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A B S T R A C T   

Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional 
brain organisation have been observed in these conditions, but little is known about how they are related to a 
child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with 
how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 
children aged 5–15. We used consensus community detection to derive data-driven profiles of behavioural dif
ficulties and constructed functional connectomes from a subset of 238 children with resting-state functional 
Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were charac
terised by principal difficulties with hot executive function, cool executive function, and learning. Global 
organisation of the functional connectome did not differ between the groups, but multivariate patterns of con
nectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group 
membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a 
comparison sample and children with hot vs cool executive function difficulties were distinguished by connec
tivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both 
general and specific neurodevelopmental risk factors in the functional connectome.   

1. Introduction 

Behavioural difficulties are common and highly heterogeneous in 
children who struggle at school (Bathelt et al., 2018). These children 
may be diagnosed with a neurodevelopmental condition such as 
Attention Deficit Hyperactivity Disorder (ADHD), autism, and/or 
dyslexia, but many children have no formal diagnosis (Holmes et al., 
2019). Whilst behavioural difficulties are key characteristics of multiple 
different disorder categories they are incredibly heterogeneous in both 
range and impact (Masi et al., 2017; Wåhlstedt et al., 2009; Willcutt and 
Pennington, 2000). Even within supposedly singular diagnoses, behav
ioural profiles can differ markedly (e.g. Bathelt et al., 2018), and some 
characteristics are apparent across multiple distinct categories (e.g. 
Kushki et al., 2019). 

One good example of this heterogeneity is behaviours related to 
executive function. Executive functions encompass a broad range of 
processes that are important for regulating cognition, emotion, and 
behaviour (Best et al., 2011; Zelazo and Carlson, 2012). Difficulties with 
executive functions are a common characteristic in multiple 

neurodevelopmental diagnoses and children who struggle at school 
(Booth et al., 2010; Demetriou et al., 2018; Frazier et al., 2004; Gath
ercole et al., 2016; Martinussen et al., 2005). Executive difficulties may 
manifest as ‘cool’ behaviours associated with poor cognition, ‘hot’ be
haviours that are emotionally or motivationally salient (Zelazo and 
Carlson, 2012), motor behaviours like hyperactivity, social problems 
with peer relations (Holmes et al., 2016), and/or learning problems 
(McClelland et al., 2006). Whilst cool behaviours are considered core to 
some diagnoses (e.g. ADHD) and hot behaviours to others (e.g. conduct 
disorder), in reality co-occurrence is common (Hobson et al., 2011; 
Petrovic and Castellanos, 2016), and they are often apparent in children 
with no diagnosis at all (Hawkins et al., 2016). 

This challenge of heterogeneity has led many to propose an alter
native transdiagnostic approach to understanding these kinds of diffi
culties (Bathelt et al., 2018; Holmes et al., 2020; Siugzdaite et al., 2020). 
With a broader recruitment approach, designed to better capture the full 
population of children at neurodevelopmental risk, data driven analyses 
can then explore the underlying structure of the data. One common 
approach is to employ some form of data-driven clustering (e.g. Bathelt 
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et al., 2018; Kushki et al., 2019). These data-driven approaches put to 
one side diagnostic status, and instead try to link the characteristics 
themselves with underlying cognitive and neurobiological mechanisms 
(Archibald et al., 2013; Coghill and Sonuga-Barke, 2012; Ramus et al., 
2013). The aim of the current study is to investigate a) whether distinct 
data-driven profiles can explain the diversity of behavioural difficulties 
in childhood, and b) how these profiles are associated with functional 
brain organisation. Our participants were an intentionally heteroge
neous sample of children identified as struggling in the areas of atten
tion, learning, and memory, with broad recruitment from multiple 
referral routes (Holmes et al., 2019). 

Network science is one data-driven method for understanding the 
underlying structure of large-scale heterogeneous datasets. In a behav
ioural network, nodes represent individuals and the edges that connect 
them represent correlations in behaviour. Distinct ‘communities’ of 
highly related children can be discovered using algorithms that maxi
mise ‘modularity’, which is the number and strength of within- 
community edges compared to chance. In a functional brain network, 
nodes represent individual brain regions and the edges that connect 
them represent temporal correlations in regional brain activity, known 
as functional connectivity. The network organisation of functional 
connectivity in the resting-brain is modular, comprising of multiple 
intrinsic connectivity networks (ICNs), and it has small-world proper
ties, maximising efficient communication whilst minimising wiring 
costs (Bullmore and Sporns, 2009). Small-world networks have high 
average clustering, which is the proportion a node’s neighbours that are 
also connected to each other, and a short average path length, which is 
the number of edges joining node pairs, and is inversely proportional to 
global efficiency (Bassett and Bullmore, 2017). 

Individual differences in behavioural difficulties across children and 
adolescents are associated with variability in the functional interactions 
within and between ICNs. To continue with the example of executive 
function difficulties: A key finding is that better executive function and 
better regulation of inattention, hyperactivity and impulsivity is asso
ciated with greater segregation of the default mode network from ICNs 
implicated in cognitive control and attention. Specifically, better parent 
ratings of overall executive function are associated with reduced con
nectivity between the default mode network and cingulo-opercular 
network (Abbott et al., 2016; although see Hawkey et al., 2018). 
Much of the literature has focused on behavioural ratings of character
istic ADHD symptoms, including inattention, hyperactivity and impul
sivity, which are strongly related to executive function behaviours 
(Silverstein et al., 2020). Less marked ADHD symptoms are associated 
with reduced connectivity between the default mode network with the 
dorsal attention (Lin et al., 2018) and ventral attention networks (Sri
pada et al., 2014). Furthermore, less marked symptoms of ADHD are 
associated with greater cross-network interaction of the 
cingulo-opercular network, a combined measure of segregation from the 
default mode network and integration with the lateral fronto-parietal 
network (Cai et al., 2018). Mirroring these findings, atypical patterns 
of connectivity between the default mode, cingulo-opercular, and 
fronto-parietal networks have been observed in those with neuro
developmental and mood conditions (Menon, 2011), suggesting that this 
altered connectivity may be a more general transdiagnostic marker of 
behavioural difficulties. 

Whilst integration between the cingulo-opercular and fronto-parietal 
networks may be altered in many diagnostic groups (Menon, 2011), the 
relationship with executive function-related behaviours is unclear. 
Stronger functional connectivity between the cingulo-opercular and 
fronto-parietal networks has been associated with better ratings of 
overall executive function (Hawkey et al., 2018), but also worse ratings 
of ADHD symptoms (Qian et al., 2019). This inconsistency may be due to 
small sample sizes (Ns=58–83) and variability in the spatial topologies 
of the networks analysed. Executive function-related behaviours have 
been more consistently linked to connectivity within these networks 
rather than between them. Weaker connectivity within the 

cingulo-opercular network has been associated with better ratings of 
overall executive function (Abbott et al., 2016; Hawkey et al., 2018) and 
fewer symptoms of ADHD (Yerys et al., 2019). Stronger connectivity 
within the fronto-parietal network has been associated with fewer 
symptoms of ADHD (Francx et al., 2015; Lin et al., 2015). A large study 
of 229 children found that stronger connectivity within the 
fronto-parietal network was associated with less hyperactivity and 
impulsivity over time (Francx et al., 2015), suggesting that better inte
gration within the fronto-parietal network may support behavioural 
self-regulation. 

Hot and cool aspects of executive function may have distinct asso
ciations with connectivity (Posner et al., 2013). For example, better 
working memory ratings have been associated with greater connectivity 
between regions of the cingulo-opercular and visual networks (Zhao 
et al., 2017), while hot executive function behaviours are particularly 
associated with connectivity in the limbic system (Ho et al., 2015; 
Hulvershorn et al., 2014; Karalunas et al., 2014; Posner et al., 2014). 
Impulsivity has been associated with reduced connectivity between the 
cingulo-opercular / dorsal attention network and premotor regions 
(Shannon et al., 2011), atypical functional connectivity of the nucleus 
accumbens reward system (Costa Dias et al., 2015), and competitive 
interactions between the ventromedial prefrontal cortex connections 
with the dorsolateral prefrontal cortex and the mesocorticolimbic 
reward system (Zhai et al., 2015). This suggests that impulsive behav
iour may be linked to altered co-activation of brain regions implicated in 
cognitive control with regions implicated in motor control and reward. 
In summary, these findings broadly suggest that networks required for 
cognitive control are implicated in behaviours associated with both hot 
and cool executive function, but that their connectivity with other brain 
regions may be domain specific. 

Only one study has examined the relationship between global 
properties of the functional connectome and behavioural difficulties in 
childhood. Inattentive behaviours in children with and without ADHD 
were associated with reduced strength, clustering, path length, and local 
efficiency (Wang et al., 2020). However, it is unclear whether these 
differences in graph theory metrics are a result of overall differences in 
functional connectivity. Further work is required to establish whether 
these findings generalise to other child populations, whilst controlling 
for mean functional connectivity, and how global organisation of the 
functional connectome relates to other behavioural domains. 

Executive function-related difficulties provide one particularly good 
example of a transdiagnostic behavioural domain that’s highly relevant 
for understanding heterogeneity across children at neurodevelopmental 
risk. These difficulties are captured, at least in part, by multiple different 
behavioural checklists, assessing different aspects of behavioural con
trol. A growing neuroimaging literature has explored the neural corre
lates of these different aspects of executive function difficulty, either 
within or across diagnostic groups. Recently, data-driven subtyping 
across a range of behaviours has been shown to produce more distinct 
and homogenous groupings, relative to diagnostic status (Bathelt et al., 
2018). Indeed these data-driven behavioural groupings are somewhat 
independent of diagnostic status, but strongly linked with differences in 
brain connectivity (Bathelt et al., 2018; Karalunas et al., 2014). 

1.1. The present study 

The primary purpose of the current study is to investigate the rela
tionship between behavioural difficulties and functional brain organi
sation. To do this, we will first identify whether a few distinct profiles 
can reasonably explain the diversity of behaviour in a heterogeneous 
sample of 957 struggling learners aged 5–15. This will be achieved using 
community detection to derive behavioural profiles from the Conners 3 
parent-report questionnaire. This questionnaire is widely used in clinical 
contexts because it covers a range of relevant behavioural domains. It is 
best known for its role in supporting diagnosis of ADHD, owing to its 
good coverage of both hot and cool executive function behaviours. 
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Whilst parent-reports have known limitations, they seem to capture 
important variance not captured by specific tasks (Barkley and Murphy, 
2010; Biederman et al., 2008). 

We will examine whether the behavioural profiles derived from 
community detection on the Conners 3 subscales are associated with 
functional brain organisation. While previous studies have often exam
ined regional connectivity, ICNs, or global connectome organisation in 
isolation, we will examine associations at each of these levels in the 
same sample. Partial least squares (PLS) regression, a multivariate 
dimension reduction technique, will be used to identify components that 
maximally explain covariance between the behavioural profiles and 
functional connectomes. 

2. Method 

The aims and methods of this registered report were pre-registered 
after undergoing initial Stage 1 peer-review. These are stored along 
with the analysis scripts at: https://osf.io/cvsu2. 

2.1. Sample characteristics 

A total of 957 children aged 5–15 years (M=9.52, SD=2.31) were 
recruited from the Centre for Attention Learning and Memory (CALM; 
Holmes et al., 2019). Assent and parental consent were obtained for all 
participating children. Children were excluded from the study if they 
had an uncorrected hearing or visual impairment, pre-existing neuro
logical condition, a known genetic cause for their difficulties, or if they 
were a non-native English speaker. Children in the struggling learners 
sample (n = 799) were referred by educational and health practitioners 
for having one or more difficulties in attention, memory, language, lit
eracy, and numeracy. The comparison sample (n = 158) was recruited 
from the same schools but were not identified as struggling. De
mographics and diagnostic status of the two samples are provided in  
Table 1 and age distributions are provided in Supplementary Fig. 1. 

2.2. Measures 

2.2.1. Behaviour 
The Conners Parent Rating Short Form 3rd Edition is a validated and 

reliable parent questionnaire of behaviour in childhood (Conners, 
2013). Parents or carers rated the frequency of 45 behavioural items 
over the past month across six scales measuring: inattention, hyper
activity/impulsivity, learning problems, executive function, aggression, 
and peer relations. Ratings on these scales will be used to construct the 
behavioural network. 

2.2.2. Intelligence 
The Matrix Reasoning subtest of the Wechsler Abbreviated Scale of 

Intelligence (WASI-II; Wechsler, 2011) was used as a measure of fluid 
intelligence. It includes 30 visuospatial reasoning problems and children 
must choose which of five answers fits with the sequence or pattern. The 
Peabody Picture Vocabulary Test (PPVT) is a measure of receptive vo
cabulary (Dunn and Dunn, 2007) and was used here as a measure of 

crystallised intelligence. The experimenter read aloud progressively 
more unfamiliar words and the participant chose the corresponding 
image from four options. Scores were standardised according to age 
norms (M=100, SD=15) and were averaged between the two tests. In
telligence scores were only used to characterise different groups of 
children identified in the behavioural network. 

2.2.3. Academic attainment 
The Word Reading and Numerical Operations subtests of the 

Wechsler Individual Achievement Test (WIAT-II; Wechsler, 2005) were 
used as measures of Reading and Maths, respectively. Word Reading 
primarily requires children to read aloud single words that are pro
gressively more unfamiliar. Earlier items require identifying letters, 
phonemes, and similar sounding words. Numerical Operations primarily 
requires children to solve arithmetic problems on paper with progressive 
difficulty. Earlier items include number identification and counting, and 
advanced items include algebra. Some children (n = 68) completed the 
Maths Fluency subtest of the Woodcock Johnson III Test of Achievement 
(WJ-III; Woodcock et al., 2001), instead of the Numerical Operations. In 
this test children are given three minutes to correctly answer as many 
simple maths calculations as possible. All scores were standardised ac
cording to age norms (M=100, SD=15). Maths scores will be combined 
across both tests but analyses will be checked for robustness against the 
larger sample that completed the Numerical Operations (n = 889). 
Maths and reading scores will only be used to characterise any groups 
identified in the behavioural network. 

2.3. Behavioural network construction and profiling 

Behavioural profiles were determined by replicating the consensus 
community detection procedure in Bathelt et al. (2018), which was 
conducted on an earlier sample of 442 struggling learners from the 
CALM cohort. First, a behavioural network of the struggling learners 
sample (n = 799) was constructed by calculating the Pearson’s corre
lation across the six scales of the Conners 3 questionnaire for every pair 
of children. The community Louvain algorithm assigned each child to an 
individual community and then iteratively divided the network into 
communities to maximise modularity quality (Q), which is the number 
of within community associations relative to random chance (Blondel 
et al., 2008). A consensus partition was determined across 100 iterations 
of the community detection (Lancichinetti and Fortunato, 2012). The 
degree of separation between the behaviour profiles was quantified by 
modularity. Previously this procedure showed good separation into 
three groups (Q=0.55), which was reliable in a random half (Q=0.6) and 
quarter of the sample (Q=0.61), and created more homogenous 
behavioural profiles compared to traditional diagnostic categories 
(Bathelt et al., 2018). All behavioural and functional brain network 
analyses were run in the Brain Connectivity Toolbox (Rubinov and 
Sporns, 2010) for Python (https://github.com/aestrivex/bctpy). 

To characterise the profiles identified by community detection we 
compared each pairwise combination of the profiles and the comparison 
sample (Bonfferoni corrected) on each of the Conners scales. We used 
nonparametric Mann-Whitney U-tests assuming within-group scores are 
non-normal, as previously shown (Bathelt et al., 2018). We also exam
ined group differences in demographics, diagnosis, intelligence, and 
learning. Here, t-tests (Bonferroni corrected) were used to test group 
differences in age, intelligence, maths, and reading, and chi square tests 
were used to test group differences in the frequencies of males/females 
and common diagnoses (ADHD, dyslexia, autism, and no diagnosis). 

2.4. Image acquisition 

Magnetic resonance imaging data were acquired at the MRC Cogni
tion and Brain Sciences Unit, University of Cambridge. All scans were 
obtained on a Siemens 3 T Prisma-fit system (Siemens Healthcare, 
Erlangen, Germany), using a 32-channel quadrature head coil. 

Table 1 
Sample characteristics.   

Struggling learners (n =
799) 

Comparison sample (n =
158) 

Age in years: M (SD) 9.42 (2.29) 10 (2.33) 
Boys: n 550 (68.8%) 89 (56.3%) 
Girls: n 249 (31.2%) 69 (43.7%) 
No diagnosis: n 482 (60.3%) 155 (98.1%) 
ADHD: n 194 (24.3%) 1 (0.6%) 
Suspected ADHD: n 57 (7.1%) 0 (0%) 
Autism: n 56 (7%) 0 (0%) 
Dyslexia: n 47 (5.9%) 2 (1.3%)  
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In the resting-state fMRI, 270 T2*-weighted whole-brain echo planar 
images (EPIs) were acquired over nine minutes (time repetition [TR] =
2 s; time echo [TE] = 30 ms; flip angle = 78 degrees, 3 ×3 ×3 mm). The 
first 4 volumes were discarded to ensure steady state magnetization. 
Participants were instructed to lie still with their eyes closed and to not 
fall asleep. For registration of functional images, T1-weighted volume 
scans were acquired using a whole-brain coverage 3D Magnetization 
Prepared Rapid Acquisition Gradient Echo (MP-RAGE) sequence ac
quired using 1-mm isometric image resolution (TR = 2.25 s, TE = 2.98 
ms, flip angle = 9 degrees, 1×1x1mm). 

2.5. fMRI Pre-processing 

Only a subset of children opted to take part in the MRI study. We 
used all of the available resting-state fMRI data, which was present for 
349 children. The data was minimally pre-processed in fMRIPrep 
version 1.5.0 (Esteban et al., 2019), which implements slice-timing 
correction, rigid-body realignment, boundary-based co-registration to 
the structural T1, segmentation, and normalisation to the MNI template. 
The data were then smoothed by 6 mm full-width at half-maximum. 
Many methods exist to denoise motion and physiological artefacts 
from resting-state fMRI; however, the effectiveness of these strategies 
varies depending on the sample (Ciric et al., 2017; Parkes et al., 2018). 
We evaluated the performance of several denoising strategies (head 
movement regressors, aCompCor, ICA-AROMA, motion spike regres
sion, white matter [WM] and cerebrospinal fluid [CSF] regression, and 
global signal regression) on several quality control metrics (edge weight 
density, motion-functional connectivity correlation, 
distance-dependence, and functional degrees of freedom lost) using the 
fmridenoise package in Python (Finc et al., 2019; see Supplementary 
materials). The most effective confound regression procedure included a 
band-pass filter between 0.01 and 0.1 Hz, 24 head motion parameters 
(six rigid body realignment parameters, their squares, their derivatives, 
and their squared derivatives), 10 aCompCor components from the WM 
and CSF signal (Behzadi et al., 2007), linear and quadratic trends, and 
motion spikes (framewise displacement >0.5 mm; Power et al., 2012). 
Simultaneous confound regression was performed in the Nipype 
(version 1.2.0) implementation of AFNI’s 3dTproject (Cox, 1996). 
Children were first excluded for high average motion (mean framewise 
displacement >0.5 mm, n = 93) and then for a large number of motion 
spikes (>20% spikes, n = 18), where few temporal degrees of freedom 
would have remained. The final functional connectome sample includes 
238 children (struggling learners n = 175, comparison n = 63). Average 
in-scanner motion was 0.2 mm (SD=0.09 mm). 

2.6. Functional connectome construction 

The denoised fMRI data were parcellated according to 400 region 
resting-state fMRI cortical parcellation (Schaefer et al., 2018) and a 64 
region subcortical parcellation derived from structural connectivity data 
(Fan et al., 2016). Pearson correlations were computed for the regional 
time-series within each individual generating 464 × 464 connectivity 
matrices. We used proportional thresholding to remove spurious 
false-positive edges. This approach is recommended over absolute 
thresholding as it controls for the number of edges across individuals, 
which strongly influences many graph metrics (Van Wijk et al., 2010; 
Váša et al., 2018). Specifically, individual connectivity matrices were 
thresholded to retain the top 25% of positive edges at the group level, 
ensuring that the same edges are retained for comparison across in
dividuals in subsequent analyses, as in Baum et al. (2017). Any negative 
edge weights that survived the group threshold were set to a small 
positive value (0.001) to minimise their influence. To test the robustness 
of any significant brain-behaviour results, connectomes were generated 
at additional cost thresholds (5%, 10%, 15%, 20% and 30%) and the 
Area Under the Curve (AUC) was examined. As a further test of 
robustness, global graph metrics were also computed for individually 

thresholded connectomes, as these may capture greater individual 
variability in global brain organisation. Edge weights were normalised 
to the maximum value within individuals’ connectomes. Outlier analysis 
was performed for mean functional connectivity and cases were 
removed if they were three standard deviations away from the mean. 
Average functional connectivity was calculated within and between 
eight pre-defined ICNs: visual, somatomotor, dorsal attention, ventral 
attention, fronto-parietal, default mode, limbic, and subcortical. 

2.7. Global connectome properties 

Global graph theory metrics were computed for the weighted 
thresholded functional connectomes (Rubinov and Sporns, 2011). 
Strength is a nodal property that defines the weighted sum of all of a 
node’s direct connections. The global clustering coefficient is the 
average proportion of a node’s neighbours that are also connected to one 
another. The characteristic path length is the average shortest path 
length between every pair of nodes in the network, global efficiency is 
the average inverse shortest path length in the network, and local effi
ciency is the average inverse shortest path length in each node’s 
neighbourhood. Small-worldness was estimated as the global clustering 
coefficient divided by the characteristic path length (Bassett and Bull
more, 2017). Assortativity is the correlation between the strength of 
pairs of connected nodes in the network. Finally, modularity is defined 
as the weighted proportion of connections within modules compared to 
that expected by chance. Graph metrics were be analysed at the global 
connectome level. The following graph metrics were normalized ac
cording to the average of 100 random networks with the same degree 
and weight distribution: global clustering coefficient, characteristic path 
length, global efficiency, local efficiency, small-worldness, and 
assortativity. 

2.8. Brain-behaviour analyses 

The association between the behavioural profiles and functional 
connectomes was tested at three levels: the global connectome, ICNs, 
and regions. Global graph properties of the connectome were compared 
between the behavioural profiles in a series of ANCOVAs, including age, 
sex, motion, and mean functional connectivity as covariates. Significant 
main effects were followed up with pairwise ANCOVAs between all 
behavioural profiles and the comparison sample (Bonferroni corrected). 

At the ICN level, dummy variables were created for the behavioural 
groups using one-hot-encoding and ICN variables were created by 
averaging edge weights within each ICN and between each pair of ICNs. 
ICN variables were mean-centered and scaled to unit variance. We then 
used Partial Least Squares (PLS) regression to evaluate the components 
of ICN variables that best explain group membership across the behav
ioural profiles and comparison sample, whilst controlling for age, sex, 
motion, and mean functional connectivity. The model fit was evaluated 
by using 5-fold cross-validation repeated 10 times with random splits. 
The root mean square error (RMSE) from the cross-validated models was 
compared to permuted null models using 1000 randomly shuffled 
samples. The contribution of ICN variables to the PLS components was 
then evaluated using a bootstrap procedure by sampling the total sample 
size with replacement 1000 times. The loadings onto PLS components 
was calculated as the mean loading divided by the standard error (SEM) 
across permutations, where a Procrustes rotation was applied to align 
the factors across iterations (Krishnan et al., 2011). PLS will be run using 
scikit-learn 0.22.2 in Python 3.7.3. 

To examine how individual brain regions explain the behavioural 
profiles, we repeated the PLS procedure for node strength. Furthermore, 
as inter-network segregation and integration can develop simulta
neously in hubs (Baum et al., 2017), we examined the unique contri
butions of hub regions to executive function-related behaviours. 
Connector hubs were defined as nodes with high betweenness centrality 
(above the 70th percentile; Baum et al., 2017), which measures how 
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often a node participates in the shortest path between pairs of nodes in 
the connectome, and high participation coefficient, which measures the 
diversity of a node’s connection between networks (above the 70th 
percentile; Power et al., 2013). Provincial hubs were defined as having a 
high within-module degree (above the 70th percentile) and low partic
ipation coefficient (below the 70th percentile; Xu et al., 2016). Here, the 
PLS procedure was repeated for connector and provincial hubs 
separately. 

3. Results 

3.1. Community detection 

We created a behavioural network from child-by-child correlations 
across the six scales of the Conners for 777 struggling learners. Twenty- 
two children were excluded because their scores on the scales did not 
vary, thereby precluding calculation of the correlation coefficient. 
Consensus community detection of the behavioural network identified 
three communities of children, but the composition of these commu
nities varied slightly with repeated iterations of the algorithm. We, 
therefore, re-ran the algorithm 100 times after removing data from 74 
individuals with above-threshold scores on the Negative Impressions 
scale. This scale indicates an overly negative bias in the parent or 
guardian’s ratings and may affect the resulting correlations in the 
behavioural network (Conners, 2013). The resulting communities 
identified were consistent across all 100 iterations of the algorithm and 
only six participants had variable community assignments. We then 
compared the community assignment from this slightly reduced sample 
with the original results of community detection on the full sample. 
There was 96.6% agreement with one of the original community as
signments from the full sample and the correlations between mean 
scores across these community assignments exceeded 0.99. Therefore, 
we were confident using the original community assignments for the 
whole sample as they aligned very well with the assignments when in
dividuals with negative impressions were removed. These community 
assignments are shown in Fig. 1 and indicated good separation between 
the groups (Q=0.46). 

3.2. Behavioural profiles 

The groups showed distinct profiles of behaviour (see Fig. 1 and 
Tables S2–3). C1 (n = 339) had the highest ratings of Aggression, Peer 
Problems and Hyperactivity/Impulsivity; C2 (n = 260) had the highest 
ratings of Inattention and Executive Function difficulties; and C3 
(n = 178) had the highest ratings of Learning Problems. Mann-Whitney 
U-tests indicated that all pairwise comparisons were significantly 
different for all behaviour scales (p < 0.05 Bonferroni corrected), except 
for the comparison of C2 and Controls on Aggression. In the MRI sample, 
these profiles were consistent (see Fig. 1 and Tables S4–5), however, 
some pairwise comparisons were no longer statistically significant 
(p > 0.05 Bonferroni corrected): C1 and C3 on Inattention, C1 and C2 on 
Hyperactivity/Impulsivity, C1 and C3 on Executive Function, C2 and C3 
on Aggression, Controls and C2 on Peer Relations, and C1 and C3 on 
Peer Relations. 

The groups also significantly differed on some demographic, diag
nostic, cognitive, and learning outcomes (see Table 2, S6 and S7). As 
expected, the control group had significantly fewer diagnoses overall 

Fig. 1. Results of the consensus community detection. The behavioural network (left) shows the child-by-child correlation matrix across the six scales of the Conners 
3 after sorting by the community assignments: C1 (n = 339), C2 (n = 260), and C3 (n = 178). The behavioural profiles for the three communities and Controls in the 
whole sample (top right) and MRI sample (bottom right). Points indicate mean scores and error bars denote 95% confidence intervals from 1000 bootstrapped 
samples. The dashed horizontal line indicates the threshold for elevated scores and the solid line indicates very elevated scores. Note: Executive Function (EF), 
Hyperactivity/Impulsivity (Hyperactivity), Learning Problems (Learning). 

Table 2 
Group characteristics.   

Controls C1 C2 C3 

N 158 339 260 178 
Boys: n (%) 89 (56.33%) 271 

(79.94%) 
155 
(59.62%) 

110 (61.8%) 

Girls: n (%) 69 (43.67%) 68 (20.06%) 105 
(40.38%) 

68 (38.2%) 

Diagnosis: n 
(%) 

6 (3.8%) 163 
(48.08%) 

83 (31.92%) 66 (37.08%) 

ADHD: n (%) 1 (0.63%) 123 
(36.28%) 

46 (17.69%) 21 (11.8%) 

Dyslexia: n (%) 2 (1.27%) 7 (2.06%) 20 (7.69%) 19 (10.67%) 
Autism: n (%) 0 (0%) 36 (10.62%) 8 (3.08%) 13 (7.3%) 
Age: M (SD) 10.85 (2.21) 10.43 (2.38) 10.74 (2.09) 9.82 (2.06) 
IQ: M (SD) 109.66 

(11.41) 
96.6 (12.63) 93.4 (11.73) 88.94 

(13.21) 
Reading: M 

(SD) 
108.7 (12.83) 91.61 

(17.43) 
86.51 
(15.24) 

79.43 
(15.37) 

Maths: M (SD) 115.52 
(18.11) 

89.67 
(18.04) 

82.73 
(14.19) 

79.58 
(14.16)  

J.S. Jones et al.                                                                                                                                                                                                                                  



Developmental Cognitive Neuroscience 52 (2021) 101027

6

and ADHD diagnoses compared to each data-driven group. There were 
also significantly fewer diagnoses of autism in the control group relative 
to C1 and C2, and significantly fewer diagnoses of dyslexia relative to 
C3. C1 included significantly more children with diagnoses than ex
pected compared to C2, significantly more children diagnosed with 
ADHD than C2 and C3, and significantly more children diagnosed with 
autism relative to C2. In contrast, C1 included fewer children diagnosed 
with dyslexia relative to C2 and C3. C1 also included a significantly 
greater proportion of boys than all other groups. On measures of 
cognition and learning, the comparison sample scored higher on IQ, 
reading, and maths compared to each data-driven group. Of the data- 
driven groups C1 had the highest scores, which were significantly 
higher on IQ, maths, and reading than C2 and C3. C3 had the lowest 
scores, which were significantly lower on IQ and reading than C2. In 
short, C1 members were more likely to be boys and have ADHD or 
autism diagnoses. In addition, C1 had the highest cognitive and educa
tional performance of the data-driven groups followed by C2 and then 
C3. 

A similar pattern was observed in the MRI sample, but there were 
fewer significant differences (see Table 3, S8 and S9). The control group 
had significantly fewer diagnoses overall relative to each data-driven 
group. C1 had a significantly higher proportion of ADHD diagnoses 
relative to the comparison sample and C3. The comparison sample 
included a greater number of girls compared to C1, but the proportion of 
girls and boys did not significantly differ between the data-driven 
groups. As in the full sample, the comparison sample scored signifi
cantly higher than all of the data-driven groups on IQ, maths, and 
reading; and C1 scored significantly higher than C2 and C3 on IQ, maths, 
and reading. Mean functional connectivity did not differ between the 
groups but the comparison sample moved significantly less in the 
scanner compared to C1 and C2. 

3.3. Global connectome properties 

We examined the difference between the groups on global organ
isational properties of the functional connectome using ANCOVAs 
including age, gender, framewise displacement, and mean functional 
connectivity as nuisance covariates. There were no significant differ
ences on any of the graph metrics analysed on the 25% group- 
thresholded connectome (see Table 4). Furthermore, there was no sig
nificant effect of group on any of the graph metrics when comparing the 
area under the curve (AUC) across all group-thresholds to a distribution 
of 1000 permutations where group labels were randomly shuffled (all 
p > 0.102; see Table S10). Similar results were also obtained for the 
individually thresholded connectomes, which may be more sensitive to 

individual differences in global organisation. There were no significant 
group differences in any of the graph metrics at the 25% threshold (see  
Table 5) or across all thresholds when examining the AUC (all p > 0.171; 
see Table S11). In sum, there was no evidence that the groups signifi
cantly differed in global brain organisation. 

3.4. Intrinsic connectivity networks 

We examined the relationship between ICN connectivity and the 
behavioural profiles using Partial Least Squares (PLS) regression. Cross- 
validated prediction error was assessed using a casewise calculation of 
the root mean square error, which is directly proportional to classifi
cation accuracy and also provided for interpretability. The lowest pre
diction error was achieved with three PLS components (RMSE = 0.466, 
SEM = 0.019; Accuracy = 0.341, SEM = 0.027). To find a balance be
tween accuracy and parsimony we selected the simplest model within 
one standard error of the lowest cross-validated RMSE (Hastie et al., 
2009). In this case, the prediction error in models with fewer compo
nents was greater than one standard error above the RMSE with three 
components. We then compared this model’s accuracy with three 
components to that would be expected by chance when group labels 
were randomly shuffled 1000 times. The three components of ICN 
connectivity significantly explained group membership relative to the 
permuted null models (permuted RMSE = 0.519, SEM = 0.019, 
p = 0.005). This finding was reproduced over different connectome 
thresholds (see Table S12) and was significant across all thresholds 
when computing the AUC (AUC = 2.363, permuted AUC = 2.594, SEM 
= 0.087, p = 0.007). 

We then assessed the contribution of specific ICN connections at the 
25% threshold by examining the loadings of a PLS model with three 
components fit to 1000 bootstrapped samples. Loadings were aligned 
across the bootstrapped samples using an orthogonal Procrustes rotation 
and component scores were re-computed. We then tested whether group 
differences in component scores significantly differed from chance when 
group labels were permuted 1000 times. The top 25% of loadings and 
group differences are shown in Fig. 2. The highest loadings for PLS1 
were ICN connections with the dorsal attention and limbic networks. 
Group C2 scored significantly higher on this component compared to C1 
(p < 0.001) and Controls scored marginally higher than C1 but this was 
borderline significant (p = 0.058). The highest loadings for PLS2 were 
widespread across all eight ICNs. Controls generally scored higher on 
this component compared to the other groups but this was only statis
tically significant for the comparison with C2 (p = 0.012, other 
p′s > 0.073). Finally, highest loadings for PLS3 included connections 
with the subcortical, default-mode, and dorsal attention networks. C3 
generally scored lower on this component compared to the other groups 
but these differences were not statistically significant (p > 0.093). 

3.5. Nodal strength 

PLS applied to nodal strength across the entire functional con
nectome also distinguished held-out children’s behavioural profile bet
ter than chance. The lowest prediction error was achieved with 10 PLS 
components (RMSE = 0.466, SEM = 0.02; Accuracy = 0.341, SEM =
0.029); however, a simpler model with 5 components was within one 
standard error (RMSE = 0.481, SEM = 0.016; Accuracy = 0.319, SEM =
0.022). This simpler model significantly explained group membership 
compared to a null model based on 1000 shuffled samples (permuted 
RMSE = 0.519, SEM = 0.018, p = 0.021). This finding was reproduced 
over multiple connectome thresholds (see Table S13) and significant 
across all thresholds when computing the AUC (AUC = 2.387, permuted 
AUC = 2.591, SEM = 0.074, p = 0.003). 

The contribution of specific nodes to the PLS components and group 
differences were analysed as for ICNs. Group differences were only 
found for the first two components, which are displayed in Fig. 3 (see 
Fig. S7 for components 3–5). The top 5% of loadings for PLS1 

Table 3 
Group characteristics in the MRI sample.   

Controls C1 C2 C3 

N 62 70 56 47 
Boys: n (%) 28 (45.16%) 55 (78.57%) 33 (58.93%) 26 (55.32%) 
Girls: n (%) 34 (54.84%) 15 (21.43%) 23 (41.07%) 21 (44.68%) 
Diagnosis: n 

(%) 
3 (4.84%) 29 (41.43%) 17 (30.36%) 19 (40.43%) 

ADHD: n (%) 1 (1.61%) 22 (31.43%) 8 (14.29%) 4 (8.51%) 
Dyslexia: n (%) 2 (3.23%) 3 (4.29%) 8 (14.29%) 6 (8.51%) 
Autism: n (%) 0 (0%) 8 (11.43%) 1 (1.79%) 4 (8.51%) 
Age: M (SD) 10.77 (2.05) 10.71 (2.49) 10.06 (1.77) 10.26 (2.34) 
IQ: M (SD) 110.28 

(10.57) 
100.32 
(12.73) 

94.38 
(11.17) 

89.35 
(17.37) 

Reading: M 
(SD) 

108.38 
(11.69) 

95.06 (17.78) 86.25 
(15.44) 

78.35 
(15.95) 

Maths: M (SD) 116.34 
(20.32) 

94.87 (20.89) 83.14 
(13.31) 

79.96 
(14.87) 

Mean FC: M 
(SD) 

0.081 (0.027) 0.083 (0.03) 0.093 
(0.028) 

0.08 (0.031) 

Motion: M (SD) 0.167 (0.076) 0.226 (0.1) 0.209 
(0.092) 

0.207 
(0.089)  
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predominantly included medial regions of the default-mode, limbic, 
visual, and fronto-parietal network, as well as the bilateral hippocampi. 
Controls scored significantly higher than C2 (p = 0.004), and C1 scored 
higher than C2 (p < 0.001) and C3 (p = 0.004). The highest loadings 
from PLS2 predominantly included lateral regions of the default-mode 
network, as well as lateral temporal regions of the limbic and fronto- 
parietal networks. Controls scored marginally higher on PLS2 

compared to C3, but this was borderline significant (p = 0.056). 

3.6. Hubs 

We identified 31 connector hubs, defined as the top 30th percentile 
for both betweenness centrality and participation coefficient. Connector 
hubs included regions within the dorsal attention, fronto-parietal, 

Table 4 
Group differences in global graph metrics at the 25% group threshold.   

Controls: M (SD) C1: M (SD) C2: M (SD) C3: M (SD) F p ηp
2 

Strength 37.4 (3.6) 37.14 (4.3) 38.08 (3.26) 36.82 (4.02) 0.31 0.578 0.001 
Modularity 0.45 (0.02) 0.45 (0.02) 0.44 (0.02) 0.45 (0.02) 2.96 0.087 0.013 
Path length 1.4 (0.05) 1.39 (0.04) 1.38 (0.05) 1.4 (0.05) 1.65 0.201 0.007 
Global efficiency 0.77 (0.02) 0.77 (0.02) 0.78 (0.02) 0.77 (0.02) 3.43 0.065 0.015 
Local efficiency 1.07 (0.01) 1.08 (0.02) 1.07 (0.01) 1.07 (0.02) 0.79 0.376 0.003 
Clustering 2.32 (0.11) 2.33 (0.12) 2.27 (0.1) 2.31 (0.12) 2.2 0.14 0.01 
Small-worldness 1.65 (0.06) 1.68 (0.08) 1.65 (0.08) 1.66 (0.08) 0.17 0.683 0.001 
Assortativity 0.26 (0.09) 0.23 (0.08) 0.28 (0.09) 0.26 (0.09) 0.13 0.724 0.001 

Note. All graph metrics were normalised according to the average of 100 random graphs except for strength and modularity. Assortativity is a correlation measure 
bounded between − 1 and 1, however, because random graphs typically had a slightly negative assortativity the normalized scores were highly negative. Therefore, the 
non-normalized mean values for assortativity are displayed in this table to aid interpretation. 

Table 5 
Group differences in global graph metrics at the 25% individual threshold.   

Controls: M (SD) C1: M (SD) C2: M (SD) C3: M (SD) F p ηp
2 

Strength 49.93 (4.49) 50.66 (4.76) 51.75 (4.8) 49.86 (4.05) 0.08 0.774 < 0.001 
Modularity 0.36 (0.04) 0.36 (0.03) 0.34 (0.04) 0.36 (0.03) 1.78 0.184 0.008 
Path length 1.24 (0.12) 1.23 (0.1) 1.22 (0.1) 1.23 (0.07) 0.11 0.74 < 0.001 
Global efficiency 0.85 (0.08) 0.86 (0.07) 0.86 (0.07) 0.85 (0.05) 0.04 0.845 < 0.001 
Local efficiency 1.06 (0.15) 1.06 (0.12) 1.06 (0.13) 1.05 (0.09) 0.46 0.5 0.002 
Clustering 1.87 (0.41) 1.85 (0.37) 1.82 (0.41) 1.82 (0.26) 0.91 0.343 0.004 
Small-worldness 1.54 (0.44) 1.53 (0.38) 1.51 (0.44) 1.49 (0.27) 0.89 0.346 0.004 
Assortativity 0.29 (0.09) 0.28 (0.08) 0.3 (0.09) 0.29 (0.07) 0.13 0.724 0.001 

Note. All graph metrics were normalised according to the average of 100 random graphs except for strength and modularity. Assortativity is a correlation measure 
bounded between − 1 and 1, however, because random graphs typically had a slightly negative assortativity the normalized scores were highly negative. Therefore, the 
non-normalized mean values for assortativity are displayed in this table to aid interpretation. 

Fig. 2. PLS components of ICN connectivity that predicted group membership. The heatmaps (top) show the 25% largest loadings of ICN connections onto each 
component relative to their standard error over 1000 bootstrapped samples. The boxplots (bottom) show the bootstrapped distribution of component scores for each 
group and significant group differences assessed by a permutation test. ICN abbreviations: Somatomotor (SomMot), dorsal attention network (DAN), ventral attention 
network (VAN), fronto-parietal (Control), and default mode network (DMN). ***p < 0.001, *p < 0.05. 
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cerebellar and limbic networks. The PLS analysis demonstrated that the 
strength of connector hubs significantly predicted group membership for 
held-out data. The most accurate and parsimonious model included two 

PLS components (RMSE = 0.472, SEM = 0.015; Accuracy = 0.322, SEM 
= 0.021) and significantly explained group membership above a null 
model based on 1000 shuffled samples (permuted RMSE = 0.516, SEM =

Fig. 3. PLS components of nodal strength that predicted group membership. The brain plots (left) show the 5% largest loadings of nodes onto each component (PLS1 
top, PLS2 bottom) relative to their standard error over 1000 bootstrapped samples. The size of the node is proportional to its absolute loading and the colour 
corresponds to its ICN: default-mode (red), limbic (cream), visual (purple), fronto-parietal (orange), and subcortical (black). The boxplots (right) show the boot
strapped distribution of component scores for each group and significant group differences assessed by a permutation test. ***p < 0.001, **p < 0.01, +p < 0.06. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. PLS components of connector hub strength that predicted group membership. The brain plots (left) show the 30% largest loadings of connector hubs onto 
each component (PLS1 top, PLS2 bottom) relative to their standard error over 1000 bootstrapped samples. The size of the node is proportional to its absolute loading 
and the colour corresponds to its ICN: fronto-parietal (orange), subcortical (black), dorsal attention (green), and limbic (cream). The boxplots (right) show the 
bootstrapped distribution of component scores for each group and significant group differences assessed by a permutation test. * *p < 0.01, *p < 0.05. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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0.018, p = 0.011). This finding was reproduced over multiple con
nectome thresholds (see Table S14) and significant across all thresholds 
when computing the AUC (AUC = 2.353, permuted AUC = 2.564, SEM 
= 0.077, p = 0.002). 

The top 30% of loadings onto PLS components and group differences 
are displayed in Fig. 4. PLS1 largely included bilateral regions of the 
fronto-parietal network as well as the left cerebellum, right temporal 
pole of the limbic network, and right intraparietal sulcus of the dorsal 
attention network. Controls scored significantly higher on PLS1 
compared to C1 (p = 0.004), C2 (p = 0.034), and C3 (p = 0.002). The 
highest loadings for PLS2 included the right dorsal attention network, 
bilateral cerebellum, bilateral temporal poles of the limbic network, and 
the left lateral prefrontal cortex of the fronto-parietal network. C2 
scored significantly higher on PLS2 compared to Controls (p = 0.034), 
C1 (p = 0.006), and C3 (p = 0.044). 

We also identified 103 provincial hubs in the top 30th percentile for 
within module strength that had a participation coefficient in the bottom 
70th percentile. Provincial hubs largely included regions in the default 
mode, somatomotor, visual, ventral attention and frontoparietal net
works, as well as the thalamus. The PLS analysis demonstrated that the 
strength of provincial hubs significantly predicted group membership 
for held-out data. The most accurate and parsimonious model included 
seven PLS components (RMSE = 0.469, SEM = 0.017; Accuracy = 0.336, 
SEM = 0.023) and significantly explained group membership above a 
null model based on 1000 shuffled samples (permuted RMSE = 0.522, 
SEM = 0.019, p = 0.003). This finding was reproduced over different 
connectome thresholds (see Table S15) and significant across all 
thresholds when computing the AUC (AUC = 2.368, permuted AUC =
2.6, SEM = 0.081, p = 0.005). 

Significant group differences were only observed on the first 
component, which is displayed in Fig. 5 with component two (see Fig. S8 
for components 3–7). The top 10% of loadings for PLS1 largely included 
regions of the default-mode network, as well as the bilateral lingual gyri 
of the visual network and right orbitofrontal cortex of the limbic 
network. C1 scored significantly higher on PLS1 compared to C2 

(p = 0.012) and C3 (p = 0.008), and Controls scored significantly higher 
than C3 (p = 0.030) and marginally higher than C2, however this was 
borderline significant (p = 0.054). The highest loadings for PLS2 
included bilateral lateral temporal and parietal regions of the default- 
mode network, bilateral regions of the fronto-parietal network, the pa
rietal operculum of the somatomotor network, and the left temporal pole 
of the limbic network. Controls scored higher on PLS2 than C1 
(p = 0.102) and C3 (p = 0.098) but these differences were not statisti
cally significant. 

4. Discussion 

We tested whether a large mixed sample of children at neuro
developmental risk could be grouped according to their behavioural 
profiles. Consensus community detection within a network analysis 
identified three groups with distinct behavioural profiles. These groups 
were characterised by principal difficulties with hot executive function 
(C1), cool executive function (C2), and learning (C3). Next, we created 
functional connectomes for a subset of these children and tested whether 
group membership could be predicted by different aspects of functional 
brain organisation. Whilst there were no group differences in global 
organisational properties, multivariate patterns of connectivity at the 
level of ICNs, nodes, and hubs significantly predicted group membership 
in held-out data. 

In the following sections we will first describe the groups according 
to their behaviour, IQ, learning, demographics, and diagnoses. We will 
then highlight differences in functional brain organisation between the 
groups, acknowledge limitations and future directions, and finish with 
key conclusions. 

4.1. Behavioural profiles 

Ratings of inattention, cool executive function difficulties, and 
learning problems were in the ‘elevated’ or ‘very elevated’ range for all 
neurodevelopmentally at-risk groups and significantly higher than the 

Fig. 5. PLS components of provincial hub strength that predicted group membership. The brain plots (left) show the 10% largest loadings of provincial hubs onto 
each component (PLS1 top, PLS2 bottom) relative to their standard error over 1000 bootstrapped samples. The size of the node is proportional to its absolute loading 
and the colour corresponds to its ICN: default-mode (red), visual (purple), limbic (cream), fronto-parietal (orange), and somatomotor (blue). The boxplots (right) 
show the bootstrapped distribution of component scores for each group and significant group differences assessed by a permutation test. **p < 0.01, *p < 0.05, 
+p < 0.06. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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comparison sample. However, the degree of difficulties in specific 
behavioural domains were distinct between the three behavioural pro
files capturing principal difficulties with hot executive function (C1), 
cool executive function (C2), and learning problems (C3). These profiles 
were largely consistent with previously identified profiles in a smaller 
sample from the same cohort of children (Bathelt et al., 2018). 

The largest group, C1, were uniquely characterised by ratings of 
aggressive behaviour in the very elevated range, which exceeded all 
other groups. This was accompanied by the highest ratings of hyperac
tivity/impulsivity and poor peer relationships. Within the wider litera
ture these difficulties seem to co-occur and are more related to tasks 
tapping hot executive function, particularly emotion regulation and 
impulse control (Zelazo and Carlson, 2012). High rates of peer relation 
difficulties are not surprising in this group given the robust association 
between emotion regulation and prosocial behaviour in children 
(Eisenberg et al., 2007; Hastings et al., 2005; Liew et al., 2011; Mor
iguchi et al., 2020), and links between behavioural difficulties and 
pragmatic language (Hawkins et al., 2016; Ketelaars et al., 2010), which 
together may influence how these children form social networks. 
Although hot and cool executive function are often closely associated 
(Zelazo and Carlson, 2012), this group had the lowest ratings of inat
tention and cool executive function difficulties, and their IQ was 
age-appropriate. C1 also had the lowest ratings of learning problems and 
they performed significantly higher on the maths and reading tasks 
compared to the other data-driven profiles. Despite relatively fewer 
cognitive difficulties, this group included the highest proportion of 
overall diagnoses, ADHD, and autism relative to some of the data-driven 
profiles, and significantly less children with dyslexia than expected 
compared to C2 and C3. Approximately one third of children in C1 had a 
diagnosis of ADHD, but the relatively high occurrence of autism in this 
group, age-appropriate IQ (Frazier et al., 2004), and numerous ADHD 
diagnoses in the other two groups suggests that this group does not 
simply reflect ADHD. This group appears to be primarily characterised 
by behavioural difficulties, rather than cognitive difficulties. C1 also 
included a greater proportion of boys than all other groups. Previously, 
boys have generally been shown to have greater externalising and social 
difficulties than girls in this sample (Holmes, et al., 2020) and the higher 
rates of neurodevelopmental diagnoses in boys is consistent with the 
wider literature (e.g. Russell et al., 2014). Within the context of this 
particular cohort, C1 appears to capture those with the most pronounced 
difficulties in hot executive function. 

In contrast, C2 had relatively low ratings of aggression and peer 
relation difficulties. C2 were instead characterised by particularly 
elevated behavioural difficulties with cool executive function. They 
were rated significantly higher on inattention and (cool) executive 
function difficulties compared to all other groups. This suggests that 
these children particularly struggle with the cognitive control needed to 
concentrate, redirect their attention, plan, and organise (Diamond, 
2013). Although it should be noted that these children also scored in the 
very elevated range for hyperactivity/impulsivity. This profile is some
what similar to the characteristic symptoms of combined type ADHD, 
yet less than a fifth of children were diagnosed with ADHD in the group 
and it was more common in C1. C2 had moderate difficulties on tasks 
tapping general cognitive ability and academic achievement, perform
ing better than children in C3 but worse than those in C1. Thus, C2 
appears to capture those with the most pronounced difficulties in cool 
executive function behaviours, with moderate IQ and learning 
difficulties. 

The smallest group, C3, were characterised by the highest ratings of 
learning problem behaviours, which significantly exceeded the other 
two groups. Their behavioural difficulties with cognitive control were 
comparable to C1; however, ratings of hyperactivity and aggression 
were within the normal range. In addition, children in C3 performed the 
most poorly on tasks tapping IQ and academic achievement. This group 
may represent a smaller proportion of the population with more selec
tive learning and cognitive difficulties with relatively low rates of 

hyperactivity and conduct problems. Elevated difficulties with peer re
lationships in this group is perhaps more surprising; however, peer 
rejection is more common in children with learning difficulties (Fred
erickson and Furnham, 2004; Parhiala et al., 2015; Pijl and Frostad, 
2010; Siperstein et al., 2007; Wiener and Schneider, 2002). There are 
many potential causes of peer problems in children with learning diffi
culties including cognitive difficulties, stigma, social anxiety, and 
victimization for being enrolled in additional education programs 
(Livingston et al., 2018). In sum, C3 appears to capture those with the 
most pronounced cognitive and learning difficulties. 

4.2. Functional brain organisation 

In this section we will discuss how the data-driven groups and 
comparison sample can be differentiated according to their functional 
connectivity. This will be structured according to the main themes from 
the findings across analyses. First, we will discuss the absence of group 
differences in global properties of the functional connectome. Second, 
we will discuss general distinctions between neurodevelopmentally at- 
risk children and the comparison sample. Third, we will discuss func
tional connectome differences between children with hot (C1) and cool 
executive function difficulties (C2 and C3). Fourth, we will discuss ev
idence for other specific group distinctions in the functional connectivity 
analyses. 

4.2.1. Global properties of the functional connectome do not differ 
Despite large differences in children’s behavioural profiles, no group 

differences in functional brain organisation were identified on a global 
level. These findings were consistent for both individual and group 
thresholds across a range of values. This suggests that, across our diverse 
sample, behavioural difficulties are not well explained by global dif
ferences in functional organisation, at least in so far as we were able to 
capture them here. Network organisation is similarly modular, clus
tered, efficient, and assortative across the groups. In contrast, previous 
work in children with and without ADHD has found that reductions in 
strength, clustering, path length, and local efficiency are associated with 
inattentive behaviours and differ between these groups (Wang et al., 
2020). However, these broad differences in graph metrics could be 
indicative of global differences in mean functional connectivity between 
children with high and low attention, which was not controlled for in 
their group level analyses. Mean functional connectivity is correlated 
with global graph metrics and, when included as a covariate, can 
significantly alter case-control differences in neurodevelopmental con
ditions (van den Heuvel et al., 2017). Our groups showed no significant 
differences in mean functional connectivity, however, prior literature 
suggests that this is an important neurodevelopmental feature. For 
example, mean functional connectivity is typically reduced in autistic 
children, related to autistic behaviours, and associated with segregation 
of attention, social cognition, and somatomotor ICNs (Yerys et al., 
2017). In summary, while we show no evidence that global graph 
metrics differ between behavioural profiles, future work is required to 
establish whether they are related to specific dimensions of behaviour, 
such as inattention, when mean functional connectivity is controlled for. 

Behavioural profiles were instead significantly predicted by specific 
multivariate patterns of functional connectivity between ICNs, nodal 
strength, and hub strength. These associations were reproduced across 
multiple connectome thresholds and significant across all thresholds 
when considering the area under the curve. 

4.2.2. Connector hubs generally distinguish neurodevelopmentally at-risk 
children from the comparison sample 

One of the most apparent differences in functional organisation was 
the finding that connector hubs distinguished all three of our data- 
driven groups, relative to the comparison sample. Comparison chil
dren scored significantly higher on the first PLS component of connector 
hub strength, compared to all other groups. This first PLS component 
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predominantly loaded on to bilateral regions of the fronto-parietal 
network, which has a critical role in integrating information between 
networks to initiate and regulate cognitive control (Astle et al., 2015; 
Cole et al., 2015, 2017; Marek and Dosenbach, 2018; Sheffield et al., 
2015). Similarly, connector hubs play an important role in global inte
gration: as networks specialise and segregate in childhood development, 
hubs become increasingly structurally connected both within and be
tween networks, maintaining efficient communication across the con
nectome and supporting the typical development of cool executive 
function (Baum et al., 2017). We observed greater connectivity strength 
in fronto-parietal connector hubs in comparison children relative to all 
other groups, which suggests that this is a relatively generic feature of 
children at neurodevelopmental risk, not related to specific profiles of 
behavioural difficulties. That said, behavioural difficulties associated 
with cognitive control and learning were consistently elevated in all 
groups relative to the comparison sample. This finding mirrors a result 
from a recent study of the same cohort, which demonstrated that chil
dren with no or selective cognitive difficulties have more highly con
nected structural hubs (Siugzdaite et al., 2020). Structural connector 
hubs have also been shown to have a particularly important role in 
predicting academic progress in children from the same cohort (Bathelt 
et al., 2018). Taken together, this suggests that connector hubs play a 
key and relatively non-specific role in distinguishing children at neu
rodevelopmental risk from comparison samples. This effect is remark
ably consistent across the structural and functional connectome despite 
the differences in modality, pre-processing, parcellation, analysed 
sample, and analysis method. In sum, this suggests that emerging neu
rodevelopmental differences in connector hub structural connectivity 
may have consequences for hub function and cognitive development. 

4.2.3. Distinctions between children with hot and cool executive function 
difficulties 

Children with primarily hot (C1) versus primarily cool executive 
function difficulties (C2) were distinguished at multiple levels of func
tional organisation, including: ICNs, nodes, and provincial hubs. The 
first PLS component of ICN connectivity only significantly differed be
tween C1 and C2. Children in C2 had positive scores indicating over- 
connectivity and children in C1 had negative scores indicating under- 
connectivity, relative to the comparison sample. Notably, connections 
of the dorsal attention and limbic networks loaded most strongly on the 
first PLS component of ICN connectivity. The dorsal attention network is 
commonly implicated in tasks requiring cognitive control, such as top- 
down attention and working memory (Rottschy et al., 2012; Vossel 
et al., 2014), and training working memory in childhood has been 
shown to increase functional connectivity within this network (Astle, 
Barnes, et al., 2015). On the other hand, connectivity of the limbic 
network, including regions such as the orbitofrontal cortex, is particu
larly associated with hot executive function (Ho et al., 2015; Hulvers
horn et al., 2014; Karalunas et al., 2014; Posner et al., 2014). 
Over-connectivity between these networks may be associated with 
particularly elevated cognitive difficulties as observed in C2, whereas 
under-connectivity may indicate particularly elevated difficulties with 
emotional control as observed in C1. 

A similar group distinction was observed for the first PLS component 
of nodal strength, where children in C1 had highly positive scores that 
were significantly higher than those in C2 and C3, though this distinc
tion was greater for children in C2 who had more negative PLS scores. 
This component included high loadings from medial default-mode re
gions, the bilateral orbitofrontal cortex, bilateral hippocampi, and visual 
association areas. Relative to the comparison sample, C1 displayed over- 
connectivity of these regions whilst C2 displayed under-connectivity. 
Strikingly, the same group distinction in a smaller sample of this 
cohort revealed a highly similar pattern of structural connectivity dif
ferences, which were localised to the orbitofrontal cortex, anterior 
cingulate, medial temporal lobe, visual cortex, and basal ganglia 
(Bathelt et al., 2018). The orbitofrontal cortex is important in hot 

executive function, emotion behaviour, and value-based decision-mak
ing (Fuster, 2001; Gazzaniga et al., 2014; Padoa-Schioppa and Conen, 
2017). It is strongly connected to the hippocampus and amygdala 
(Cavada et al., 2000; Chudasama and Robbins, 2006; Morecraft et al., 
1992; Zald et al., 2014), and functional connectivity between these re
gions is associated with poorer emotional control (Ho et al., 2015), 
mood problems (Hulvershorn et al., 2014; Posner et al., 2014), and 
temperament difficulties in childhood (Karalunas et al., 2014). 
Furthermore, data-driven subtyping of functional connectivity in this 
cortical-subcortical network has independently provided evidence for 
hot and cool executive function subgroups of children (Costa Dias et al., 
2015). In the current sample, structural and functional connectivity of 
the orbitofrontal cortex, anterior cingulate, and medial prefrontal cortex 
were implicated in this group distinction. These regions contribute to 
the anterior default-mode network, which is implicated in emotion 
processing, self-referential thought, and social cognition (Raichle, 2015; 
Schilbach et al., 2008). These links to emotion regulation and social 
skills are notable considering the pronounced difficulties that children in 
C1 experienced in these domains. 

The medial default-mode network was further implicated in a 
distinction between the hot (C1) and cool executive function subgroups 
(C2, C3) on the first component of provincial hub strength. Specifically, 
C2 and C3 showed significant under-connectivity in these provincial 
hubs relative to C1 and the comparison sample. These regions are 
particularly important for integrating information within the default- 
mode network and previous work in the same cohort has shown that 
functional connectivity within the default-mode network is related to 
underlying structural connectivity differences in the cingulum (Bathelt 
et al., 2019). Interestingly, in this previous work the relationship be
tween structure and function was only apparent for children with poor 
cognitive ability, such as those in C2 and C3, suggesting that variability 
in cingulum structural connectivity may only have significant functional 
consequences at the lower end of the spectrum. Alterations in default 
mode network connectivity have also been widely documented in a 
range of neurodevelopmental and mental health conditions (Menon, 
2011). For example, altered connectivity between the default mode 
network and externally-oriented task-positive networks has been linked 
to executive function difficulties (Abbott et al., 2016), inattention and 
hyperactivity/impulsivity (Cai et al., 2018; Lin et al., 2018; Sripada 
et al., 2014). Our results do not distinguish which networks these 
default-mode regions are under-connected to, but they instead demon
strate that these regions are generally less well connected. This trans
diagnositic feature of functional connectivity in neurodevelopmentally 
at-risk children may extend beyond specific inter-network connections 
evidenced in prior research and highlight an altered functional role of 
these regions in the whole connectome. 

4.2.4. Specific group distinctions 
Evidence for individual group distinctions was also observed. C2 was 

significantly distinguished from all other groups on the second compo
nent of connector hub strength, which particularly included high load
ings on the right dorsal attention network. C2 demonstrated over- 
connectivity in these regions and primarily differed from other groups 
in their degree of difficulties with inattention and cool executive func
tion. It is possible that poor cognitive control in this group may be 
related to over-connectivity of dorsal attention connector hubs, for 
example to the default-mode network (Lin et al., 2018). There was more 
limited evidence that C3 were distinct from all other groups, which 
could suggest that the neurobiological correlates of this group with 
pronounced and more selective learning difficulties were more hetero
geneous. However, C3 was partially distinguished from the other groups 
on the third component of ICN connectivity, which included high 
loadings on connections of the subcortical, default-mode, and dorsal 
attention networks. Group differences on this component were not sta
tistically significant, but this extra component increased prediction ac
curacy of behavioural profiles on held-out data. 
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4.3. Limitations 

There are several limitations to the current work. First, we note that 
the comparison sample moved less during scanning than the other 
groups. We took many steps to control motion artefacts at the individual 
and group level. This included a thorough assessment of different 
resting-state fMRI pre-processing techniques, exclusion of high motion 
participants, censoring of high motion volumes, physiological and mo
tion confound regression, and the inclusion of motion and mean func
tional connectivity in group-level analyses. Second, we excluded 
approximately a third of resting-state scans due to high movement. 
While this was necessary to ensure data quality, it may limit statistical 
power and may have excluded children who were younger, particularly 
anxious, or hyperactive. Importantly, however, the behavioural profiles 
were very similar in both the full sample and MRI sample. Third, we 
relied on the Conners checklist for our assessment of behaviours, but 
there are some aspects of behavioural regulation that it does not assess 
in depth. This may mean that relevant aspects of children’s behaviour, 
that would alter the subgrouping in our analysis, are not included. We 
were able to capture aggression and impulsivity as examples of hot ex
ecutive function behaviours, but in reality there may be multiple 
different types of behavioural regulation, such as emotional regulation, 
that are not specifically assessed here. Fourth, we assessed correlations 
in the behavioural network; this measures how similar each child’s 
behavioural profile is to one another but disregards overall magnitude of 
difficulties. Distance metrics that satisfy triangular inequality would 
need to be used to take into account absolute differences. 

4.4. Conclusion 

We identified distinct data-driven behavioural profiles that tran
scend diagnostic categories in a large heterogeneous sample of children 
at neurodevelopmental risk. These groups were not associated with 
differences in global organisation of brain function, but were associated 
with multivariate patterns of connectivity between ICNs, nodes, and hub 
regions. Children with more pronounced hot versus cool executive 
function difficulties were distinguished by connectivity in ICNs impli
cated in cognitive control, emotion processing, and social cognition. 
Furthermore, all of the data-driven groups differed from the comparison 
sample in connectivity of fronto-parietal connector hubs. Our findings 
suggest both specific and more general neurodevelopmental risk factors 
in the functional connectome, which corroborate with previously re
ported risk factors in the structural connectome. 
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