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   Abstract: A variety of protein post-translational modifications has been identified that control many 
cellular functions. Phosphorylation studies in mycobacterial organisms have shown critical importance 
in diverse biological processes, such as intercellular communication and cell division. Recent tech-
nical advances in high-precision mass spectrometry have determined a large number of microbial 
phosphorylated proteins and phosphorylation sites throughout the proteome analysis. Identification of 
phosphorylated proteins with specific modified residues through experimentation is often labor-
intensive, costly and time-consuming. All these limitations could be overcome through the application 
of machine learning (ML) approaches. However, only a limited number of computational phosphory-
lation site prediction tools have been developed so far. This work aims to present a complete survey of 
the existing ML-predictors for microbial phosphorylation. We cover a variety of important aspects for 
developing a successful predictor, including operating ML algorithms, feature selection methods, win-
dow size, and software utility. Initially, we review the currently available phosphorylation site data-
bases of the microbiome, the state-of-the-art ML approaches, working principles, and their perfor-
mances. Lastly, we discuss the limitations and future directions of the computational ML methods for 
the prediction of phosphorylation. 
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1. INTRODUCTION 

 Phosphorylation is an important and most common post-
translational modification (PTMs) of proteins, which plays 
an important role in various aspects of biological processes 
including cell signaling and gene regulatory functions in 
both eukaryotes and microbial organisms [1-9], whereas sev-
eral diseases occur due to abnormal phosphorylation events 
and different kinase modifications [1, 10, 11]. The phos-
phorylation events resulting in dysregulation of protein ki-
nases involve a potential signaling mechanism associated 
with various complex diseases, including cancer develop-
ment and progression [12]. For example, p53 is a protein 
critically responsible for tumor suppression, in which multi-
site PTMs have been observed, suggesting extensive control 
of this protein [13]. Due to its pivotal role in various biologi-
cal cellular processes, the molecular networks of protein 
phosphorylation in eukaryotes have been studied extensively 
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[14-16]. Phosphorylation studies in mycobacterial organisms 
have currently demonstrated their critical importance in di-
verse cellular processes and pathogenesis [17-20]. Since 
there are numerous unmet clinical needs in bacterial infec-
tious diseases, it is important to study bacterial protein phos-
phorylation comprehensively [1]. 
 In the last decades, low-throughput experimental tech-
niques were primarily applied to discovering novel phos-
phorylation sites, but executing these techniques is time-
consuming and labor-intensive [21]. Recently, advanced 
proteome-based high-throughput mass spectrometry methods 
have greatly accelerated the identification of novel phos-
phorylation sites [22, 23], which have determined a large 
number of microbial phosphorylated substrates and PTM 
sites [15]. With a rapid increase of protein data via high-
throughput sequencing techniques, it has been anticipated 
that the number of potential phosphorylation sites increases. 
This high-throughput method has several limitations: for a 
given phosphorylation site with specific modified residues, it 
is unable to identify the responsible protein kinases for such 
phosphorylation events [3]; it is difficult to pinpoint the ex-
act phosphorylation sites by handling the existing technical 
challenges [23]; and experimentation processes mostly re-
quire expensive types of equipment and often labor-
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intensive, which are not available in ordinal laboratories [3, 
16, 24, 25]. To identify novel phosphorylation sites by solv-
ing these limitations, machine learning (ML)-based approach 
has become increasingly popular. Hence, current efforts have 
primarily been made to develop computational methods, 
particularly ML-based approaches, to precisely identify the 
bacterial protein phosphorylation sites, but a limited number 
of computational tools have been presented so far [16, 24-
26].  

 ML algorithms could greatly reduce the costs and labors 
in detecting potential phosphorylation sites with existing 
experimental data [16, 27, 28]. This review summarizes the 
ML-based computational resources with available databases, 
general or species-specific prediction models, and kinase-
specific prediction models for bacterial proteins. It also dis-
cusses the benefits and limitations associated with the ML-
based approaches. Therefore, this review can assist scientists 
to select the best predictor of bacterial phosphorylation sites 
and suggests the future directions of the ML methods. 

2. CURRENT PHOSPHORYLATION DATABASES 

 In Table 1, we have listed several protein phosphoryla-
tion site databases of mycobacteria, namely Phosphorylation 
Site Database [29], dbPTM 3.0 [30], PHOSIDA [31], Uni-
Prot [32], and SysPTM 2.0 [33] containing 1400, 186, 305, 
176, and 348 phosphorylation sites, respectively. To date, the 
dbPSP has been the most updated available phosphorylation 
site database for microbes, which was constructed by Pan et 
al. [15] in 2015. It registers 3750 distinct phosphorylated 
proteins with 7391 phosphorylation sites on different amino 
acid residues containing arginine (Arg), cysteine (Cys), as-
partic acid (Asp), tyrosine (Tyr), serine (Ser), threonine 
(Thr), and histidine (His) from 96 organisms. This database 
serves as an extensive data resource for studying bacterial 
phosphorylation. 

3. HOMOLOG REDUNDANCY 

 In PTM analysis, the curated sequences are often affected 
by homology and redundancy problems. Therefore, sequence 
redundancy elimination or homology reduction is a prerequi-
site to decipher the overfitting problem on the datasets. To 
shrink the homology sequences, most of phosphorylation 
prediction tools castoff the flanking sequence windows or 

protein sequences by using the program CD-HIT (http:// 
weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd= 
cd-hit) [32] or BLASTCLUST (http://nebc.nox.ac.uk/bioin- 
formatics/docs/blastclust.html). However, there is no cutoff 
standard program to filter the high sequence similarity. 
Therefore, a rigorous investigation on the benchmark dataset 
is essential to build a precise prediction model. 

4. PROTEIN ENCODING SCHEME 

 ML-algorithms are not able to directly handle sequence 
data, which need to be transformed into numeric feature vec-
tors using different encoding methods [16, 34-59]. Three 
popular feature encoding schemes, consisting of evolution-
ary, sequence composition, and structural features, are used 
for predicting microbial phosphorylation sites (Fig. 1). 

4.1. Evolutionary Features 

 The evolutionary profile is generated from the position-
specific scoring matrix (PSSM) by using PSI-BLAST with 
different constraints including e-value and iteration times 
[60, 61]. Recently, different potential evolutionary schemes 
have been generated, including the amino acid composition 
of PSSM, tri-gram PSSM, dipeptide composition of PSSM, 
[62-65]. The MPSite predictor has introduced different evo-
lutionary features for bacterial phosphorylation site predic-
tion [16]. 

4.2. Sequence Composition-based Features 

 Different types of sequence composition encoding ap-
proaches were used, including amino acid frequency compo-
sition, amino acid composition (AAC), amino acid index 
properties (AIP), and binary encoding, for bacterial phos-
phorylation site prediction (Table 2). Amino acid location 
encoding is widely used in the field of PTM research [16, 
25], where a sequence fragment is encoded into a feature 
vector by replacing any of the 20 native amino acids with 
numerical indexes. The dimension of the feature vector de-
pends on the length of the sequence fragment. The composi-
tion of k-spaced amino acid pairs (CKSAAP) is widely used 
in PTMs research [24, 66]. Binary encoding is another com-
mon feature [16, 67-69].  

Table 1. List of currently available protein phosphorylation site databases in mycobacteria. 

Database Number of Phosphorylation Sites/ Total Proteins Year Database URL References 

dbPSP 7391/3750 2015 http://dbpsp.biocuckoo.org/ [15] 

SysPTM 2.0 348/213 2014 http://lifecenter.sgst.cn/SysPTM/ [15, 33] 

UniProt 176/135 2014 http://www.uniprot.org/ [15] 

PHOSIDA 305/382 2010 http://www.phosida.com [15, 31] 

dbPTM 3.0 186/138 2006 http://dbPTM.mbc.nctu.edu.tw/ [15, 30] 

Phosphorylation Site 
Database 

1400/960 2004 
http://vigen.biochem.vt.edu/xpd/xpd.htm 

 (Not available) 
[15, 29] 
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4.3. Structure Features 

 The function of proteins critically depends on their ter-
tiary structures and secondary structures. The α-helix, β-
strand, and coil were used to build the native protein struc-
tures. It plays an important role in the interaction of the resi-
dues inside the proteins [65, 70, 71]. For further investiga-
tion of bacterial phosphorylation sites, secondary and tertiary 
structure information could be integrated [59, 72].  

5. MACHINE LEARNING ALGORITHMS 

 We reviewed existing ML-based bacterial phosphoryla-
tion site predictors including our MPSite [16], prkC-PSP 
[25], cPhosBac [24], and NetPhosBac [26] and compared 
their key aspects. As mentioned in section 4, most of the 
developed computational tools (Tables 2 and 3) have been 
constructed by using the ML algorithms. Based on our sur-
vey, the ML classifiers that predict bacterial phosphorylation 
sites are described below. 

5.1. Support Vector Machine 

 The SVM is a popular supervised classification algorithm 
and widely used in protein bioinformatics research for classi-
fying biological data. It aims to find the optimal hyperplane 
with the largest margin to accurately classify samples based 
on the feature dimensionality of the training dataset [73-75]. 
For the computational purpose, provided sequences are fil-
tered, converted into the representative fixed-length feature 
vector and subjected to an objective function (class labels: 
phosphorylation site: 1 and non-phosphorylation site: 0). The 
generating mapping formula for SVM learns a function in 
the form of,  

! = sign !!!!! !! , ! + !
!

!!!

                                                                                (1) 

where y stands for the predicted class relative to the input 
feature vector of x; ai is the modifiable weight coefficients 
associated with the sample xi; b is the bias term which we 
target to maximize; K represents the suitable kernel function. 
So once a test dataset is given, features associated with the 
data are mapped to a high-dimensional space. Their class is 
predicted based on the sign by applying equation 1, such that 
if the sign is positive (+) y belongs to class 1; if the sign is 
negative (-) y belongs to the other class. It is worth mention-
ing that based on different computational scenarios several 
kernel functions are available for SVM, including Gaussian 
radial-basis function (RBF), linear/polynomial functions, and 
sigmoid functions. SVM is widely used in many bioinfor-
matics studies [43, 76, 77]. The RBF kernel function was 
commonly employed, but it is important to make a better 
choice of kernel approaches according to needs and ques-
tions of interest [43]. Another important point is to choose 
the controlling parameters. In the SVM algorithm, two criti-
cal parameters are C (the penalty factor that controls the 
trade-off between the training error and margin) and ᵧ (the 
parameter that configures the kernel function) [25, 77]. Since 
variation in parameter configurations could significantly 
change prediction accuracy, the parameters should be opti-
mized by the cross-validation test using a grid search ap-
proach to obtain the best performance.  
 To date, only four ML-based predictors for bacterial 
phosphorylation sites have been available. Interestingly, 2 
out of 4 methods used SVM [24, 25] (Tables 2 and 3). In 
2015, Li et al. [24] retrieved a phosphorylation dataset from 
NetPhosBac [26], containing 152 of pS/pT sites in 199 sub-
strates (while 90% sequence identity were confirmed by CD-
HIT) [78], and proposed a predictor of cPhosbac employing 
a SVM-based ML algorithm [24]. The method generated 
2205 dimensional feature vector based on the CKSAAP 
methods. They have shown that the cPhosBac achieved high 
prediction accuracy compared to the NetPhosBac [26]. In 
2018, Zhang et al. developed a new online prediction tool

 
Fig. (1). An overview of the general framework of machine learning (ML) based computational approaches for phosphorylation sites predic-
tion. Generally, the construction of ML-approaches roughly consists of the following 5 steps: (i) dataset preparation; (ii) selection encoding 
methods; (iii) building prediction models; (iv) performance evaluation; and (v) development of a web-server. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 



Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites Current Genomics, 2020, Vol. 21, No. 3    197 

Table 2. List of currently available machine-learning tools for bacterial phosphorylation sites prediction. 

Tool 
(Year) 

PTM 
Residue 

ML 
Algorithm 

Feature Encoding Dataset Size 
(Positive/Negative) 

Homolog and 
Redundancy 

Window 
Size 

References 

 

 

MPSite 

(2019) 

 

 

Serine 

Threonine 

 

 

RF 

 

 

Evolutionary, se-
quence composition, 
and structure features 

Training 
dataset 

Independent 
dataset 

 

 

 

21 

 

 

[16] 

S: 1704/ 

   3408 

 

T: 1401/ 

    2802 

S:  341/ 

    682 

 

T:  254/ 

    508 

30% 

 

 

 

30% 

prkC-PSP 

(2018) 

Serine 

Threonine 
SVM Amino acid location 36/512 - 31 [25] 

cPhosBac 

(2015) 

Serine 

Threonine 
SVM CKSAAP 152/5761 - 21 [24] 

NetPhosBac 

(2008) 

Serine 

Threonine 
Neural net-

work 
sequence composi-

tion features 
152/841 90% 13 [26] 

‘- ‘, means not available. 
 
Table 3. Detail of the available web server for bacterial phosphorylation sites prediction. 

Predictor Description Predictor URL References 

MPSite Web-based machine learning predictor for identifying bacterial 
phosphorylation sites using the sequence features. This is a non-

organism specific or general phosphorylation site predictor. 
http://kurata14.bio.kyutech.ac.jp/MPSite/ [16] 

prkC-PSP Web application for identification of prkC-specific phosphoryla-
tion sites in bacteria based on sequence information.  

http://free.cancerbio.info/prkc/ 
[25] 

cPhosBac Web application to predict phosphorylation sites in bacteria. It 
includes protein and motif length scan to optimize the prediction. 

http://netalign.ustc.edu.cn/cphosbac/ 
[24] 

NetPhosBac First web-based bacterial phosphorylation site predictor based on 
the sequence information. It is a taxa-specific predictor. 

http://www.cbs.dtu.dk/services/NetPhosBac 
[26] 

 
employing the SVM methods, called prkC-PSP [25]. Basi-
cally, this is the first kinase (prkC)-specific phosphorylation 
site predictor in bacterial organisms. Since the kinase-
specific dataset for bacterial phosphorylation is not available, 
they constructed a prkC kinase-related dataset of 36 phos-
phorylation sites in 14 experimentally validated protein sub-
strates by curating the published literature. The prkC-PSP 
predictor used the amino acid location feature extraction 
method for encoding input features and achieved 94.89% 
accuracy. 

5.2. Random Forest 

 Random forest (RF) [79] is one of the well-known and 
widely applied ML-algorithms to address various bioinfor-
matics applications [16, 43, 67, 80-90]. RF essentially con-
sists of a large number of N individual decision trees to op-
erate as an ensemble learning algorithm [79]. For a given 
training sample of size T with Q features, RF builds Q sub-
sets of training datasets by utilizing the bootstrap sampling, 
and then at each node randomly T features are selected to 

find the best split according to Gini impurity. Usually, the 
average prediction performance is reported to avoid overfit-
ting problems. In RF, each decision tree consists of a number 
of ‘if then rules’ which are fairly simple to provide potential 
insight and knowledge to biologists. It is worth mentioning 
that the RF algorithm has three most important parameters: 
the number of decision trees; the number of variables that are 
randomly selected in each node partition; and optimization is 
necessary to minimize the number of samples to split inter-
nal nodes.  
 In 2019 [16], we developed a web-based bacterial phos-
phorylation site predictor called ‘MPsite’ (Table 2) using the 
enhanced characteristics of sequence features. To date, this 
has been only one general or non-species specific method for 
predicting microbial phosphorylation sites. In the MPsite 
[16], 2709 pS sites in 1940 proteins, and 2174 pT sites in 
1534 proteins were collected from the dbPSP database [15]. 
From different feature encoding methods, the Wilcoxon 
rank-sum test was employed to select the key features. Final-
ly, the optimized features were used to train the RF classifi-
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er. The MPsite achieved promising performance compared to 
the existing predictor NetphosBac. 

5.3. Artificial Neural Network 

 Artificial neural network (ANN or NN) is well estab-
lished and widely used in bioinformatics research [91-95]. 
ANN is a machine learning approach inspired by biological 
neural networks (the central nervous system of the animal at 
brain). Generally, ANN receives multiple input nodes, con-
nect these inputs with their multiple internal states to gener-
ate the outputs using an output function. Each connection is 
assigned a weight coefficient which indicates its relative 
importance [96]. Generally, there are three important layers 
of ANN: the input layer; hidden layers; and the output layer 
[97]. Computationally, ANN is complex in addressing the 
problem of multiple hidden layers [98, 99]. Among the four 
reviewed predictors (Table 2) the NetPhosBac applied the 
ANN algorithm as their core method [26].  
 Besides the proposed operational framework, it is im-
portant to discuss their pros and cons, as noted below: (i) 
since overestimation is a major issue in ML-based methods 
and benchmark dataset-based performance is often subject to 
high risks of overfitting, hence the evaluation of the devel-
oped models by using independent dataset other than the 
benchmark dataset is essential; (ii) in general, web-based 
predictors are useful to detect putative phosphorylation sites 
and to develop further advanced tools. In this case, the de-
tails of the publicly available tools are listed in Table 3. 

6. CURRENT MACHINE LEARNING TOOLS FOR 
PHOSPHORYLATION SITE PREDICTION 

 The development and proliferation of ML-based compu-
tation approaches to the prediction of phosphorylation PTM 
have been witnessed in recent decades. ML methods can be 
selected or designed with respect to training-test datasets, 
sequence/structural descriptors, targeted phosphorylation 
types, applied physiochemical properties, feature encoding 
techniques, etc. In this study, we explored the latest ML-
based tools for predicting novel phosphorylation sites in bac-
terial organisms. In general, the development of the ML-
based computation methodology consists of roughly five 
steps: (i) preparation of high-quality training dataset and 
independent dataset; (ii) extraction of informative features 
by suitable encoding schemes; (iii) construction of prediction 
models using ML-algorithms; (iv) performance evaluation of 
the models, and (v) web-server development (Fig. 1). This 
methodology is well established and widely used in compu-
tational protein biology and bioinformatics fields [16, 25, 34-
43]. In computational biology, identifying phosphorylation 
sites accurately on a given protein is still a major challenge. 
From our review, the existing ML-based phosphorylation 
site predictors can be described in three categories: organ-
ism-specific, general, and kinase-specific modes [27].  

7. GENERAL OR ORGANISM SPECIFIC 
PHOSPHORYLATION SITE PREDICTOR 

 Protein phosphorylation analysis in eukaryotes has al-
most matured over the past few decades [3], but it is still 
countable in bacterial organisms [16]. To predict non-
specific or general phosphorylation sites in microbes, Hasan 

et al. in 2019 [16] developed the first online-based ML pre-
dictor, namely MPSite with a random forest (RF) classifier, 
which predicts phosphorylated serine (pS) and phosphory-
lated threonine (pT) residues on the targeted protein se-
quences (Tables 2 and 3). It is well known that the proteins 
of each species have a distinct substrate structure for the at-
tachment of different protein kinases (PKs). Thus, the pre-
diction accuracy could be improved by designing the ML-
based predictors in an organism-specific manner. In 2008, 
Miller et al. prepared the training dataset consisting of 103 
phosphorylated serine sites (pS) and 37 phosphorylated thre-
onine sites (pT), and developed the first bacterial-specific 
online predictor of NetPhosBac 1.0 [26] (Tables 2 and 3) by 
implementing an artificial neural network (ANN) algorithm. 
Li et al. [24] in 2015 retrieved the same dataset of pS and pT 
from NetPhosBac, and constructed a predictor of cPhosbac 
using a support vector machine (SVM) algorithm. The 
cPhosBac achieved higher prediction performance than the 
NetPhosBac predictor (Tables 2 and 3).  

8. KINASE-SPECIFIC PHOSPHORYLATION SITE 
PREDICTOR 

 Currently, a number of studies have reported that kinase-
specific phosphorylation plays an important role in various 
cellular activities that are inherently responsible for bacterial 
pathogenicity [1, 20, 44]. In bacteria, several recent studies 
have identified that the threonine/serine protein kinase, 
known as prkC, shows homology in catalytic domains. [45-
47]. Further studies found that prkC is often involved in the 
various cellular process including bacterial resuscitation 
[48], gliding motility [49], and antimicrobial resistance [47]. 
Kinase has become one of the largest ‘druggable groups’ in 
cancer therapeutics in recent years [12]. Although numerous 
ML-based predictors, such as GPS, Scansite, PKIS, and 
PPSP, have been proposed to detect the kinase-specific 
phosphorylation sites in eukaryotes [7, 25, 27, 50-52], pre-
dictors for bacteria remain to be developed. In this regard, 
Zhang et al. recently have constructed a prkC kinase-related 
dataset of 36 phosphorylation sites in 14 experimentally val-
idated proteins. They developed the first kinase (prkC)-
specific web-application, prkC-PSP in 2018 (Table 2), using 
the SVM algorithm [25].  
 In recent years, protein kinases have become an im-
portant group of ‘druggable’ targets [10, 12]. To connect 
protein kinases or phosphorylated proteins to drug design 
and potential biomarker identification, several computational 
approaches were developed. In particular, unsupervised clus-
ter analysis was used for phosphoproteomics profiling of 
kinases. The Wilcoxon rank-sum test was used to select im-
portant features and a linear kernel-based SVM algorithm 
was employed to build the final classifier [53, 54]. Recently, 
Leung et al. [12, 55] developed a command-line-tool called 
HyperModules to detect clinically and phenotypically related 
network modules for the discovery of disease mutations bi-
omarkers.  

9. CAVEATS OF THE STATE-OF-THE-ART ML  
APPROACHES 

 Even though great progress has been made in the devel-
opment of phosphorylation site prediction tools, several chal-
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lenges and limitations need to be addressed. Firstly, the pre-
diction accuracy evaluated by cross-validation test is diffi-
cult to reproduce, unless the ML parameters and source 
codes regarding feature encodings are provided. On the other 
hand, the prediction performances will be reproduced on 
independent datasets, if a developer provides a standalone 
program or web application. Unfortunately, many published 
methods neither open their assigned source codes nor da-
tasets, which delays the development of next-generation 
methods. Therefore, it is highly recommended to provide 
datasets and source codes while publishing a new methodol-
ogy [100]. Secondly, most of the publicly available methods 
used their own independent dataset to evaluate the prediction 
performance in comparison with existing methods. For fair 
comparisons, the construction of a unique or independent 
dataset is essential. While constructing distinct datasets, care 
should be taken that none of the sequences overlap with the 
benchmark dataset.  

CONCLUSION AND PERSPECTIVES 

 Recently, the field of bacterial phosphorylation site de-
tection has made noticeable progress in recruiting the ML-
approaches, as mentioned in Tables 2 and 3. Owing to high-
throughput sequencing techniques, automated computational 
approaches are required to enable rapid and accurate predic-
tion phosphorylation sites related to kinases from a large 
number of candidate proteins. In this regard, several ML-
based approaches have been developed in both the sequence-
based and structure-based classes; many predictors  
were built in the kinase-specific and organism-specific/  
general manners by using a variety of training and test da-
taset resources [3, 27]. In order to develop the next-
generation methodology, the following challenges could be 
explored [27]. First, a reliable, high-quality benchmark da-
taset is constructed by carefully searching existing phos-
phorylation site databases and through rigorous literature 
inquiry. Second, most of the existing feature descriptors are 
extracted from primary sequences. On the other hand, many 
functional sites were found based on evolutional and struc-
tural information [101-103]. The addition of structure-based 
and evolutionary information of protein kinases proves valu-
able to improve the predictors [104-108]. Third, predictors 
available for a wider variety of organisms are required, be-
cause protein kinases are disparate in different organisms [3, 
109, 110]. Forth, different ML classifiers are explored to 
increase prediction performance. It is important not only to 
integrate different feature encodings [111-115], such as K-
nearest neighbors, multivariate information, biochemical 
properties, and pseudo residues composition, but also to in-
vestigate different ML classifiers [116-122], such as an ex-
tremely randomized tree, extreme gradient boosting, light 
gradient boosting, and deep learning. The feature selection 
technique should remove redundant information to improve 
performance. In this regard, mRMR [123], ANOVA [124], 
and MRMD [125, 126] can be considered. Rapid develop-
ment in structural bioinformatics and sequential bioinformat-
ics have driven the medicinal chemistry undergoing an un-
precedented revolution of proteins [127-129], in which the 
recently proposed encoding methods [130-135] may play an 
important role in discovering new microbial phosphorylation 
sites. 
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