
cancers

Review

ELAVL1 Role in Cell Fusion and Tunneling
Membrane Nanotube Formations with Implication to
Treat Glioma Heterogeneity

Natalia Filippova * and Louis B. Nabors *

Department of Neurology, School of Medicine, University of Alabama at Birmingham,
Birmingham, AL 35294, USA
* Correspondence: as1999@uab.edu (N.F.); bnabors@uab.edu (L.B.N.); Tel.: +1-205-934-2544 (N.F.);

+1-205-934-1432 (L.B.N.)

Received: 24 September 2020; Accepted: 18 October 2020; Published: 21 October 2020
����������
�������

Simple Summary: Despite the numerous novel pharmacological and immunological approaches
for multimodal glioma treatments that have been proposed in recent years, glioma phenotypic and
genotypic spatial profiles in the course of treatments remain heterogeneous and, therefore, represent
the biggest challenge for patient outcome. The elimination of glioma heterogeneity is an established
chemotherapeutic goal. The role of the mRNA-binding protein of ELAV-family HuR in homotypic
and heterotypic cell fusions via permanent intercellular membrane fusions and temporal intercellular
tunneling nanotube formations in the glioma microenvironment leading to glioma heterogeneity will
be discussed in our review with implications of HuR inhibitors in the prevention of these processes.

Abstract: Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal
tunneling nanotube formations in the glioma microenvironment were recently documented in vitro
and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic
environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation
upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive
mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically
stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of
the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal
architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines
and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which
orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of
proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated
with poor prognosis and treatment resistance. Our review provides a link between the HuR role in
the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and
the potential suppression of these processes by different classes of HuR inhibitors.

Keywords: cell-to-cell communication; tumor microenvironment; glioma; HuR; heterogeneity;
tunneling membrane nanotubes; cell fusion; inhibitors

1. Introduction

Glioma is the most devastating and incurable disease with a relative risk of 3–4 timers higher in the
elderly population than young adults. It is characterized by high tissue heterogeneity and undergoes a
fast transformation from low-grade (I–II) to high-grade (III–IV) malignancy [1–3]. The transition to a
high-grade tumor occurs in approximately 95% of low-grade gliomas; less than 3% of these patients
remain alive after five years post-diagnosis [3,4].
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Comprehensive genomic profiling of low- and high-grade gliomas confirmed an increase in
glioma heterogeneity with tumor grade and treatment resistance. Glioma heterogeneity represents
the biggest challenge for glioma treatment, which depends on tumor grade and is customized to
individual patients. Surgery, radiotherapy, and chemotherapy with temozolomide (TMZ) represent
the first line of treatments for glioma [5,6]. More modern treatments consist of treatment with the
genetically engineered autologous or allogeneic T cells expressing chimeric antigen receptors (CARs)
directed against specific antigens, the combinations of Optune treatment (an application of the electric
field, which induces apoptosis in rapidly dividing tumor cells) and TMZ, the combination of the
ketogenic diet with glutamine antagonist 6-diazo-5-oxo-l-norleucine, which induces energy depletion
and destroys the mesenchymal type of glioma stem cells [7–9]. However, due to tumor heterogeneity,
genomic instability, and transforming ability, the current tumor treatments are efficient only in terms
of the prolonging time of relapse; therefore, gliomas remain incurable [1–3,5].

The needs in new glioma treatment modalities, which eliminate the development of tumor
heterogeneity and transforming ability, are evident. Intercellular gene transfers between glioma and
normal host cells in the glioma microenvironment via permanent cell fusion and temporal tunneling tube
formations have been recently discovered and may lead to a de novo glioma genotype and phenotype
inside of the progressing tumor. Our review overviews mechanisms and cell-signaling pathways,
which lead to cell fusion and tunneling membrane tube formations in the glioma microenvironment
and discusses pharmacological approaches of the interception of these processes.

2. Historical Background

Cell fusions via permanent intercellular membrane fusions were discovered more than a century
ago under normal physiological conditions such as tissue and organ development, cell fertilization,
tissue repair and regeneration, and angiogenesis [10,11]. Only select types of mammalian cells
(to include bone marrow-derived mesenchymal stem cells, bone marrow-derived endothelial progenitor
cells recruited to the new blood vessels, epithelial cells of the placenta, fiber cells in the eye, macrophages
at sites of chronic inflammation, skeletal muscle cells, and gametes) undergo permanent intercellular
membrane fusion under normal physiological conditions [12]. The temporal cell fusions via tunneling
membrane nanotube formations between mammalian cells were first discovered by Rustom and
colleagues in 2004 [13] and occur between different cell types (to include monocytes, lymphocytes,
neurons, astrocytes, cardiomyocytes, endothelial cells, fibroblasts, and mesenchymal stem cells under
diverse stress conditions) [13–19]. Tunneling membrane nanotubes vary in length from 5 to 100 µm,
and in width from 50 nm to up to 1 µm. Depending on the interconnected cell types and the
tunneling nanotube compositions and sizes, the following terms have been utilized to reference
the tunneling membrane tube structures: tunneling membrane nanotubes, cytoplasmic intercellular
bridges, intercellular nanotubular highways, membrane microtubes [20]. The tunneling membrane
nanotubes are not adherent to the substrate and have a lifetime from a couple of minutes to several
hours. Under normal physiological conditions, bidirectional intercellular transfers of cellular materials
via permanent cell fusion and temporal tunneling nanotube formations lead to tissue development and
repair [17–19]. However, under pathological conditions such as viral infection, chronic inflammation,
diabetes, and cancer, the intercellular transfers of biological materials (including chromosomal and
extrachromosomal genetic materials, cellular organelles, viruses) via permanent and temporal cell
fusions lead to de novo cell transformations and tissue heterogeneity, and thus to the development of
drug resistance and disease progression [20–26].

3. Expression of Fusogens, Fusogen Receptors, and Tunneling Membrane Nanotube-Related
Transcripts in Gliomas

Both intercellular tunneling nanotubes and permanent intercellular membrane fusions are reported
in gliomas and represent diverse multistep processes, which require an activation of the cellular stress
response, the rearrangement of the actin-dependent cytoskeleton, the expression of the fusogenic
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proteins, and phosphatidylserine enrichment on the membrane surfaces [24–35]. We utilized the
literature search and the R2: Genomics Analysis and Visualization Platform (Rembrandt, Madhavan,
Mas 5.0-U132p2 study for gliomas and Harris, Mas 5.0-U132p2 study for normal brain) and confirmed
the significant expression of the following known fusogens in the glioma microenvironment: (i) the
fusogen transcripts from genomes of pathogenic HCMV, HHV-6, HIV1, and Epstein–Barr enveloped
viruses; (ii) the fusogen transcripts encoding endogenous retroviral envelope proteins (ERVW-1,
ERVK13-1, ERV3-1, ERVMER34-1, ERVV-1, ERVFRD-1); (iii) the fusogen transcripts encoding proteins
essential for sexual reproduction and gamete fusions (transcripts of IZUMO and IZUMOR families,
GLIPR1L1, CD9); (iv) the muscle-specific fusogen transcripts (myomaker and myomixer) at low
levels; (v) the transcripts of fusogens involved in intercellular and extracellular vesicle-specific
transfers (SNARE-family transcripts, transcripts of small dynamin-like GTPases including atlastins,
mitofusins, dynamins). The type 1 tunneling membrane nanotube-related transcripts (TNFAIP2,
S100A4, ERp29) [36–39] were significantly overexpressed in gliomas compared to normal brain.
The type 2 tunneling nanotube transcripts (GJA1, GAP43) [40,41], which overlap with gap junction
formations, exhibited a diverse expression in gliomas (GJA1 transcript was significantly overexpressed;
however, GAP43 expression was significantly decreased compared to normal brain samples). It will
be important to mention that the higher tumor grades correlated with the significant increase in the
TNFAIP2 and S100A4 transcript expression. The Ttyh1 transcript, a biomarker of the recently identified
the Ttyh1-dependent subset of the tunneling microtubes with widths up to 2.5 µm [32,42], exhibited
significant overexpression in gliomas compared to normal brain. However, it was reported that Ttyh1
is downregulated in 1p/19q-co-deleted versus 1p/19q intact human gliomas by utilizing RNA-Seq
gene-expression analysis [32]. Because of deficient Thyh1-dependent tunneling microtube formation
and function, 1p/19q-co-deleted oligodendrogliomas have been reported as invasion-deficient [43],
suggesting the diverse roles of tunneling nanotube and tunneling microtubes in gliomas with different
genetic backgrounds [32,43]. Figure 1 illustrates the expression of fusogens, fusogen receptors, and the
tunneling membrane nanotube type 1- and type 2-related transcripts in gliomas normalized to the
expression of the corresponding transcripts in the normal brain and the corresponding expression of
the house-keeping gene ACTB (actin).
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Figure 1. Expression of fusogens and the tunneling membrane nanotube-related transcripts in 
gliomas compared to normal brain. Graphs illustrate normalized expression of the fusogens and their 
receptors’ transcripts (left) and the tunneling membrane nanotube-related transcripts (right) in 
gliomas compared to normal brain. The following studies from the R2: platform have been utilized 
for the analysis: Rembrandt, Madhavan, Mas 5.0-U132p2 study for gliomas and Harris, Mas 5.0-
U132p2 study for normal brain. Data are shown as mean ± SD. Detailed methods associated with 
transcriptomic profiling were provided in the R: platform (Rembrandt, Madhavan, gliomas and 
Harris, normal brain studies). 

TN
FA

IP
2

S1
00

A4
ER

p2
9

RA
LA

AC
TB

G
JA

1
G

AP
43

Tu
nn

el
in

g 
na

no
tu

be
 re

la
te

d 
tra

ns
cr

ip
ts

 
(g

lio
m

a 
/ n

or
m

al
 b

ra
in

, f
ol

ds
 )

0
2
4
6
8

10
12
14
16

ER
VW

-1
ER

VK
3-

1
ER

VK
13

-1
ER

VM
ER

34
-1

EB
I3

ER
VV

-1
CT

NN
B1

IC
AM

1
IT

G
A4

IT
G

B4
VC

AM
1

CD
9

IZ
UM

O
1

IZ
UM

O
2

IZ
UM

O
4

G
LI

PR
1

G
LI

PR
1L

1
AC

TB
   

Fu
so

ge
ns

an
d 

th
ei

r r
ec

ep
to

rs
’ t

ra
ns

cr
ip

ts
   

(g
lio

m
a 

/ n
or

m
al

 b
ra

in
, f

ol
ds

)

Normalized transcript expression (glioma / normal brain)
(Rembrandt, Madhavan gliomas and Harris normal brain studies R2: platform) 

Transcripts Transcripts

0

2

4

6

8

10

Figure 1. Expression of fusogens and the tunneling membrane nanotube-related transcripts in gliomas
compared to normal brain. Graphs illustrate normalized expression of the fusogens and their receptors’
transcripts (left) and the tunneling membrane nanotube-related transcripts (right) in gliomas compared
to normal brain. The following studies from the R2: platform have been utilized for the analysis:
Rembrandt, Madhavan, Mas 5.0-U132p2 study for gliomas and Harris, Mas 5.0-U132p2 study for
normal brain. Data are shown as mean ± SD. Detailed methods associated with transcriptomic profiling
were provided in the R: platform (Rembrandt, Madhavan, gliomas and Harris, normal brain studies).
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The publicly available transcriptomic data (RNA-seq) of five patient-derived glioma xenograft
(PDGx) neurosphere cell lines of classic, proneural, and mesenchymal subtypes presented in the Gene
Expression Omnibus (GEO) repository database (GSE158271) were utilized for the analysis of the
expression of the fusogens and the tunneling nanotube-related transcripts in gliomas of different
subtypes. The analyses of the transcriptome signatures of five PDGx neurosphere cell lines confirmed
the expression of a variety of fusogen and tunneling membrane nanotube-related transcripts in all
glioma subtypes. Tables 1 and 2 provide a summary of the normalized to the house-keeping gene
ACTB transcript expression in the different glioma subtypes.

Table 1. Expression of the fusogens and the fusogen receptor transcripts in PDGx neurospheres of
different subtypes: proneural (PDGx1, PDGx2), classic (PDGx3, PDGx4), and mesenchymal (PDGx5).

Endogenous Retroviral Fusogens

PDGx1 PDGx2 PDGx3 PDGx4 PDGx5

ERVK13-1 +++ +++ +++ +++ +++
ERV3-1 ++ +++ +++ +++ ++

ERVMER34-1 + + + + +
ERVW-1 + + + + none

EBI3 none none + none ++
ERVV-1 none none + none none
ERVV-2 + none none + none

Fusogen Receptors

PDGx1 PDGx2 PDGx3 PDGx4 PDGx5

CTNNB1 +++ +++ +++ +++ +++
ICAM1 none + + + +++
ITGA4 none ++ + ++ ++
ITGB4 + + + ++ ++

VCAM1 none none ++ none +

Germ Cell Fusogens

PDGx1 PDGx2 PDGx3 PDGx4 PDGx5

CD9 +++ +++ +++ +++ ++
IZUMO1 + + + + none

IZUMOR1 + + + + none
IZUMO3 none + none none none
IZUMO4 ++ ++ ++ ++ +

SPA17 ++ ++ ++ ++ +
SPAG8 + + + + +

Myoblast Fusion Factors

PDGx1 PDGx2 PDGx3 PDGx4 PDGx5

MYMK none none none none +
MYMX + none + none +

Table 2. Expression of the tunneling nanotube-related transcripts in PDGx neurospheres of different
subtypes: proneural (PDGx1, PDGx2), classic (PDGx3, PDGx4), and mesenchymal (PDGx5).

TNT Type i and Type ii Transcripts

PDGx1 PDGx2 PDGx3 PDGx4 PDGx5

TNFAIP2 +++ ++ ++ +++ +++
RALA +++ +++ +++ +++ ++
EXOC6 ++ ++ +++ +++ ++
S100A4 +++ + +++ ++ +++
GJA1 +++ +++ +++ +++ none

GAP43 +++ +++ +++ +++ +
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Detailed methods associated with transcriptomic profiling were provided in the Gene Expression
Omnibus repository database (GSE158271). The expression levels were defined as (i) strong (+++) if
the expression was in the 70–100% range of the maximum expression of the corresponding transcripts;
(ii) medium (++) if the expression was in the 30–70% range of the maximum expression of the
corresponding transcripts; (iii) weak (+) if the expression was in the 1–30% range of the maximum
expression of corresponding transcripts.

The clinical outcome data of patients with gliomas harboring low or high expressions of different
fusogens and the tunneling membrane nanotube-related transcripts were obtained from Rembrandt,
Madhavan-550 MAS.5.0-u133p2 study, R2: platform. The analyses of the overall survival of patients with
gliomas harboring a low or high expression of the TNF Alpha Induced Protein 2 (TNFAIP2) transcript
indicates that high expression levels of TNFAIP2 were associated with poor prognosis (p = 1.2 × 10−4).
Moreover, upregulations of the TNFAIP2-stabilizing chaperone ERp29 [38], the TNFAIP2-associated
small GTPase RALA, and S100A4 protein, which is responsible for the directional intercellular
mitochondria transfer through the tunneling membrane nanotubes [39], significantly worsened
patient outcome (p = 2.1 × 10−9, p = 3.3 × 10−4, and p = 7.4 × 10−12, respectively). High levels of
ERVW-1, ERVK3-1, ERVK13-1, and CD9 fusogens were associated with overall poor survival as well
(p = 1.5 × 10−4, p = 1.6 × 10−3, p = 0.04, and p = 2.3 × 10−6, respectively). Figure 2 illustrates the
Kaplan–Meier overall survival curves for patients with gliomas harboring low or high expression
levels of the above transcripts with a significant influence on overall patient survival.
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Figure 2. Expression of the tunneling membrane nanotube-related transcripts (TNFAIP2, S100A4,
ERp29, RALA) and the fusogen transcripts (ERVW-1, ERVK3-1, ERVK13-1, CD9) significantly decreased
overall survival of glioma patients. Graphs illustrate the Kaplan–Meier overall survival curves for
patients with gliomas harboring low (red) or high (blue) expression of the corresponding transcripts
(Rembrandt, Madhavan, Mas 5.0-U132p2 study from R2: platform, median cut-off modus). For all
illustrated transcripts, the differences were significant, p < 0.05.

Thus, our analysis confirms the enrichment of fusogens and the tunneling membrane
nanotube-related transcripts in gliomas and their negative impact on overall patient survival.
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4. HuR-Dependent Cell-Signaling Pathways of Cell Fusion and Tunneling Nanotube Formations
Leading to Glioma Heterogeneity

Hypoxia, mechanical stress, chronic inflammation, cytotoxic stress, and oncometabolites associated
with free radical formations are reported to potentiate intercellular membrane fusion events,
and these conditions are often associated with the glioma microenvironment [14,20–23,27,35,44–47].
The mRNA-binding protein of ELAV-family HuR is a valuable biomarker of brain tumor
progression [48–51] and is involved in the regulation of the key cell-signaling pathways responsible
for the inflammatory glioma microenvironment, the hypoxia-related stress response, the transitions
of classic and proneural glioma subtypes to the mesenchymal subtype, the metabolic stress, and the
reactive oxygen species (ROS) generation associated with D-2HG oncometabolite production in
low-grade gliomas harboring single alleles with IDH1-R132H/C/S mutations [52–55]. HuR exhibits
strong overexpression in gliomas and shuttles from the nucleus to the cytoplasm to stabilize and
promote the transfer and translation of mRNA transcripts enriched with adenine/uridine motifs in
3‘UTR [53–56]. Figure 3 summarizes the key transcripts, which positively correlate with the formation
of tunneling membrane nanotubes and cell-to-cell fusion and are reported as being directly upregulated
by HuR in gliomas.
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The proinflammatory cytokines, including IL-1, IL-6, and TNF-alpha, increase the probabilities of
lipid protrusions, essential for the cell-to-cell fusion, through the regulation of arachidonic acid (AA) and
sphingolipid metabolisms [57,58]. Additionally, the cytosolic phospholipase A2-alpha (cPLA2α), which
is known as the key enzyme that catalyzes the membrane glycerophospholipids at the sn-2 position
to form AA, is the direct HuR-mRNA target upregulated in gliomas [58–62]. COX-2 (an inducible
form of the cyclooxygenase enzyme that catalyzes the first step in the synthesis of prostanoids) is
overexpressed in gliomas and is an established HuR-mRNA target. COX-2, in combination with PGE2,
may influence ROS generation and controls the cellular redox state; therefore, it impacts cell fusion and
tunneling membrane nanotube formation [63,64]. Direct COX-2 mRNA stabilization by HuR leading to
an increase in COX-2 expression has been demonstrated in breast carcinoma [65]; also, the constitutive
overexpression of COX-2 in ovarian and colon cancers is the result of HuR overexpression [63,66].
The positive interplay between HuR and COX-2 has been reported in gliomas as well [67].

Based on the combination of histological, ultrastructural, and genetic evidences, several
models have emerged and described fusion steps, the diversity of chemokines, and a variety of
cytoskeleton–lipid interactions leading to the formations of cell-to-cell extended contact zones,
invasive protrusions, and tunneling membrane nanotubes [10,68]. However, all models imply
the rearrangement of the actin-dependent cytoskeleton to match fusion machineries in the fusing
cells. In most cases in mammalian cells, the cytoskeleton–lipid interactions during membrane fusion
culminate with the road-like structures filled with bundles of parallel F-actin filaments, which allow the
intercellular material transfer. Several lines of evidence suggest that the formation of these cytoskeletal
intercellular roads is cytochalasin B-sensitive and employs several HuR-dependent chemokines, matrix
metallopeptidase, GTPases, and cytoskeletal components (to include CXCL1, CXCL3, CXCL5, MMP9,
ACTB, VIM, Ral11, RalA, RalBP1, Exo84, Sec5) [31,34,36,69–74]. It will be worth mentioning that
some forms of membrane fusion (such as in the hypoxia condition) require the autophagy-dependent
degradation of macromolecular membrane complexes. HuR promotes autophagosome formation by
regulating the expression of several essential autophagy-related gene products (to include ATG5, ATG7,
ATG12, ATG16L1) [75,76]. Hence, we conclude that the mRNA-binding protein HuR may serve as a
potential positive regulator of the intercellular membrane fusions on the molecular level in gliomas.

Glioma-to-stromal cell communication via intercellular gene transfer leads to gene reprogramming
in fused cells and the creation of de novo tumorigenicity and plasticity of glioma stem cells.
The following glioma/microenvironmental transfers of biological materials via permanent and temporal
cell fusions have been identified: (i) the bidirectional acquisition of the whole genome between glioma
stem cells and bone marrow mesenchymal cells, between glioma stem cells and endothelial cells or
pericytes, between glioma stem cells and monocytes (macrophages and microglia), between glioma cells
and neural stem cells, and between glioma stem cells and macrophages fused with T cells [28,29,77–83];
(ii) the mitochondria and the cargo vesicle transfers through the tunneling membrane nanotubes
between glioma cells and reactive astrocytes, between glioma and neuronal cells, between endothelial
cells and pericytes in the glioma microenvironment, between glioma cells and macrophages, between
glioma cells by themselves [22,23,30–34,84]; (iii) viruses and viral genome transfers between glioma
cells by themselves, and between T cells and macrophages fused with glioma cells [32,33,85]. It is worth
mentioning that proinflammatory monocytes and macrophages infiltrate the glioma microenvironment
in a HuR-dependent manner and positively contribute to cell fusion and tunneling nanotube formations,
and therefore promote glioma plasticity, tissue heterogeneity, and angiogenesis [86,87]. Moreover,
growth factor- and integrin-mediated HuR expression and nuclear/cytoplasmic translocation have
been reported in different cell types, which commonly reside in the glioma microenvironment [88–90].
Hence, we suggest that HuR overexpression stimulates the proinflammatory cellular composition
of the glioma microenvironment, which provides positive feedback for HuR overexpression and
nuclear/cytoplasmic shuttling in glioma cells and is associated with cell fusion and tunneling nanotube
formations, which favor the development of glioma heterogeneity and treatment resistance.
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5. Potential Pharmacological Modulators of Cell Fusion

Currently, several classes of inhibitors of cell fusion are under development worldwide: (i) the
entry inhibitors, also known as the antiretroviral drugs, which inhibit fusogenic protein function;
(ii) the F-actin depolymerizing agents (such as cytochalasin B), which inhibit actin-dependent
cytoskeletal rearrangements essential for formations of the tunneling membrane nanotubes and
the intercellular transfer; (iii) the modulators of the membrane fluidity; (iv) the inhibitors of autophagy;
(v) the inhibitors of epithelial–mesenchymal and proneural–mesenchymal transitions in gliomas.
The FDA-approved group of the entry inhibitors related to antiviral drugs includes 46 compounds,
which represent the fusion-inhibitors, the CCR5 antagonists, and the post-attachment inhibitors.
Although the actin-modifying agents exhibited strong potency in the inhibition of cell fusion in vitro,
the actin-polymerization or depolymerization inhibitors are not the viable therapeutics due to their
overall cytotoxicity. There are only two FDA-approved cytoskeletal modulators: (i) HALAVEN
(eribulin mesylate), which has a broad spectrum of antitumor effects and is mostly utilized for the
treatment of inoperable liposarcoma and metastatic breast cancer [91]; (ii) methyl-β-cyclodextrin (MCD)
and its derivatives, which, as it was shown recently, induce actin depolymerization [92]. Interferon,
Resveratrol, Miltefosine, Perifosine, Filipin, MCD, Emodin, monounsaturated and polyunsaturated
fatty acids (MUFAs and PUFAs, respectively), diets with linoleic acid, oleic acid, marine fish oils are
believed to be the perturbators of the cell membrane fluidity and are utilized for cancer treatment
or prevention [93]. Chloroquine or hydroxychloroquine (HCQ) is an FDA-approved inhibitor
of autophagy; ROC-325, Lys05, and DQ661 are the newest most potent inhibitors of autophagy
from preclinical trials [94,95]. Note that HALAVEN, the actin-modifying agent, prevents glioma
transitions to the mesenchymal subtype induced by the hypoxic condition. Pirfenidone (an inhibitor
of the TGFb-activated pathways), Quetiapine (an inhibitor of the NF-kB cell-signaling pathways),
Rifampin (an inhibitor of the Wnt/beta-catenin cell-signaling pathway), Naproxen (an inhibitor of the
non-canonical Wnt signaling pathways), Itraconazole (an inhibitor of the Hh cell-signaling pathways),
Metformin (an inhibitor of the mitochondrial respiratory chain complex one and an activator of AMPK
kinase) are among the FDA-approved potential inhibitors of transition to the mesenchymal subtype [96].
Most of the above drugs are domain-, gene-, or pathway-specific and have to be utilized in combination
with other drugs.

Cell fusion and tunneling nanotube formations are multistep processes, which require diverse sets
of genes at different stages; therefore, many inhibitors of cell fusion are stage-dependent. For example,
in the PC12 cells, cytochalasin B (the actin depolymerization drug) strongly interfered with the formation
of the tunneling nanotubes, but hardly affected their numbers and stability after formation [31].
Wiskott–Aldrich syndrome protein (WASP)-deficient macrophages were able to resemble tunneling
nanotubes structures; however, the material transfer in these structures was completely abolished [97].
Small GTPases, such as Ras, Cdc42, Rac1, and RhoA, have been reported to be involved in actin
remodeling and tunneling nanotube formations in different cell types. The gene-specific knockdown
or inhibition of the individual GTP-binding transcripts usually led to a decrease in tunneling nanotube
formation by 20–40%, and rarely by 75–90% compared to the control [36,37,97–99], suggesting that
multiple gene-sets might backup mechanisms of tunneling tube formation in the same cell. The steps
of nanotube biogenesis, consisting of the tube formation, elongation, and degradation/disassembly,
are affected differently, sometimes in opposite directions, by the same gene-sets, adding additional
complexity to the development of the nanotube modulators [97]. In this regard, HuR inhibitors could
be valuable tools in the modulation of cell fusion and tunneling nanotube formations, illuminating a
way to suppress (i) the inflammatory and hypoxic microenvironment (the leading cause of the cell
fusion in the gliomas and different types of cancer), (ii) the expression of the multiple sets of the
fusogenic proteins and the tunneling nanotube-related transcripts, (iii) the transcripts essential for
cytoskeleton remodeling and membrane protrusion formations, (iv) the transcripts and cell-signaling
pathways involved in autophagy formation [100–111].
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We propose that the HuR inhibitors may produce interference with cell fusion and tunneling
membrane nanotube formations due to the fact that HuR is the central node in the regulation
of inflammation, stress response, lipid metabolism, autophagy formation, and the actin-related
cytoskeletal transcripts essential for cell fusion. To date, the following key compounds/scaffolds have
been discovered as the inhibitors of HuR function: MS-444 as a blocker of HuR dimerization
and nuclear/cytoplasmic shuttling [100]; CMLD1, CMLD2, quercetin, azaphilone derivatives,
DHTS, NSC#84126, and mitoxantrone as the modulators of the HuR/mRNA interaction [101–107];
pyrvinium pamoate, okicenone, trichostatin, 5-aza-2′-deoxycytidine (AZA) as the inhibitors of HuR
shuttling [100,108]. The pyrvinium pamoate, an antihelminthic drug, is FDA-approved and has been
recently repurposed for the blocking of HuR nuclear/cytoplasmic shuttling [109]. Mitoxantrone is
classified as an antitumor antibiotic and as an inhibitor of HuR/Cox2-mRNA interaction. Novantrone
(mitoxantrone hydrochloride) injections for reducing neurologic disability and/or the frequency of
clinical relapses in patients with secondary (chronic) progressive, progressive relapsing, or worsening
relapsing–remitting multiple sclerosis have been approved by the FDA since October 2000 [110].
Several randomized multicenter trials have been initiated with Novantrone as anti-inflammatory drug
for treatment of prostate, ovarian, breast, hematologic cancers, and solid or central nervous system
(CNS) tumors overexpressing EGFR.

Inflammation has been recognized as one of the risk factors for oncogenic transformations
in cancer [112,113]. Inflammatory mediators, such as prostaglandins (PGs), thromboxanes,
and leukotrienes, are implicated in the inflammatory processes in the tumor microenvironment;
PG production is tightly regulated by the COX-2 enzyme and favors tunneling tube formations.
COX-2 selective non-steroid anti-inflammatory drugs (NSAIDs) and non-selective NSAIDs are
considered as anti-inflammatory and antitumor chemotherapeutics [114]. Non-selective COX inhibitors,
tolfenamic acid and indomethacin, substantially blocked both TNT formations and the spread
of HCMV viruses between fibroblasts [115]. Recently, the anti-inflammatory and the TNT- and
COX-1-inhibitory properties of NSAIDs have been confirmed by using (phendione)ZnII(NPR)2(H2O)2

and (phendione)ZnII(MFN)2 compounds on human breast cancer cell lines [116]. Although HuR
inhibitors are currently available for preclinical evaluations, the combinations of the NSAIDs and
gene-specific targeting approaches remain valuable as suppressors of cell fusion and tunneling
nanotube formation.

In our recent work, we developed a strategy to search and optimize the inhibitors of HuR
dimerization in glioma cells [54]. HuR dimerization is essential for HuR nuclear/cytoplasmic
translocation and the high-affinity binding to target mRNA [100]. HuR dimerization/multimerization
is mostly observed in cancer cells and is associated with glioma progression [54]. The combination
of medicinal chemistry with high-throughput HuR-specific biochemical and cell-based assays led
us to the identification of several new inhibitors of HuR dimerization, such as compound #5
(N-[4-(1H-benzi-midazol-2-yl)phenyl]-2-chloro-5-nitrobenzamide), suitable for future optimization [54].
Figure 4 summarizes the impact of HuR overexpression on patient overall survival and illustrates
classes of the available HuR inhibitors.
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survival curves for patients with gliomas harboring low (red, n = 245) or high (blue, n = 245) expression
of the ELAVL1 transcript (Rembrandt, Madhavan, Mas 5.0-U132p2 study from R2: platform, median
cut-off modus); the graph (right) illustrates normalized ELAVL1/ACTB expression in gliomas (n = 500)
compared to normal brain (n = 44). Data are shown as mean ± SD. The following research studies
from the R2: platform have been utilized for the analysis: Rembrandt, Madhavan, Mas 5.0-U132p2
study for gliomas and Harris, Mas 5.0-U132p2 study for normal brain. (B). Classes of the available
HuR inhibitors.

Several reports suggest that HuR may be directly involved in the intercellular membrane fusion
during development and under the pathological conditions: (i) HuR-deficient mice are embryonic-lethal
due to defects in placenta development [117]; (ii) HuR is essential for the skeletal muscle myotube
formations during embryogenesis [118,119]; (iii) HuR contributes to the post-natal pathological
angiogenesis via the regulation of pruning of the vascular branches and the endothelial cell self-fusion
during this process [88,120–122]; on the other hand, HuR dimerization may promote atherosclerosis
and may enhance the permeability of the vascular endothelial layer [123]; (iv) HuR is essential for
the formation of germ cell syncytium where cells stay connected to one another by intercellular
bridges [124]; (v) under the hypoxic condition, HuR enhances epithelial-to-mesenchymal transition,
which is associated with intra- and intercellular microtubule formations and could be suppressed
by inhibitors of HuR nuclear/cytoplasmic shuttling [125,126]; (vi) HuR promotes integrity of the
gap-junction and the stability of Cx43 transcripts, which are involved in the type ii intercellular
tunneling nanotube and microtube formations [127–129]. Collectively, HuR protein dimerization and
translocation from the nucleus to the cytoplasm is associated with cell reprogramming toward cell
differentiation and intercellular membrane fusion on several occasions during normal development.
In the post-embryonic period, HuR is predominantly nuclear, is observed in spliceosomes, and may
regulate transcriptome splicing to keep cell identity [130]. HuR is dimerized and shuttles to the
cytoplasm under pathological conditions such as obesity, diabetes, cancer, and in response to cellular
stress to promote cell motility, survival, plasticity, aberrant proliferation, and angiogenesis. Therefore,
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we suggest that glioma stem cells with cell-cycle checkpoint abnormalities, genomic instabilities,
and renewal abilities hijack HuR function in stressed glioma microenvironments to advance glioma
heterogeneity and proliferation. Hence, we predict that the inhibitors of the HuR nuclear/cytoplasmic
shuttling and dimerization could be valuable pharmacological tools for the inhibition of glioma cell
plasticity and proliferation, and therefore the suppression of glioma progression at different stages of
disease development.

6. Conclusions and Perspectives

The elimination of glioma heterogeneity evoked by pharmacological/radio treatments or by
environmental stress is an established chemotherapeutic goal. Understanding the role of HuR in
the regulation of glioma heterogeneity in the tumor microenvironment is a new direction, which
may lead to the discovery of common and environment-specific mechanisms of glioma plasticity.
The implication of the HuR protein inhibitors in the treatment of glioma heterogeneity is new and has
the following rationales: (i) HuR is overexpressed in gliomas; (ii) HuR orchestrates stress responses
and chemoresistance; (iii) HuR upregulates cell-signaling pathways and mRNA transcripts essential
for the intercellular membrane fusions and the tunneling membrane tube formations leading to the
glioma cell survival and plasticity.
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PGE2 Prostaglandin E2
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TNFAIP2 TNF Alpha Induced Protein 2
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