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Abstract

Objective: We previously demonstrated the utility of the Automated Neuropsychological Assessment Metrics (ANAM)
for screening cognitive impairment (CI) in patients with systemic lupus erythematosus (SLE) and developed composite
indices for interpreting ANAM results. Our objectives here were to provide further support for the ANAM’s concurrent
criterion validity against the American College of Rheumatology neuropsychological battery (ACR-NB), identify the most
discriminatory subtests and scores of the ANAM for predicting CI, and provide a new approach to interpret ANAM results
using Classification and Regression Tree (CART) analysis.
Methods: 300 adult SLE patients completed an adapted ACR-NB and ANAM on the same day. As per objectives, six
models were built using combinations of ANAM subtests and scores and submitted to CART analysis. Area under the curve
(AUC) was calculated to evaluate the ANAM’s criterion validity compared to the adapted ACR-NB; the most dis-
criminatory ANAM subtests and scores in each model were selected, and performance of models with the highest AUCs
were compared to our previous composite indices; decision trees were generated for models with the highest AUCs.
Results: Two models had excellent AUCs of 86 and 89%. Eight most discriminatory ANAM subtests and scores were
identified. Both models demonstrated higher AUCs against our previous composite indices. An adapted decision tree was
created to simplify the interpretation of ANAM results.
Conclusion: We provide further validity evidence for the ANAM as a valid CI screening tool in SLE. The decision tree
improves interpretation of ANAM results, enhancing clinical utility.
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Key messages

(1) The ANAM can be used as a screening tool for CI in
patients with SLE.

(2) Eight most discriminatory ANAM subtests and
scores were identified, reducing overall testing time.

(3) A simple decision tree generated from CART
analysis improves the interpretability of ANAM
results.

Introduction

Cognitive impairment (CI) is common in patients with systemic
lupus erythematosus (SLE) with a pooled prevalence of 38%
(95% confidence interval: 33–43%) (1). However, diagnosis
and screening for CI is often delayed. Currently, evidence is
lacking on the validity and agreement of screening instruments
used for assessing CI in patients with SLE (2).

The validated American College of Rheumatology
Neuropsychological Battery (ACR-NB) is regarded as the
gold standard for assessing CI in SLE (3, 4). It is a 1 hour
NB, covering cognitive domains shown to be affected in
SLE, including attention and speed of processing, language
processing, learning and memory (visuospatial and verbal),
executive functioning, and manual motor speed (3). Al-
though shorter than traditional NBs, the ACR-NB remains
associated with high costs due to the need for trained
personnel for administration and score interpretation. These
create significant barriers for patients and clinicians since
such costs are not typically covered by public healthcare
systems and impose a substantial time burden for screening
in ambulatory settings. Thus, instruments with less ad-
ministrative burden are needed to facilitate early screening
of CI in SLE.

The Automated Neuropsychological Assessment Met-
rics (ANAM) offers such a possibility, but its validity for
cognitive screening in SLE has yet to be fully established.
The ANAM (version 4) General Neuropsychological
Screening (GNS) battery is self-administered, takes 30–
40 min to complete, and has been used for detecting CI in
SLE (5–7). The ANAM generates large amounts of data
which allows customization of a cognitive screening battery
for specific populations of interest (8). Trained personnel
can administer the ANAM under the supervision of a
qualified health professional (e.g., clinical psychologist);
however, interpretation requires a qualified professional
trained in test principles (e.g., neuropsychologist).

We previously demonstrated that the ANAM could ac-
curately screen for CI in SLE compared to the ACR-NB,

and derived composite indices for predicting CI (9). To
extend our results, we used Classification and Regression
Tree (CART) analysis in the current study to predict CI in
patients with SLE based on ANAM subtests and scores.
CART uses recursive partitioning to build a decision tree
(10). CART retains the optimal number of predictors to
maximize sensitivity and specificity of the outcome. This
innovative and powerful statistical technique identifies the
most discriminatory variables in a model and displays data
in a decision tree (10–12). Implementing the ANAM as a
screening test for CI in SLE with the CART decision tree
facilitates earlier, large-scale screening.

Our objectives were to (1) examine the ANAM’s cri-
terion validity for detecting CI against an adapted ACR-NB,
(2) identify the most discriminatory subtests and scores of
the ANAM for predicting CI and compare the performance
of our best models against our previous composite indices
(9), and (3) provide a new approach for interpreting ANAM
results using decision trees. We hypothesized that the
ANAM would achieve a sensitivity ≥80% and specificity
≥70%.

Patients and methods

Patients

A cross-sectional analysis of data on 300 consenting adult
patients with SLE who attended the University of Toronto
Lupus Clinic between January 2016 and October 2019 was
conducted. Inclusion criteria were (a) fulfillment of the
revised ACR criteria for SLE classification or three criteria
and a supportive biopsy (kidney or skin) (13); (b) ages 18–
65; and (c) ability to give informed consent. Exclusion
criteria were (a) mental or physical disability preventing
participation in the study and (b) low fluency in English
precluding completion of verbal items of the ACR-NB. All
participants provided written, informed consent. This study
was approved by the University Health Network Research
Ethics Board.

Study Procedures

Patients completed both the adapted ACR-NB and ANAM
on the same day, and were classified as either CI (n=157),
non-CI (n=54), or indeterminate (n=89) based on the
adapted ACR-NB. We used the following criteria: (a) CI: A
z-score of ≤�1.5 in 2 or more domains; (b) non-CI: z-scores
in all domains ≥�1.5; and (c) indeterminate: A z-score
of �1.5 in only one domain (9). The indeterminate group
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was excluded from the analysis to reduce heterogeneity. The
final sample included 211 patients.

A domain was defined as impaired if a z-score of ≤�1.5
was reached in at least one test in the following domains:
manual motor speed, simple attention and processing
speed, visual-spatial construction and language process-
ing; or z-score of ≤�1.5 in 2 or more tests in the following
domains: learning and memory and executive functioning
(9). We corrected for patients with known joint issues if
performance on a motor task (e.g., Finger Tapping) resulted
in a z-score <�1.5 (i.e., impairment).

Outcome measures

Adapted ACR-NB. The ACR-NB has been described in detail
elsewhere (3, 4). The version used in this study was identical
to the original ACR-NB, except for the following: the
Hopkins Verbal Learning Test–Revised (HVLT-R) (14) was
used instead of the California Verbal Learning Test (CVLT)
(15) due to its shorter duration. Our adapted ACR-NB
includes 11 cognitive tests representing six cognitive do-
mains (manual motor speed; simple attention and pro-
cessing speed; visual-spatial construction; language
processing; learning and memory [visuospatial and ver-
bal]; and executive functioning [untimed and timed]) (9).

ANAM. The ANAM (version 4) GNS battery consists of 15
subtests. Each ANAM test provides four scores: percentage
correct (PCT), mean reaction time (MR), throughput (TP),
and coefficient of variation of reaction time (CV). Per-
centage correct responses represents accuracy, MR is the

mean reaction time (in seconds), TP measures cognitive
efficiency and is the number of correct responses per minute
(9, 16), and CV is an index of the patient’s consistency of
response speed within a given timed subtest and is a derived
score (standard deviation ofMR divided byMR) (9). Higher
PCT and TP scores, and lower MR and CV scores, indicate
better cognitive performance (9). Four subtests (Simple
Reaction Time, Tower Puzzle, and Tapping Left and Right
hand) do not have a PCT score, as these subtests do not
allow incorrect responses. Two subtests (Tower Puzzle and
Go/No Go) do not report a TP score as they cannot be
derived. Instead, MeanScore (derived from combination of
accuracy, speed, and problem difficulty) was used in place
of TP for Tower Puzzle and number of incorrect responses,
or false positives (NumIncRsp) was used in place of TP for
Go/No Go. Tests and cognitive domains of the ANAM and
adapted ACR-NB can be found in Table 1. ANAM per-
formance results of CI and non-CI patients can be seen in
Supplementary Table S1.

Statistical Analyses

Demographic and clinical characteristics between patients
who were classified as CI and non-CI were summarized. A
sample size calculation following the rule for regression
analyses of 20 cases per predictor, suggested the minimum
sample size to be 200, which we surpass (n=211). Statistical
significance was set at an alpha level of p < 0.05. CART
analysis was employed in R (17). Missing data was handled
by CART via imputation of missing data with surrogate
variables. Holm–Bonferroni method was used to control for

Table 1. Cognitive domains and tests of the adapted ACR-NB and ANAM.

NB cognitive domains NB tests
ANAM cognitive

domains ANAM tests

Manual motor speed Finger tapping test: Dominant hand and
non-dominant hand

Fine motor
processing

1. Tapping right hand;
2. tapping left hand

Simple attention and
processing speed

Trails A, Stroop color naming,
Stroop word reading

Attention and
processing speed

3. Running memory;
4. procedural reaction time;
5. two-choice reaction time;
6. simple reaction time;
7. simple reaction time repeated

Visual-spatial construction RCFT copy Visual-spatial perception 8. Spatial processing
Language processing COWAT Animals Language processing 9. Logical relations
Learning and memory RCFT delayed recall Learning 10. Code substitution learning
Visuospatial RCFT delayed recognition Memory 11. Code substitution delayed
Verbal HVLT-R delayed recall, HVLT-R recognition,

HVLT-R total recall
12. Match to sample

Executive functioning
Untimed

Stroop (interference score),
WAIS letter-number,
Consonant trigrams
(used lower value from 18 s or 36 s)

Executive functioning 13. Math processing;
14. go no go hits;
15. tower test

Executive timed WAIS-III digit symbol trail B
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multiple comparisons in the same ANAM score family. Raw
ANAM scores were used and adjusted for age in each model.

Examine the ANAM’s concurrent criterion validity
(objective 1)

Models were defined a priori using the same ANAM scores
and subtests as we had previously (9): Model 1—PCTscores,
Model 2—CV scores, Model 3—MR scores, Model 4—TP
scores, Model 5—PCT, CV, and MR scores, and Model 6—
PCT, CV, MR, and TP scores. MeanScore was used in place
of TP for Tower Puzzle and number of incorrect responses
(NumIncRsp) was used in place of TP for Go/No Go. Age
was also included in the models. Each model was submitted
to CARTanalysis. Decision trees were partitioned and pruned
using complexity parameter (cp), a computed value that
determines the number of predictors in a tree (18). The cp
value with the lowest cross-validation error to produce the
optimal number of predictors and lowest misclassification
rate was selected (11). To minimize overfitting, repeated k-
fold cross-validation was performed on each model using the
one minus standard error rule with R package “caret.”(19)
The k was assigned to 10 in our analysis, meaning the dataset
was randomly split into 10 equal parts; one part (10%) of the
dataset reserved as the testing dataset and the remaining nine
parts (90%) as the training dataset. Each model was fit on
the training set and evaluated on the testing set. An
evaluation score was retained, and the model was

discarded. This was continued until all 10 parts were used
as the testing dataset. This process was repeated three
times (a standard method), and each model’s performance
was a result of combined fitness of all 30 models.

Each model’s ability to detect CI was analyzed using
receiver operator characteristic (ROC) curves to determine
area under the curve (AUC). AUC values were classified as
outstanding (1.0–0.91), excellent (0.90–0.81), good (0.80–
0.71), fair (0.70–0.61), or poor (<0.6) (20). R package
“ROCR” was used for plotting ROC (21) and R package
“pROC” was used for calculating 95% confidence intervals
for each ROC (22). Contingency tables were used to cal-
culate sensitivity, specificity, accuracy, positive predictive
value (PPV), and negative predictive value (NPV).

Identify the most discriminatory ANAM subtests and
scores and compare to composite indices
(objective 2)

Final decision trees were generated following k-fold cross-
validation for models that achieved an AUC ≥0.81,
sensitivity ≥80% and specificity ≥70% using R package
“rpart.plot” (23) and R package “Rattle” (24). Resultant
decision trees identified the most discriminatory subtests
and scores of the ANAM. Previous composite indices
(ANAM-index5 and ANAM-index6) (9) were applied onto
the current dataset. ANAM subtests were compared be-
tween CART and the composite indices.

Table 2. Demographic and clinical characteristics of cohort included in the analysis (CI and non-CI).

Cognitive status based on adapted ACR-NB

Variable Value

Total CI Non-CI p-value

N=211 N=157 N=54

Sex Female 188 (89.1%) 138 (87.9%) 50 (92.6%) 0.34
Male 23 (10.9%) 19 (12.1%) 4 (7.4%) —

Age (years) 18–29 47 (22.3%) 39 (24.8%) 8 (14.8%) 0.05
30–39 56 (26.5%) 39 (24.8%) 17 (31.5%) —

40–49 47 (22.3%) 30 (19.1%) 17 (31.5%) —

50–59 44 (20.9%) 38 (24.2%) 6 (11.1%) —

60–69 17 (8.1%) 11 (7.0%) 6 (11.1%) —

Age at SLE diagnosis (years) Mean ± SD 26.92 ± 10.82 27.48 ± 11.73 25.26 ± 7.44 0.19
Median (IQR) 25 (18–33) 26 (18–35) 25 (20–29) 0.46

Age at enrollment (years) Mean ± SD 41.01 ± 12.22 40.81 ± 12.51 41.61 ± 11.41 0.67
Median (IQR) 40 (30–52) 40 (30–52) 43 (31–49) 0.60

Disease duration at enrollment (years) Mean ± SD 14.07 ± 10.19 13.33 ± 9.78 16.24 ± 11.11 0.07
Median (IQR) 12 (6–22) 12 (6–20) 15 (7–24) 0.11

Ethnicity Black 46 (21.8%) 40 (25.5%) 6 (11.1%) 0.04
Caucasian 104 (49.3%) 69 (43.9%) 35 (64.8%) —

Chinese 29 (13.7%) 23 (14.6%) 6 (11.1%) —

Other 32 (15.2%) 25 (15.9%) 7 (13.0%) —

Ethnicities in the “Other” category include Indigenous, Filipino, and other minority groups. p-values resulted from t-tests for continuous variables, chi-
square tests for binary variables, and Cochran-Armitage trend tests for categorical variables with more than two levels. CI, cognitive impairment.
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New approach to interpret ANAM results using
CART analysis decision trees (objective 3)

Decision trees generated with R Packages “rpart.plot”
(Supplementary Data S1) was used as a reference to re-
design the decision trees to enhance clinical interpretability.
To further investigate the performance of the decision tree
algorithm from the best models, we applied their algorithms
to the indeterminate group (n=89).

Results

Demographic and clinical characteristics of the SLE cohort
are included in Table 2. The prevalence of CI of all 300
participants was 52%.

Examine the ANAM’s concurrent criterion validity
(objective 1)

The AUC, sensitivity, specificity, PPV, NPV, and accuracy from
all models are displayed in Table 3. ANAM accurately identified
CI compared to the adapted ACR-NB. The AUC for all models
except Model 2 (CV) was >71%, indicating good to excellent
values. All models achieved a sensitivity of ≥90%. The best
models were Model 5 (PCT, CV, and MR) and Model 6 (PCT,
CV, MR, and TP); both models had an AUC >81%,
sensitivity ≥90% and specificity ≥70% (Figure 1). Model 5 had
an AUC of 86% (95% confidence interval: 0.80–0.92), sensi-
tivity of 93%, and specificity of 70%. Model 6 (PCT, CV, MR,
and TP) had an AUC of 89% (95% confidence interval: 0.84–
0.94), sensitivity of 90% and specificity of 78%.

Identify the most discriminatory ANAM subtests and
scores and comparison to composite indices
(objective 2)

The most discriminatory subtests and scores from Model
5 (PCT, CV, and MR) wereMR Procedural Reaction Time,
CV Spatial Processing, MR Tapping Left Hand, CV

Running Memory, CV Logical Relations, CV Simple Re-
action Time Repeated, MR Code Substitution Learning and
MR Spatial Processing. Age was also an important factor.
The most discriminatory subtests and scores from Model 6
(PCT, CV, MR, and TP) were the same as above except for
TP Code Substitution Learning and CV Two Choice Re-
action Time instead ofMR Code Substitution Learning and
MR Spatial Processing.

The AUC from ANAM-index5 was 75% (95% confi-
dence interval: 0.67–0.83), compared to an AUC of 86%
(95% confidence interval: 0.80–0.92) for CART Model 5.
Model 5 from CART included seven ANAM subtests, while
ANAM-index5 (9) included four subtests (Table 4).
ANAM-index6 (9) had an AUC of 75% (95% confidence
interval: 0.66–0.83) compared to an AUC of 89% (95%
confidence interval: 0.84–0.94) for CART Model 6. Eight
ANAM subtests were included in both Model 6 from CART
and ANAM-index6 (Table 4).

New approach to interpret ANAM results using
CART decision trees (objective 3)

Model 5 (PCT, CV, and MR) and Model 6 (PCT, CV, MR,
and TP) were the two models that had AUC ≥0.81,
sensitivity ≥80%, and specificity values ≥70%. Since
Models 5 and 6 both consisted of the same seven subtests
and Model 6 included an additional test, we decided to
only redesign the decision tree of Model 6 for potential
clinical use (Figure 2). Age was also shown to be an
important factor for CI in SLE patients and was included
in the decision tree. The algorithm for Model 5 predicted
79.8% of the indeterminate group (n=89) to have CI and
the algorithm for Model 6 predicted 74.2% of the inde-
terminate group to have CI.

Discussion

This is the first study using CART analysis to predict CI in
SLE using the ANAM benchmarked against the gold

Table 3. AUC, sensitivity, specificity, PPV, NPV, and accuracy results of all CART models.

Model 1
(PCT)

Model 2
(CV)

Model 3
(MR)

Model 4
(TP)

Model 5
(PCT, CV, and MR)

Model 6 (PCT, CV,
MR, and TP)

AUC 0.79 (95%
confidence
interval: 0.73–
0.86)

0.65 (95%
confidence
interval: 0.58–
0.72)

0.83 (95%
confidence
interval: 0.76–
0.90)

0.73 (95%
confidence
interval: 0.65–
0.81)

0.86 (95%
confidence
interval: 0.80–
0.92)

0.89 (95%
confidence
interval: 0.84–
0.94)

Sensitivity 96% 99% 97% 97% 93% 90%
Specificity 35% 31% 56% 39% 70% 78%
PPV 81% 81% 86% 82% 90% 92%
NPV 76% 89% 88% 84% 78% 72%
Accuracy 81% 82% 87% 73% 87% 79%

AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value.
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standard ACR-NB. Our results extend the literature on the
concurrent criterion validity of the ANAM as a screening
tool for CI in SLE, and builds upon our previous study
which used a composite index derived by logistic regression
(9). Our results demonstrate that the ANAM can accurately
differentiate between CI and non-CI SLE patients who have
been classified using traditional neuropsychological testing.
CART identified the most discriminatory subtests and
scores of the ANAM for detecting CI in SLE patients, which
notably reduces ANAM completion time from 40 to 15–
20 min, and parallels results from our previous study (9).

Furthermore, the decision tree provides high clinical utility,
allowing clinicians to classify patients using a simple, visual
algorithm. With no current standard screening tool and high
costs associated with comprehensive neuropsychological
testing, our findings strengthen the utility of the ANAM as a
large-scale screening method.

Similar to our previous study, our analyses showed that
specific ANAM subtests were associated with CI in patients
with SLE. These subtests assess attention and processing
speed, visual-spatial perception, fine motor processing,
language processing, and learning and memory (Table 1).

Table 4. Comparison of AUCs and ANAM subtests between CART analysis and composite indices for Models 5 and 6.

Model 5 (PCT, CV, and MR) Model 6 (PCT, CV, MR, and TP)

CART analysis ANAM-index5 CART analysis ANAM-index6

AUC 86% (95% confidence
interval: 0.80–0.92)

75% (95% confidence
interval: 0.67–0.83)

89% (95% confidence
interval: 0.84–0.94)

75% (95% confidence
interval: 0.66–0.83)

ANAM tests Procedural reaction time Code substitution learning* Procedural reaction time Code substitution learning*
Spatial processing* Code substitution delayed

memory
Spatial processing* Code substitution delayed

Tapping left hand* Spatial processing*
Tapping left hand*

Tapping left hand* Spatial processing*

Running memory Running memory Tapping left hand*
Logical relations Simple reaction time repeated* Simple reaction time repeated*
Simple reaction time
repeated

Logical relations Go/no go

Code substitution
learning*

Code substitution learning* Mean tower puzzle
Two-choice reaction time* Two-choice reaction time*

* represents ANAM tests that were found in both the present analysis (CART) and our previous composite index. The formula for ANAM-index5 = 3.88–
0.05*PCT/CSD-8.4*CV/SP+2.44*MR/CSL+9.87*MR/TL and ANAM-index6 = 31.85–0.06*PCT/CSD-0.14*PCT/GNG-9.93*CV/SP-6.38*CV/
TCRT+9.74*MR/TL-0.06*TP/CSL-0.02*TP/SRTR-0.0008*MS/TPZ (CSD = code substitution delay, SP = spatial processing, CSL = code substitution
learning, TL = tapping left hand, GNG = go/no go, TCRT = two-choice reaction time, SRTR = simple reaction time repeated, TPZ = tower puzzle). AUC
values and ANAM subtests from the best CART models and composite indices (9) were compared.

Figure 1. Receiver operator characteristic curves of Model 5 (PCT, CV, and MR) and Model 6 (PCT, CV, MR, and TP). AUC, area under
the curve; PCT, percentage correct responses; CV, coefficient of variation; MR, mean reaction time; TP, throughput.
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The only domain not represented by these ANAM tests
was executive function, in which 21% of our cohort was
found to be impaired based on the adapted ACR-NB.
These findings highlight a few considerations. First, im-
pairment on executive function tests from the adapted
ACR-NB may be secondary to impairments in related
domains such as attention/processing speed. This is sug-
gested as half of the reported discriminatory ANAM tests
represent attention and processing speed, which is con-
sidered a lower-level function that affects, and can com-
promise, executive function (25, 26). Second, the ANAM
has been found to be sensitive to attention, processing
speed, and working memory (27-29), and this domain
comprises the greatest number of tests. Finally, the
structural validity of the full ANAM GNS v4 battery has
not yet been studied, leaving an area for future research to
explore. Overall, the ANAM is able to measure cognitive
efficiency but may be limited in its ability to assess higher-
level cognitive functions. However, as a screening tool, the
ANAM has been successful in classifying CI and non-CI,
and comprehensive neuropsychological tested should be
used if further assessment of cognitive function is
warranted.

In addition to the most discriminatory ANAM subtests,
performance score was also reported (e.g., PCT, CV, MR,
and TP). In past studies investigating the performance of the
ANAM in patients with or without SLE, many studies have
only used TP as the outcome (30–32). For example,
Roebuck-Spencer et al. (30) found a sensitivity of 76%,
specificity of 83% and overall correct classification rate of
80%. However, when comparing ANAM subtests using TP
to equivalent neuropsychological tests, only moderate as-
sociations were found (30–32). Our two best models using a
combination of scores had AUCs of 86% and 89%, re-
spectively, compared to the model using only TP (AUC of
73%). These findings further demonstrate the importance of
including all scores, echoing our previous study results
where the two models with a combination of scores had the
highest AUCs (81% and 84%) (9). Brunner et al. also found
a combination of scores to be better at assessing CI than TP
alone in pediatric patients with SLE, with 100% sensitivity
and 86% specificity for detecting moderate/severe CI (33).
Furthermore, it is noteworthy that Model 3, which used MR
scores only, performed closely to Models 5 and 6 in terms of
AUC (83%), with a higher sensitivity (97%) but lower
specificity (56%). This highlights that MR scores play an

Figure 2. Adapted CART analysis decision tree of Model 6 (PCT, CV, MR, and TP) displaying the most discriminatory subtests and
scores from the ANAM for detecting CI in patients with SLE. This decision tree based on Model 6 (PCT, CV, MR, and TP) was adapted
to reflect a simple flowchart for clinicians to use. This decision tree includes the most discriminatory ANAM subtests (8 subtests) and is
organized hierarchically (most discriminatory subtests closer to the top). The 11 terminal nodes at the bottom of the decision tree report
the classification of CI or no CI. CI, cognitive impairment; PCT, percentage correct responses; CV, coefficient of variation; MR, mean
reaction time; TP, throughput.
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important role in the CI classification process. Model 3
decision tree can be found in Supplementary Figure S1.

Age was also found to be an important predictor of CI,
appearing in both Model 5 and 6, although it was lower in
the decision tree relative to other predictors. We excluded
sex and level of formal education from the final analysis
because they were not found to be important predictors of
CI, added statistical noise, and reduced the ANAM’s
performance. This could be explained by the simplicity of
most ANAM subtests, as they were designed to be com-
pleted by anyone regardless of education level. Further-
more, the ratio of male to female participants in our cohort
was about 1:8; thus, the number of males in each node of
CARTanalysis was small and unlikely to affect the results.
Previous studies examining the effects of demographic
factors on ANAM performance have consistently found
sex and education to have little-to-no effect on most
ANAM tests (34–36).

CARTmodels 5 and 6 had higher AUCs compared to the
composite indices from our previous study derived using
logistic regression. This may be because CART can handle
highly skewed data and missing values and is robust to data
irregularities (i.e., outliers and multicollinearity), unlike
other multivariate modeling methods (11, 12, 18). However,
in comparing results from the current and previous study, we
must note that the composite indices developed previously
were derived from an older sample (n=211) with a different
proportion of patients with CI (45.5%) and without CI
(24.6%). The current sample (n=300) had a higher preva-
lence of CI (52%) and lower prevalence of non-CI patients
(18%). Therefore, we cannot make definitive conclusions as
to the best method for interpreting ANAM scores (com-
posite indices vs. CART decision tree) from this study, and it
is better to view these approaches as complementary,
providing converging evidence. Future directions include
using both methods on the same dataset for direct
comparison.

The decision tree generated by CART encompasses the
most discriminatory ANAM subtests and scores, and is easy
to interpret (9). We propose using the decision tree from
Model 6 (PCT, CV, MR, and TP) (Figure 2) as it had the
highest AUC and provides a more comprehensive evalu-
ation for CI compared to Model 5 (both are identical except
for the additional test in Model 6). Upon classification of CI
status and clinical judgment, the clinician can then deter-
mine whether further neuropsychological testing is war-
ranted for diagnosis. Future directions include creating a
more robust clinical tool, such as an application/calculator
that automatically classifies patients based on inputs from
ANAM results.

There are several limitations of the study. One is possible
selection bias, as the population was drawn from a tertiary
care center with possible referral biases. The prevalence of
CI in our cohort was relatively high (52%), but within the

wide range of CI rates (15–79%) in SLE described in the
literature (1, 9, 37, 38).

Our final analysis only included patients that were
classified as CI or non-CI. We excluded the indeterminate
group to reduce heterogeneity in our sample for the purpose
of generating initial validity evidence. However, we did
apply the algorithms from our best CART models (5, 6) on
the indeterminate group (n=89), where Model 5 predicted
79.8% to have CI and Model 6 predicted 74.2% to have CI.
This preliminary result classifies most of the indeterminate
group as cognitively impaired based on our screening al-
gorithm. However, further research on larger samples is
needed as to how to best handle indeterminate patients in
screening tests. As well, the study may be vulnerable to
order effects, specifically related to fatigue. The ANAMwas
completed after the adapted ACR-NB on the same day.
While the tests from the ANAM and the adapted ACR-NB
are overlapping in procedures, the measures differ with item
content, making practice effects less likely; however, fa-
miliarity with general procedures may have reduced anxiety
on the ANAM.

Perhaps of greatest importance is the need to use caution
when using the ANAM with patients with arthritis, joint
stiffness, joint deformities and/or neuropathies—common
sequelae of SLE—whomay not perform optimally onmotor
and dexterity tasks due to peripheral rather than central
(cognitive or psychomotor) causes. Future research should
address the extent of losses in validity of the ANAM with
these patients and perhaps propose alternative measures or
correction factors. Finally, the current results are general-
izable only to the English-speaking population as the
methods have only been evaluated on participants fully
fluent in English.

Conclusion

This study extends the validity evidence for the ANAM as a
screening tool for CI in patients with SLE. The most dis-
criminatory subtests and scores of the ANAM were iden-
tified using CART, reducing the duration of the battery. A
decision tree was generated to increase clinical utility and
aid interpretation of ANAM results. We recommend use of
the ANAM and the current decision tree as a clinical
screening tool for CI in adult patients with SLE who are
fluent in English and without significant motor impairments.
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