/dbio.2001.0202
http://www.ncbi.nlm.nih.gov/pubmed/11401400
http://dx.doi.org/10.1002/dvdy.10066
http://www.ncbi.nlm.nih.gov/pubmed/11891988
http://www.ncbi.nlm.nih.gov/pubmed/12741988
http://www.ncbi.nlm.nih.gov/pubmed/9331344
http://www.ncbi.nlm.nih.gov/pubmed/7514502
http://www.ncbi.nlm.nih.gov/pubmed/11794730
http://www.ncbi.nlm.nih.gov/pubmed/11241389
http://dx.doi.org/10.1523/JNEUROSCI.0197-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17409232
http://www.ncbi.nlm.nih.gov/pubmed/10850491
http://dx.doi.org/10.1016/j.archoralbio.2006.03.006
http://www.ncbi.nlm.nih.gov/pubmed/16616886

