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Retaining the delicate balance in cell signaling activity is a prerequisite for the maintenance of physiological tissue homeostasis.
Transforming growth factor-beta (TGF𝛽) signaling is an essential pathway that plays crucial roles during embryonic development
as well as in adult tissues. Aberrant TGF𝛽 signaling activity regulates tumor progression in a cancer cell-autonomous or non-
cell-autonomous fashion and these effects may be tumor suppressing or tumor promoting depending on the cellular context. The
fundamental role of this pathway in promoting cancer progression inmultiple stages of the metastatic process, including epithelial-
to-mesenchymal transition (EMT), is also becoming increasingly clear. In this review, we discuss the latest advances in the effort
to unravel the inherent complexity of TGF𝛽 signaling and its role in cancer progression and metastasis. These findings provide
important insights into designing personalized therapeutic strategies against advanced cancers.

1. Synthesis and Activation of TGF𝛽
Family Members

The transforming growth factor-beta (TGF𝛽) and TGF𝛽-
like molecules are members of a large superfamily of more
than 40 secreted cytokines, including TGF𝛽, bone morpho-
genetic proteins (BMPs), activins, nodal, lefty, myostatin,
anti-müllerian hormone (AMH), and growth differentiation
factors (GDFs).These pleotropic cytokines control numerous
biological functions such as proliferation, apoptosis, embry-
onic patterning, stem cell maintenance, cell differentiation,
migration, and regulation of the immune system. Unraveling
the complexity that underlies their mode of action has
remained challenging because these effects are known to be
highly cell type-specific and context-dependent [1–3]. The
three TGF𝛽 isoforms, TGF𝛽1, TGF𝛽2, and TGF𝛽3, are the
most widely studied members of the family, mostly because
they are ubiquitously expressed and can influence the major-
ity of tissue types. On the other hand, the expression of other
cytokines is limited to only a few tissues, such asmyostatin, or
particular developmental stages, such as the AMH [3, 4].The
TGF𝛽 molecules are initially synthesized in an inactive pro-
TGF𝛽 form, which consists of TGF𝛽 associated with latency

associated proteins (LAPs). The TGF𝛽 large latent complex
(LLC) consists of the LAPs and the latency-TGF𝛽-binding
proteins (LTBPs) assembled together with disulfide bridges
between specific cysteine residues [5–8]. In turn, the LLC is
covalently associated to the extracellular matrix (ECM) via
the N-terminal region of LTBPs [9, 10]. The presence of the
TGF𝛽 ligand within the LLC complex maintains the cytokine
in an inactive form by preventing the interaction with its
receptors [11]. TGF𝛽 can be activated in different ways.
First, LAPs may undergo conformational changes induced
by thrombospondin-1 (TSP-1) [12, 13] followed by cleavage
mediated by proteases, including convertases, plasmins, or
matrix metalloproteases (MMPs) [14–16]. Secondly, alpha
v beta 6 (𝛼v𝛽6) integrin, which becomes upregulated in
response to wounding or inflammation, binds and activates
latent TGF𝛽 [17]. Furthermore, TGF𝛽 can be activated by low
pH levels in the local environment [18] or upon irradiation-
induced reactive oxygen species (ROS) production [19].
Finally, mechanical contraction of myofibroblasts in the
stroma can further activate latent TGF𝛽 [20]. All these
mechanisms result in the release of active TGF𝛽 which can
bind TGF𝛽 receptors and propagate downstream signaling
events. Overall, the bioavailability of active TGF𝛽 ligand is
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greatly dependent on the maturation processes described
above.

2. Sensing and Propagating TGF𝛽 Signals

TheSMAD family of proteins, comprised of eight structurally
related human proteins, are the major effector molecules
responsible for transducing intracellular signaling initiated
by the TGF𝛽 superfamily of cytokines [21–25]. Smads can be
categorized in three functionally distinct groups: the receptor
activated Smads (R-Smads), which include Smad1, Smad2,
Smad3, Smad5, and Smad8; the commonmediator Smad (co-
Smad), Smad4; and the inhibitory Smads (I-Smads), Smad6
and Smad7 [25, 26]. They all have similar sizes and range
in molecular weights from 42 to 60 kDa. Structurally, the
R-Smads and the co-Smad consist of two MAD homology
(MH) domains, MH1 and MH2, located at the amino- and
carboxy-terminals ends of the protein, respectively, and are
separated by a proline-rich acidic linker region. On the other
hand, the I-Smads lack the MH1 domain [27–29]. While the
MH2 domain is involved in protein complex formation, as
well as transcriptional activation and repression, the MH1
domain exhibitsDNAbinding activity [27, 30]. In the absence
of TGF𝛽 ligand, the Smad proteins remain inactive because
theMH1 andMH2domains interact with each other resulting
in their functional autoinhibition. TGF𝛽 stimulation induces
conformational changes to relieve this inhibition allowing the
MH2domain of R-Smads to interact with the TGF𝛽 receptors
[28, 31].

The TGF𝛽 isoforms transduce signaling via three types of
TGF𝛽 receptors: TGF𝛽RI, TGF𝛽RII, and TGF𝛽RIII. To date,
seven TGF𝛽RIs, five TGF𝛽RIIs, and two TGF𝛽RIIIs have
been characterized: TGF𝛽RIs include activin-like receptors
1–7 (ALK1–7); TGF𝛽RIIs include the TGF𝛽RII, BMPRII,
ACTRII, ACTRIIB, and AMHRII; and betaglycan and
endoglin belong to the TGF𝛽RIIIs [32]. While TGF𝛽RI
and TGF𝛽RII have been extensively studied during the last
decade, the roles of TGF𝛽RIII in physiology and disease
have recently started to emerge. Betaglycan is considered to
function as a coreceptor for TGF𝛽 superfamily, primarily
to enhance activin/inhibin signaling [33]. On the other
hand, endoglin appears to be predominantly expressed in
endothelial cells and acts to control angiogenesis [34–36].
However, in most tissues, TGF𝛽 ligands function through
heterotetrameric complex formation between two TGF𝛽RIs
and two TGF𝛽RIIs. Both of these receptors exhibit Ser/Thr
kinase activity but appear to have distinct roles; TGF𝛽RIIs
are able to activate the receptor complex while TGF𝛽RIs
propagate signaling to the R-Smads [37, 38]. TGF𝛽RII-ALK5
complex formation can transduce signals from all three
TGF𝛽 isoforms in multiple tissues, whereas TGF𝛽RII can
specifically associate with ALK1 in endothelial cells and with
ALK2 in cardiovascular tissues [39]. While ALK5 is the
predominant type of TGF𝛽RI which functionally transduces
TGF𝛽 signals, ALK2 and ALK4 are the ones which can
bind activin with high affinity [38]. Also, alternative het-
eromeric receptor-ligand complexes can regulate distinct R-
Smad family members. For example, ALK5 activates Smad2
and Smad3 (canonical TGF𝛽/Smad-dependent signaling

pathway) whereas ALK2, ALK3, and ALK6 activate Smad1,
Smad5, and Smad8 (BMP signaling pathway) [40–46].

2.1. Smad-Dependent Signaling. Mechanistically, all TGF𝛽
isoforms initiate signaling in a similar manner. The active
TGF𝛽1 ligand initially binds TGF𝛽RII followed by recruit-
ment of the ALK5 (TGF𝛽RI) at the plasma membrane. With
the heteromeric receptor-ligand complex formed, TGF𝛽RII
phosphorylates TGF𝛽RI in a conserved Glycine-Serine (GS)-
rich domain [47] leading to the dissociation of the inhibitory
FKBP12 protein from TGF𝛽RI [48]. This conformational
switch allows activated TGF𝛽RI to interact with R-Smads
(Smad2/3) through their MH2 domain [49] resulting in their
phosphorylation at the conserved SSXS C-terminal motif
[31, 50]. SARA (Smad anchor for receptor activation) is a
FYVE domain-containing protein which plays a central role
in recruiting R-Smads to the activated TGF𝛽RI to facilitate
receptor-mediated phosphorylation. It preferentially asso-
ciates with unphosphorylated Smad2 and is released upon
Smad2 phosphorylation by TGF𝛽RI [51]. This phospho-
rylation event triggers the formation of a heterotrimeric
complex between phosphorylated R-Smads (Smad2/3) and
co-Smad (Smad4), which can translocate into the nucleus
to modulate gene expression (Figure 1) [3]. Smads act as
transcription factors in cooperation with other coactivators,
such as CBP/p300, P/CAF, SMIF, FoxO, Sp1, c-Jun/c-Fos,
Sertad1, or corepressors, such as E2F4/5-p107, ATF3, TGIF,
Ski, SnoN, FoxG1, EVI1, and CTBP [50, 52–68]. Furthermore,
Smads can also indirectly regulate gene expression by con-
trolling epigenetic processes, such as chromatin remodeling
[69, 70] or by maintaining promoter DNA methylation,
which is critical in silencing epithelial gene expression in cells
that have undergone epithelial-to-mesenchymal transition
(EMT) [71].

Importantly, the activity of TGF𝛽 signaling is balanced
by a negative feedback loop mediated by the inhibitory
Smad7, a major target gene of the pathway [72]. Under
basal conditions, Smad7 resides in the cell nucleus but
it translocates to the cell membrane upon TGF𝛽-induced
receptor complex formation [73]. Binding of Smad7 to the
activated TGF𝛽 receptor complex inhibits propagation of
downstream signaling by blocking interactions between the
R-Smads and the activated receptors [74]. Furthermore,
Smad7 can interact with the E3-ubiquitin ligases Smurf1 or
Smurf2 in the nucleus. Upon TGF𝛽 activation, the Smad7-
Smurf complex translocates to the plasma membrane where
Smurf induces ubiquitination and proteasomal degradation
of the TGF𝛽 receptors [75, 76]. Furthermore, in some cases,
Smad7 can inhibit TGF𝛽-mediated transcriptional events by
directly binding to DNA, thus antagonizing the formation of
a functional Smad-DNA complex [77].

It has also been shown that the R-Smads can regulate
some cellular functions by partnering with factors other
than Smad4. For example, TIF1𝛾 (transcription intermediate
factor 1𝛾) is able to compete against Smad4 for binding to
Smad2/3 and plays a critical role in controlling erythroid
differentiation [78]. Moreover, Smads2/3 can interact with
I𝜅B kinase 𝛼 (IKK𝛼), in a Smad4-independent manner,
to regulate the expression of Mad1, an antagonist of the
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Figure 1: Smad-dependent and independent TGF𝛽 pathways. Active TGF𝛽 ligands initiate signaling by binding to TGF𝛽RIs and TGF𝛽RIIs.
TGF𝛽 receptors exhibit kinase activities that are necessary for transducing canonical TGF𝛽 signaling by phosphorylating Smads2/3. Activated
R-Smads can form a heterotrimeric complex with Smad4 which associates with other cofactors in the nucleus to regulate the expression
of TGF𝛽 target genes. Furthermore, downstream signaling can also be transduced via auxiliary pathways such as various brunches of the
Mek/Erk, the Rho-like GTPases, and the PI3K/Akt and the p38/MAPK pathways to modulate biological responses including epithelial-to-
mesenchymal transition, cell adhesion, migration, and survival.

Myc oncogene, and control keratinocyte differentiation [79].
These findings are consistent with the notion that Smad4
is essential for many, but not all, TGF𝛽-regulated Smad-
dependent cellular responses.

2.2. Smad-Independent Signaling. Several studies have clearly
demonstrated that TGF𝛽 can also employ Smad-independent
pathways as downstream effectors [80]. TGF𝛽 induces acti-
vation of Erk signaling inmultiple tissues including epithelial
and endothelial cells, as well as in breast and colorectal cancer
cells to promote the dissolution of adherens junctions and
cell migration [81–87]. This induction is either indirect via
activation of TGF𝛼 and FGF autocrine loops [84, 85] or
can be direct by Src-mediated or autophosphorylation of
TGF𝛽RII at Tyr residues [88, 89].Moreover, phosphorylation
of TGF𝛽RI at Tyr residues activates ShcA to promote the
formation of a ShcA/Grb2/Sos complex. Subsequently, this
complex can activate Ras on the plasma membrane, which
in turn transduces downstream signaling via c-Raf, MEK,
and Erk [90]. TGF𝛽 can also promote activation of the
JNK and p38-MAPK pathways to regulate apoptosis or cell

migration, depending on cellular context [91–93], via MKK4
and MKK3/6, respectively [94, 95]. Further upstream, these
MKKs can be phosphorylated by either TRAF6-mediated
recruitment of TAK1 [96–99], or by two other MAPKKKs,
MEKK1, and MLK3 [100, 101]. Furthermore, the PI3K/Akt
pathway has been implicated in mediating some of cellular
functions of TGF𝛽. Studies have shown that TGF𝛽 can
rapidly induce PI3K activation followed by phosphorylation
of its effector Akt to promote EMT, cell migration, and sur-
vival [102, 103]. Mechanistically, the p85 regulatory subunit
of PI3K appears to be constitutively bound to the TGF𝛽RII
and, upon TGF𝛽 stimulation, TGF𝛽RI is recruited to the
complex to activate PI3K and initiate downstream signaling
[104]. The mammalian target of rapamycin (mTOR) acts as
a major effector molecule of this pathway by controlling the
phosphorylation of S6 kinase (S6K) and eukaryotic initiation
factor 4E binding protein [105]. Activation of the mTOR
pathway by TGF𝛽 has been shown to be critically important
for regulating protein synthesis, cell size, and EMT [106].
Finally, certain TGF𝛽 functions, such as rearrangement of
cytoskeletal organization, cell polarity, and cell migration,
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are mediated by the Rho-like family of small GTPases [107].
TGF𝛽 can rapidly activate the RhoA and Cdc42/Rac1 path-
ways, in a Smad2/3-independent manner, to promote EMT,
actin polymerization, and formation of stress fibers (Figure 1)
[108, 109]. Conclusively, this evidence strongly supports that
Smad-independent pathways play critical roles in regulating
TGF𝛽-mediated cellular functions.

3. TGF𝛽 Signaling in Cancer Initiation

It is unambiguously accepted that TGF𝛽 plays fundamental
roles in carcinogenesis and tumor progression. However,
numerous studies have clearly demonstrated that TGF𝛽 acts
as a double-edge sword during this process. Initially, TGF𝛽
is able to suppress growth in normal and premalignant
epithelial cells. However, upon accumulation of genetic and
epigenetic alterations in tumor cells, it switches to promotion
of a proinvasive and prometastatic phenotype, accompanied
by a progressive increase in the locally secreted TGF𝛽 levels.
The complexity of these functions is further increased due to
the fact that these TGF𝛽 functions may vary depending on
the type and genetic background of tissues [110–113].

3.1. Regulation of Cell Proliferation and Apoptosis. Numerous
in vitro studies using human cells as well as data from animal
models provided concrete evidence for the role of TGF𝛽 as a
tumor suppressor in various normal tissues. It is well known
that TGF𝛽 has a growth-inhibitory effect on normal epithelial
[114], endothelial [115, 116], and neuronal cells [117] as well as
on cells of the immune system, such as T-cells [118]. Under
physiological conditions, the cytostatic role of TGF𝛽 is crit-
ical in order to prevent the generation of hyperproliferative
disorders, such as fibrosis and cancer. Mechanistically, TGF𝛽
can induce the expression of genes involved in opposing
proliferative cell responses during all phases of the cell
cycle, but it is primarily implicated in G1/S phase transition
events [119]. Genome-wide transcriptional profiling studies
using normal human epithelial cell lines from mammary
gland, skin, and lung have identified a common set of genes
that are transcriptionally regulated by TGF𝛽 in order to
mediate its cytostatic effects. This transcriptional program
predominantly involves the activation of the G1/S phase
checkpoint and cell cycle arrest by two main mechanisms.
First, TGF𝛽 induces the expression of the cyclin-dependent
kinase inhibitors CDKN2B (encoding p15/INK4B) [120],
CDKN1A (encoding p21/Cip/Waf1) [121], and p27/Kip1 [122].
In mammary epithelial cells, the induction of expression
and protein stability of p15 enhances the formation of p15-
CDK4/6 complexes and therefore inhibits cyclin D1-CDK4/6
association [123]. During early G1 phase and in the absence of
TGF𝛽, cyclin D1-CDK4/6 complex formation is required for
mitogen sensing and cell cycle progression through S phase.
However, upon TGF𝛽-mediated p15 upregulation, p15 binds
CDK4 and/or CDK6, inhibiting their catalytic activity and
preventing their association with cyclin D1, resulting in cell
cycle arrest. TGF𝛽 can also inhibit G1/S phase progression
by inhibiting the formation of cyclin E-CDK2 and cyclin A-
CDK2 via induction of p21 and p27, which bind to these

cyclin-CDK complexes and similarly cause their functional
inactivation [124, 125]. The second mechanism by which
TGF𝛽 inhibits cell cycle progression is by repressing the
expression of the proliferation-inducing transcription factors
c-Myc [126] and the family of inhibitor of DNA binding
proteins ID1, ID2, and ID3 [57, 127]. In proliferating cells,
c-MYC is recruited by the zinc-finger protein MIZ1 to the
CDKN2B and CDKN1A gene promoters to suppress their
transcription. Upon TGF𝛽 stimulation, c-MYC expression is
downregulated and the suppression of CDKN2B/CDKN1A
is relieved [128, 129]. Suppression of ID family members
also contributes to the cytostatic effects by TGF𝛽. The ID
proteins are able to physically interact and inactivate the
tumor suppressor retinoblastoma (Rb) protein to promote
cell proliferation [130]. TGF𝛽 promotes the formation of
an ATF3-Smad3/Smad4 complex to transcriptionally repress
ID1 expression [57], while downregulation of ID2 is achieved
indirectly via suppression of the ID2-inducer c-MYC [130].

The growth inhibitory effects of TGF𝛽 on epithelial
tissues are also supported by gain or loss-of-function experi-
ments using transgenic animal models. For examples, exoge-
nous tissue-specific overexpression of TGF𝛽 in the epider-
mis decreased keratinocyte proliferation and protected mice
from carcinogen-induced hyperplasia and skin tumorigen-
esis [131]. Similarly, transgenic expression of a dominant-
negative form of the TGF𝛽RII in the mouse epidermis
blocked TGF𝛽-induced growth inhibition [132]. In addition,
Smad3-null mice exhibit increased keratinocyte proliferation
and accelerated ability for wound healing [133]. Analogous
findings were also reported for other tissues, such as the
mammary gland and the colon. MMTV-driven overexpres-
sion of activeTGF𝛽 in themammary glandof transgenicmice
resulted in the formation of a hypoplastic virgin mammary
gland and impaired alveolar development during pregnancy
[134, 135]. Conversely, overexpression of dominant-negative
TGF𝛽RII in themousemammary gland resulted in increased
side-branching, hyperplasia, and sensitivity to carcinogens
[136, 137], whereas overexpression of the same transgene in
the colon reduced TGF𝛽-mediated growth arrest [138].

In some cases, TGF𝛽 is also known to induce apoptosis
in these tissues even though the molecular mechanisms
of this process remain poorly understood. Despite the fact
that the induction of TGF𝛽-mediated apoptosis has yet to
be established in vivo, studies using cell lines revealed a
number of candidate proteins that may be implicated in this
effect [139]. Initially, upregulation of the TGF𝛽-inducible
early response gene-1 (TIEG1) by TGF𝛽 was found to trigger
apoptosis in pancreatic epithelial cells. Furthermore, TGF𝛽
was shown to promote apoptosis of hepatoma cells via a
Smad-dependent upregulation of the death-associated pro-
tein kinase DAPK [140]. Moreover, the adaptor protein Daxx
has been implicated in mediating TGF𝛽 apoptotic actions
by enhancing JNK signaling [141]. Similarly, TGF𝛽 is able to
induce GADD45b expression which in turn stimulates p38-
MAPK signaling, followed by caspase-8 and Bad activation
to promote apoptosis [142]. Furthermore, TGF𝛽 leads to
ARTS translocation from the mitochondria to the nucleus
where it physically interacts and suppresses the function of
XIAP, a major inhibitor of apoptosis [143]. Finally, Bim was
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also shown to be another proapoptotic TGF𝛽 target, which
activates Bax to promote caspase-dependent apoptosis [144].

It is important to highlight that the effects of TGF𝛽 in
proliferation can be different, even opposing, depending on
the tissue type. While TGF𝛽 inhibits proliferation of normal
epithelial, endothelial, neuronal, and T cells, it can also
enhance the proliferation of fibroblasts [114]. In fact, 30 years
ago, the initial experiments that led to the discovery of TGF𝛽
and its naming as “transforming” growth factor were based
on its ability to induce proliferation and transformation of
fibroblasts [145]. This effect is mediated indirectly by TGF𝛽-
induced connective tissue growth factor (CTGF) secretion,
which is responsible for stimulating fibroblast proliferation
[146]. Nonetheless, in most normal tissues TGF𝛽 predomi-
nantly acts as an inhibitor of cell proliferation.

3.2. Smad Pathway Alterations in Human Cancers. One
of the hallmarks of most cancer types is that the vast
majority of cases exhibit insensitivity to TGF𝛽-mediated
growth inhibition. Studies in human tumors have shown
that TGF𝛽 pathway components often become genetically
inactivated in certain cancer types to explain, in part,
the acquired insensitivity of TGF𝛽-mediated growth con-
trol. Loss of function or truncating mutations in TGF𝛽RI,
TGF𝛽RII, SMAD2, and SMAD4 genes have been detected in
colorectal, pancreatic, gastric, and prostate tumors [21, 147–
151]. Furthermore, 18q21 chromosome loss, harboring the
Smad4 gene, is observed in 60% of pancreatic and 30% of
colorectal cancers [152–155]. Subsequent functional studies
further elucidated the role of Smad signaling inactivation in
pancreatic and colorectal cancer progression. Restoration of
Smad4 expression in pancreatic cancer cell lines suppresses
tumor growth and angiogenesis by decreasing VEGF levels
[156]. Similarly, homozygous Smad4 deletion accompanied
by TGF𝛽 overexpression induces VEGF expression via the
MEK-Erk and p38 pathways in order to facilitate colon cancer
progression and drug resistance [83].

Notably, these genetic alterations are not detected in all
tumor types. For example, in breast cancers Smad genemuta-
tions are rare [21, 150, 151] suggesting that additional mech-
anisms for acquiring resistance to TGF𝛽-mediated growth
inhibition also exist. It has been shown that activation of the
Ras oncogene and its downstream target Erk leads to the
phosphorylation of Smad1, Smad2, and Smad3 in their linker
region, thus inducing their retention in the cytoplasm and
promoting their ubiquitin-dependent degradation [157–159].
In addition, metastatic breast cancer cells, isolated from pleu-
ral fluids of patients, exhibit intact Smad pathway compo-
nents but were found to be unresponsive to TGF𝛽-mediated
growth inhibition. In this study, the cytostatic responses to
TGF𝛽 appeared to be dependent on the transcription factor
C/EBP𝛽 which is essential for the induction of the cell cycle
inhibitor p15/INK4b and the repression of c-MYC oncogene.
Interestingly, cells from half of these patients overexpressed
the dominant-negative C/EBP𝛽 isoform LIP, which is able to
bind and inhibit the transcriptionally active C/EBP𝛽 isoform
LAP in order to suppress TGF𝛽-mediated growth inhibition
[160]. Anothermechanism that TGF𝛽may exploit in order to
switch from a tumor suppressive to a metastasis-promoting

factor is through differential regulation of ID1 gene. While
ID1 expression is suppressed by TGF𝛽 in normal tissues, it
was found to be induced in patient-derived metastatic breast
cancer cells [161]. Importantly, high ID1 expression levels are
correlated with relapse in patients with estrogen receptor
negative (ER) breast tumors [162]. Also, the Tax oncoprotein,
encoded by the Human T-cell leukemia virus type I (HTLV-
I), is able to inhibit Smad-dependent transcription in T cells,
thus contributing to the acquisition of resistance to growth
inhibition [163]. Finally, the SKI and SKIL oncoproteins can
interact with Smad3 and Smad4 to displace p300 and CBP
from the active transcriptional complex in order to repress
TGF𝛽-mediated growth inhibition [164].

4. TGF𝛽 in Epithelial-to-Mesenchymal
Transition (EMT)

EMT is a vital process for morphogenesis during embryonic
development andwas initially appreciated primarily by devel-
opmental biologists. During the last decade, however, it has
become apparent that EMT can be abnormally reactivated in
adult tissues during pathological conditions such as cancer
and fibrosis [165]. EMT involves the induction of an orches-
trated, reversible transcriptional program in which well-
organized, tightly connected epithelial cells transdifferentiate
into disorganized andmotilemesenchymal cells.This process
is characterized by disruption of tight junctions between
epithelial cells due to downregulation and delocalization of
tight junction proteins zonula occludens 1 (ZO-1), occludin,
and claudins. Similarly, adherens cell junction complexes
containing E-cadherin, p120, 𝛾-catenin, and 𝛽-catenin also
undergo dissolution. This is followed by loss of apical-basal
cell polarity, dramatic remodeling of the cytoskeleton, and the
formation of actin stress fibers. Concomitantly, cells acquire
mesenchymal features such as spindle-shaped, fibroblast-like
morphology and express mesenchymal components includ-
ing N-cadherin, vimentin, fibronectin, and alpha smooth-
muscle actin [166, 167]. TGF𝛽 signaling plays an instrumental
role in activating this transcriptional network by inducing
the expression of several pleiotropically acting transcription
factors, also known as “master regulators” of EMT. TGF𝛽-
induced factors include the Snail family of proteins Snail [168]
and Slug [169] as well as the two-handed zinc finger factors
ZEB1/deltaEF1 [170] and ZEB2/SIP1 [171] while the basic
helix-loop-helix (bHLH) protein Twist [172] can be upreg-
ulated by Wnt, EGFR, or STAT3 signaling [173, 174]. Other
EMT transcription factors, also induced by the TGF𝛽-Smad
pathway, such as HMGA2 [175] or Ets1 [176], act as upstream
regulators in this network by upregulating the expression of
Snail and ZEB family members, respectively. On the other
hand, FOXC2 is a factor which functions downstream of
Snail and Twist to promote EMT (Figure 2) [177]. In addition
to these transcriptional mechanisms, recent studies indicate
that overactive TGF𝛽-Smad2 signaling further contributes to
the establishment of an EMT phenotype bymaintaining the
epigenetic silencing of key epithelial marker genes, such as E-
cadherin, claudin-4, kallikrein-10, and cingulin.This appears
to be mediated via Smad2-dependent regulation of DNA
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Figure 2: TGF𝛽 signaling in epithelial-to-mesenchymal transition. TGF𝛽 signaling mediated by Smad or non-Smad pathways can directly
or indirectly induce the expression of different transcriptional “master regulators” of epithelial-to-mesenchymal transition. These factors,
including Snail, Slug, ZEB1/delta EF1, and ZEB2/SIP1 are able to initiate a coordinated transcriptional network which results in suppression
of epithelial and upregulation mesenchymal marker expression. As a result, epithelial cancer cells undergo dissolution of adherens and tight
junctions along with dramatic remodeling of their cytoskeleton and acquire mesenchymal features. These fibroblast-like, spindle shaped
tumor cells exhibit significantly enhanced migratory and invasive potential which allows them to enter the blood circulation through the
basement membrane and initiate their metastatic dissemination to distal organs.

methyltransferase 1 (DNMT1) binding activity and DNA
methylation of the corresponding gene promoter regions [71].

Therefore, one of the main mechanisms by which TGF𝛽
promotes cell migration, invasion, and metastasis is through
induction of EMT. Studies have shown that TGF𝛽 stimulation
of carcinoma-derived cell populations in culture can lead to
the activation of this reversible process [45, 178, 179]. In vivo
studies have further shown that expression of TGF𝛽1 in the
skin of transgenic mice enhanced the conversion of benign
skin tumors to carcinomas and highly invasive spindle-
cell carcinomas [180]. Moreover, expression of a dominant-
negative TGF𝛽RII prevented squamous carcinoma cells from
undergoing EMT in response to TGF𝛽 in vivo [181]. Acquisi-
tion of an EMT phenotype results in cells with diminished

adhesive capacity that are highly migratory and invasive
due to increased secretion of extracellular proteases. There-
fore, EMT enhances intravasation of carcinoma in situ cells
through the basement membrane in the circulation and
facilitates extravasation at the distal tissues and formation of
micrometastases in distal organs [165, 172, 182].

Besides Smads, other signaling molecules have also been
implicated in TGF𝛽-mediated EMT, including Erk, PI3K-
Akt, RhoA, and cofilin [183, 184]. Induction of Erk and p38-
MAPK phosphorylation by TGF𝛽 regulates the expression of
genes involved in the remodeling of extracellular matrix and
disruption of adherens and tight junctions to facilitate EMT
[95, 185]. However, studies using Smad-binding defective
TGF𝛽RI constructs that can still mediate MAPK signal
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indicated that Smads are required for Erk-induced EMT
process [95, 186]. Consistent with this evidence, other reports
have demonstrated that cooperation between the TGF𝛽 and
Ras-Raf-MAPK pathways is involved in promoting EMT
[178, 179, 187, 188]. Additional molecular evidence to support
this synergistic effect resulted from studies showing that,
under the influence of oncogenic Ras, formation of a mutant
p53/Smad complex empowers TGF𝛽-induced metastasis by
opposing p63 activity [189].

Finally, the microRNA 200 family members miR-200
and miR-205 have been shown to inhibit the E-cadherin
repressors ZEB1 and ZEB2 to suppress EMT and promote
an epithelial phenotype. Interestingly, loss of expression
of these noncoding RNAs is observed in breast tumors
and may facilitate EMT, invasion, and metastasis [190–193].
Furthermore, TGF𝛽 suppresses miR-203 expression leading
to upregulation of its target SLUG in order to promote EMT
and metastasis [194]. In contrast, upregulation of miR-21 in
some tumor types facilitates TGF𝛽-induced EMT and cancer
cell migration [195]. In summary, it is becoming increasingly
clear that TGF𝛽 signaling controls a complex network of
interconnected pathways to regulate EMT and, therefore, the
metastatic properties of cancer cells.

5. TGF𝛽 and ‘‘Cancer Stem Cells’’ (CSCs)

Evidence that emerged more than a decade ago strongly sug-
gested that a subset of undifferentiated breast cancer cells that
exhibit a CD44high/CD24low cell surface marker expression
pattern possess stem cell-like properties and have a strong
ability to initiate tumor formation, even at very low numbers
[196]. According to the “cancer stem cell hypothesis,” stem-
like cancer cells are thought to represent a subpopulation
of tumor cells that also promote cancer metastasis and
resistance to therapy [197, 198]. Interestingly, TGF𝛽-induced
EMT has been shown to generate cancer cells with stem-like
properties through autocrine and paracrine loops [199, 200].
Therefore, aberrant activity of the TGF𝛽 signaling pathway,
in the vast majority of solid tumors, could be functionally
linked to the development and maintenance of cancer stem
cells, further supporting the notion that this pathway may
represent an attractive target for cancer therapy. However,
despite the numerous reports using experimental approaches
showing the significance of EMT in cancer progression, the
detection of this phenomenon and its importance in clinical
histopathological samples has remained challenging. Recent
findings convincingly demonstrated that circulating tumor
cells (CTCs) from breast cancer patients exhibit dynamic
changes between epithelial and mesenchymal characteristics
during the course of therapy. Interestingly, the mesenchymal
phenotype in CTCs correlated with expression of TGF𝛽 and
FOXC1 as well as with disease progression [201].

6. TGF𝛽 in the Tumor Microenvironment

In many tumor types, excessive TGF𝛽 secretion is often
detected locally, in the microenvironment surrounding the

tumor andwithin the stroma to promote invasion of the lead-
ing tumor front and facilitate metastasis [202–205]. TGF𝛽
can be derived either from cancer cells [206] or from tumor
infiltrating stromal cells, such as fibroblasts, macrophages,
and leukocytes, as well as mesenchymal and myeloid precur-
sor cells [207]. Also, TGF𝛽 can be stored in the extracellular
matrix (ECM) of the bone, becoming biologically activated
during development of osteolytic metastatic lesions [208].

Within the tumor microenvironment, TGF𝛽 exhibits a
dynamic interaction with various stromal components. It
plays a major role in the differentiation of mesenchymal
progenitor cells into fibroblasts followed by conversion into
myofibroblasts [209]. The latter, characterized by alpha-
smooth muscle actin (𝛼-SMA) expression, are highly con-
tractile cells that further contribute to the secretion of TGF𝛽
in the microenvironment. When stimulated by TGF𝛽 in an
autocrine or paracrine fashion,myofibroblasts produce extra-
cellular matrix components, such as collagen, fibronectin,
tenascin, osteopontin, osteonectin, and elastin, which create a
desmoplastic ECM [210]. In this environment, myofibroblast
contraction stimulates the release of active TGF𝛽 from its
latent form that is stored in the ECM [20, 211].

Furthermore, TGF𝛽 elicits strong immunosuppressive
effects by inhibiting the functions of different immune cell
types. It has long been known that TGF𝛽 inhibits the
proliferation of and suppresses the antitumor functions of
CD4+ or CD8+ T cells, both in vitro and in vivo [212, 213];
it is also capable of inducing apoptosis in B-cells [214]. TGF𝛽
inhibits T-cell activation by suppressing antigen-presenting
dendritic cells, which are responsible for the maturation and
effective stimulation of T cells during immune responses
[215]. In addition, TGF𝛽 blocks the production of IFN𝛾 by
natural killer (NK) cells to weaken their ability to recognize
and eliminate cancer cells [212]. Finally, TGF𝛽 can promote
tumor growth by inducing polarization of macrophages and
neutrophils from the cancer cell-attacking type 1 to the type
2, which exhibits significantly reduced effector function and
produces inflammatory cytokines, like IL-6, IL-11, and TGF𝛽
[216, 217].These studies collectively establish a critical role for
TGF𝛽 in suppressing host immune system to facilitate cancer
progression.

7. Priming for Metastasis and Colonization

Dissemination of cancer cells is thought to represent a non-
random, biologically active process which can be driven by
specific genes, depending on the specific organs of metastasis
[162, 218–220]. TGF𝛽 has been shown to play a critical role in
these processes, such as promoting breast cancer metastasis
to the bone via the Smad pathway [221]. Also, TGF𝛽 in the
tumor microenvironment is able to prime breast cancer cells
for pulmonary metastasis by inducing angiopoietin-like 4
(ANGPTL4) secretion which facilitates retention of cancer
cells to the lungs [161].

Once cancer cells extravasate to a secondary tissue,
they initially form micrometastatic lesions. However, since
colonization of tumor cells in distal organs is a highly inef-
ficient process, often described as the “rate-limiting step” of
metastasis, cancer cells can remain in a dormant state which
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may last up to several years in cancer patients. Dormancy
of cancer cells is a poorly understood condition which
is largely responsible for local recurrence and metastatic
growth even years or decades after therapy [222, 223].
While EMT is critical for the initiation of the metastatic
cascade, colonization to distal tissues requires the reversal
of this process which is described as mesenchymal-to-
epithelial transition (MET) [224]. TGF𝛽 has been shown to
play a role during metastatic colonization by inducing ID1
expression only in cells that have already undergone EMT.
In turn, ID1 upregulation promotes MET by suppressing
Twist1 expression [225]. Interestingly, a recent study has
identified that TGF𝛽 may promote metastasis and organ
colonization of hepatocellular carcinoma by upregulating the
long noncoding RNA IncRNA-ATB [226]. Besides TGF𝛽,
signaling via the closely related member of the superfamily
bone morphogenetic growth factor (BMP) has been linked
with metastatic colonization. Inhibition of BMP signaling
by the secreted antagonist Coco was found to reactivate
breast cancer cells at lung metastatic sites and promote their
colonization [227].

8. Conclusions and Future Perspectives

It is unambiguously accepted that TGF𝛽 signaling plays
crucial roles during cancer progression and represents an
attractive target for antimetastatic therapy. Several different
promising therapeutic approaches are currently being tested
in clinical trials or are still under preclinical investiga-
tion to evaluate their efficacy as antimetastatic molecules.
These include blockers of TGF𝛽 activation, ligand traps,
neutralizing antibodies against TGF𝛽-receptor interaction,
antisense oligonucleotides, or inhibitors of TGF𝛽 receptor
kinase activity [228]. However, since TGF𝛽 exerts complex
functions acting both as a tumor suppressor and ametastasis-
promoting cytokine depending on cellular context, inhibi-
tion of TGF𝛽 signaling as a therapeutic strategy must be
approached with caution. The future use of such TGF𝛽
signaling modulating drugs in the clinic must be carefully
assessed, considering their effects on cancer cells and on cells
of the tumor microenvironment in addition to potentially
deleterious effects of these strategies on normal tissues.
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structural and functional consequences ofmutations in Smads,”
Molecular Medicine Today, vol. 4, no. 6, pp. 257–262, 1998.

[29] Y. Shi, Y.-F.Wang, L. Jayaraman, H. Yang, J. Massagué, and N. P.
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