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Abstract

The inference of gene regulatory networks from gene expression data is a difficult problem because the performance of the
inference algorithms depends on a multitude of different factors. In this paper we study two of these. First, we investigate
the influence of discrete mutual information (MI) estimators on the global and local network inference performance of the
C3NET algorithm. More precisely, we study 4 different MI estimators (Empirical, Miller-Madow, Shrink and Schürmann-
Grassberger) in combination with 3 discretization methods (equal frequency, equal width and global equal width
discretization). We observe the best global and local inference performance of C3NET for the Miller-Madow estimator with
an equal width discretization. Second, our numerical analysis can be considered as a systems approach because we simulate
gene expression data from an underlying gene regulatory network, instead of making a distributional assumption to sample
thereof. We demonstrate that despite the popularity of the latter approach, which is the traditional way of studying MI
estimators, this is in fact not supported by simulated and biological expression data because of their heterogeneity. Hence,
our study provides guidance for an efficient design of a simulation study in the context of network inference, supporting a
systems approach.
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Introduction

The mutual information (MI) is a measure to quantify the non-

linear dependency between two random variables [1,2]. The most

popular strategies for estimating mutual information values are based

on a discretized model for continuous data [3]. This strategy is widely

known as the histogram approach that approximates the joint probability

distribution by their empirical joint frequencies in bins of the two

discretized random variables [1]. A variety of different mutual

information estimators were developed in order to obtain statistical

estimates for data sampled from an underlying distribution. The

simplest estimator is the Empirical estimator [3] that is computed

from the observed cell frequencies of a discretized distribution.

However, it has been shown that the Empirical estimator

underestimates the entropy due to an undersampling of cell

frequencies and of zero cell frequencies which increase with the

number of bins [4]. This is a major problem for practical applications

due to finite data and the requirement for a large number of bins for

accurate estimates. To account for the induced bias of the MI

estimate, a variety of methods were developed that adjust the estimate

by a constant factor [3], use a shrinkage regularization [5] or employ

a Bayesian approach to estimate the joint frequencies for the bins

from a Dirichlet distribution [6] to gain more accurate estimates.

In systems biology [7–10], many gene regulatory network

(GRN) inference methods use mutual information as an estimator

to unveil the interaction structure and the relations among genes

in a cellular system from gene expression data [11–16]. One of the

first methods based on mutual information for GRN inference was

introduced in [17]. The underlying method, called relevance network

(RN), assigns edges to gene pairs if the corresponding MI value is

above a given threshold. The networks that result from application

of RN are association networks because an edge between two

genes indicates merely their association but not necessarily a causal

effect [18–20]. A different type of GRN methods are network

inference methods that aim to inferring causal interactions among

genes and their products which can be experimentally validated

[21–26]. The networks that result from such an inference are

called gene regulatory networks [27]. So far, there is no generally

agreed gold standard to conduct and include the routine of gene

regulatory network inference and their analysis for molecular

studies. However, necessary preprocessing steps of the data to

prepare them for the subsequent inference of a gene regulatory

network involve standardized procedures for the normalization of

gene expression distributions within and between samples and a

summarization step to obtain gene-centric values of the gene

expression [28–30].

The major purpose of this paper is to investigate the influence of

the MI estimator and the choice of the discretization method on

the inference of gene regulatory networks. Despite the enormous

popularity of the inference of GRNs this topic has so far only been
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addressed by a few studies. A notable exception is [31]. There

gene regulatory network algorithms were evaluated for different

mutual information estimators demonstrating that the choice of

the estimator influences the inference performance in a significant

manner. It has also been shown that the choice of the

discretization and MI estimator is specific for a gene regulatory

network inference method. In contrast to this study, there are

many investigations that analyze statistical estimators of MI values

directly without considering the MI estimator as part of a larger

model, like the inference algorithm for a GRN. Usually, such

studies assess either the estimates of the probability distribution

respectively of the cell frequencies of an estimator, or study the

resulting entropies [32–35]. The first approach is based on the

plug-in usage of the estimated probabilities whereas the second

utilizes the fact that the mutual information can be expressed in

terms of entropies [36]. This can be seen as traditional approach

because it places the statistical estimator itself in the focus of the

investigation. In addition, another characteristics of these

traditional studies is that they make assumptions about the

distribution of the data and then assess the statistical MI estimator

by means of simulated data, generated in accordance with these

assumptions. This allows a thorough statistical analysis because

each model parameter can be controlled appropriately, possibly,

up to computational limitations.

The major purpose of this paper is to analyze the influence of

statistical estimators of the mutual information on the inference of

regulatory networks from large-scale gene expression data for the

C3NET algorithm using global and local network-based error

measures. More specifically, we investigate 3 different discretiza-

tion methods in combination with 4 different statistical estimators

for mutual information values. We infer networks from in silico

(simulated) gene expression datasets generated for three Erdös-

Rényi networks for various sample sizes and assess the influence of

the MI estimators by global and local network-based error

measures. In addition, we investigate and define data heteroge-

neity and discuss general consequences thereof on the simulation

approach for network inference methods. This will provide us with

general insights and reveals a problem of traditional studies of MI

estimators which do not place the MI estimator into a model for

which it is intended, but study it in isolation. For this reason,

nonlinear effects that are only present for the larger model may

lead to unexpected performance results which does not reflect the

performance of the estimator in the isolated study. One reason

therefore is the violation of assumptions. It is clear that

assumptions that reflect real data appropriately lead to comparable

results for simulated and real data. However, the more these

assumptions are violated the more the results may deviate. This is

well known, but does not reveal the only problem one encounters

by using a statistical estimator within a larger model. The

additional problem with the latter is in the specific context we are

interested in, namely the inference of GRN from expression data,

that the correlation structure within the data is only poorly

understood, and, hence, there is no simple way known to simulate

the expression of individual genes without simulating the entire

gene network [37,38]. In the results section of this paper we will

show that as a consequence of these correlations among genes,

there are many different types of probability distributions present

within one gene regulatory network caused by the heterogeneity of

the expression data. This makes it practically impossible to reduce

the test of a MI estimator to a single probability distribution, but

one would need to consider a distribution of probability distributions

to test a MI estimator. From the presence of the data heterogeneity

we conclude that a MI estimator can only be meaningfully studied

within a network inference model and genome-wide data. This

can be seen as a systems approach [39,40] because reducing either

the model to the MI estimator solely or the data to a fixed joint

probability distribution does not lead to a realistic testing of the

biological system.

This paper is organized as follows. In the next section we

introduce the methods used for our analysis. Then we present

numerical results of the influence different MI estimators have on

the inference performance of C3NET by using global and local

error measures. In addition, we analyze the effect of data

heterogeneity on the estimation of MI values. The paper finishes

with a discussion and conclusions.

Methods

The network inference method C3NET
The C3NET (conservative causal core) algorithm consists of

three main steps [21]. The first step is for estimating mutual

information values for all gene pairs. In the second step, the most

significant link for each gene is selected. In the third step, non-

significant links, according to a chosen significance level a,

between gene pairs are eliminated by application of a multiple

testing correction procedure. The complexity for multiple

hypothesis testing (MHT) for C3NET is O(N), whereas N

corresponds to the number of genes. The C3NET algorithm

selects at most N edges and therefore at most N multiple tests are

required. In comparison, other gene regulatory network inference

approaches, e.g., RN [41], ARACNE [25] or CLR [42] eliminate

non-significant links between all possible gene pairs in the first step.

This leads to a complexity for multiple hypothesis testing (MHT)

of O(N2). Some methods often circumvent the more extensive

computational effort by applying arbitrarily chosen fixed signifi-

cance thresholds.

The inferred edges in a C3NET gene regulatory network

correspond to the highest MI value among the neighbor edges

for each gene. This implies that the highest possible number of

edges that can be inferred by C3NET is equal to the number of

genes under consideration. This number can decrease for

several reasons. For example, when two genes have the same

edge with maximum MI value. In this case, the same edge

would be chosen by both genes to be included in the network.

However, if an edge is already present another inclusion does

not lead to an additional edge. Another case corresponds to the

situation when a gene does not have significant edges at all. In

this case, apparently, no edge can be included in the network.

Since C3NET employs MI values as test statistics among genes,

there is no directional information that can be inferred thereof.

Hence, the resulting network is undirected and unweighted.

Figure 1 shows the principle working mechanism of the network

inference method C3NET.

Estimating mutual information
In the following we investigate 4 different types of estimators

that are based on the so called histogram approach. In the first

step the expression values of two genes are discretized into defined

intervals, denoted as bins. The mutual information is a measure

for the nonlinear dependence of the two random variables. Mutual

information is defined by the marginal probability P(X ) and P(Y )
and joint probability P(X ,Y ) of two random variables X and Y

[36]:

I(X ,Y )~
X
xi[X

X
yj[Y

P(X~xi,Y~yj):log
P(X~xi,Y~yj)

P(X~xi):P(Y~yj)
ð1Þ

Influence of Statistical Estimators
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Here log means the logarithm to the base of 2. I(X ,Y ) is always

§0. For example if the two random variables are independent

from each other the mutual information is 0, because

P(x,y)~P(y)P(x).

The mutual information can also be expressed in terms of

entropies [36],

I(X ,Y )~H(X )zH(Y ){H(X ,Y ) ð2Þ

Here the entropy for a random variable X is defined by:

H(X )~{
X
xi[X

P(X~xi):log(P(X~xi)) ð3Þ

and the joint entropy H(X ,Y ) is given by

H(X ,Y )~{
X
xi[X

X
yj[Y

P(X~xi,Y~xj ,):log(P(X~xi,Y~xj))ð4Þ

We describe four different strategies for estimating mutual

information for a discretized model. The simplest estimator is

the empirical MI estimator [3] that estimates entropy from the

observed joint frequencies for each bin. The empirical entropy

Hemp is estimated from the observed probability distribution with

nk number of samples in bin k, total number of samples N and the

total number of bins b. Note that the entropy formulas shown in

the following are for a single random variable.

Hemp~{
Xb

k~1

nk

N

� �
log

nk

N

� �
ð5Þ

The Empirical estimator gives the maximum-likelihood entropy

estimate for a discretized random variable. A main problem of the

empirical approach is the underestimation of the true entropy H

due to undersampling of the cell frequencies with increasing

number of bins. A variety of approaches were developed to

account for the induced bias that range from correcting the

estimate by a constant factor or using a multinomial distribution to

model the extend of missing information. In the following we show

4 different MI estimators that are based on a discretized model.

The Miller-Madow estimator [3] accounts for the under-

sampling bias by adjusting the estimate by a constant factor that is

proportional to the bin size and sample size:

Hmm~Hempz
b{1

2:N
ð6Þ

for b number of bins and N number of samples.

The following two estimators consider the correction of the

probability distributions directly. The shrinkage estimator [5]

combines two models defining a model with cell frequency of
1

b
and a model defining the empirical cell frequency for each bin k.

p̂pl(nk)~l
1

b
z(1{l)

nk

N

The weighting parameter l is estimated by minimizing the mean

squared error for the two models for each k of b bins (Equation 7).

l�~ argmin
l[½0,1�

E½
X
k[b

(pl(nk){p(nk))2� ð7Þ

The entropy for the shrinkage optimized probability distribution is

computed by:

ĤHshrink~{
Xb

k~1

p̂pl(nk)log p̂pl(nk) ð8Þ

The Schürmann-Grassberger estimator [6] is based on a

Bayesian approach that uses the Dirichlet probability distribution

as conjugate prior for the likelihood given by the Empirical

estimator. The Dirichlet distribution describes the distribution of

probability distributions with mean hk.

f (x; h)~
Pk[x C(hk)

C(
P

k[x hk)
P
k[x

x
hk{1
k ð9Þ

The mean hk probability for each bin k is estimated from the

posterior using the Schürmann-Grassberger parameter
1

b
that equals:

ĥhk~
nkz

1
b

Nz1
ð10Þ

In overall one pseudocount is added to the total sample count N.

The entropy is estimated by:

ĤHdir~{
Xp

k~1

ĥhk logĥhk ð11Þ

The MI estimators are used in combination with three different

discretization methods. The first, equal frequency method assigns the

same frequency of values to each bin k. The equal width method uses

for each interval width for each bin the same value. However, this is

done independently for each of the two random variables X and Y .

In contrast, the global equal width uses the same interval width for both

random variables. The number of bins are defined by the

proportional k-interval discretization method with
ffiffiffiffiffi
N
p

[43], where

the number of bins is dependent on the number of samples.

Figure 1. Principle working mechanism of C3NET. For each gene
an edge is assigned to the gene neighbor with maximal MI value. The
MI value between gene 7 and 5 (dashed) is not significant. The resulting
network describes the core of a gene regulatory network.
doi:10.1371/journal.pone.0029279.g001
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Global error measure
In order to measure the influence of the MI estimators on the

inference performance of the C3NET algorithm we use the area

under the precision-recall curve for the receiver operator characteristics

(AUC-PR) [44]. The precision and recall measures [45] are

obtained by comparison of an inferred (predicted) network with

the true network used to simulate the underlying data. The recall,

also known as the sensitivity, denotes the proportion of true

positive edges relative to all edges in the reference network.

recall (sensitivity) R~
TP

TPzFN
ð12Þ

The precision gives the proportion of correctly inferred edges

relative to all inferred edges.

precision P~
TP

TPzFP
ð13Þ

The predicted edges of gene regulatory network are ranked,

e.g., by their respective MI estimate or alternative statistical

measures. For a given threshold h a confusion matrix can be

defined when the true underlying network is known such as for

simulated data. A confusion matrix tabulates the number of true

positive, false positives, true negatives and false negative

predictions. The PR-curve describes the precision (predicted true

positives) as function of the sensitivity (recall, true positive rate)

obtained by using various threshold values h[H for the rank

measures of the predicted edges. The AUC-PR area under the

curve value is computed by a numerical integration along each

point of the curve.

Ensemble data and local network-based measures
In contrast to the above measure, which is a global error

measure, we use also local network-based measures to assess the

influence of the MI estimators. The principle idea of local network-

based measures was introduced in [38,46]. These local network-

based error measures are based on ensemble data and the

availability of a reference network G that represents the true

regulatory network. Ensemble data means that there is more than

one dataset available from the biological phenomenon under

investigation. This ensemble of data could be either obtained by

bootstrapping from one large data set, or from a simulation study,

or from multiple experiments.

After obtaining the ensemble of data D~fD1(G), . . . ,Db(G)g,
the inference algorithm is applied to D resulting in an ensemble of

estimated networks Ge~fGigb
i~1 (see Fig. 2 for a visualization).

Here we emphasize that each dataset depends on the underlying

network structure, G, that governs the coupling among the genes

by writing, e.g, Di(G). Further, this indicates that always the same

network G is used.

Figure 2. Schematic visualization of ensemble data from which networks are inferred and subsequently aggregated to estimate a
probabilistic network.
doi:10.1371/journal.pone.0029279.g002

Figure 3. The ensemble of networks Ge~fGigb
i~1 is used to

obtain a weighted network GP.
doi:10.1371/journal.pone.0029279.g003

Figure 4. An edge (red) is scored according to the degree of the
parental nodes of an undirected network (sum of degree i and
degree j) and assigned to Class I if De

ƒ4 and to Class II if De
w4.

doi:10.1371/journal.pone.0029279.g004

Influence of Statistical Estimators

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e29279



If the network structure of the underlying network G is

available it is possible to obtain estimates of the TPR (true

positive rate) of edges and non-edges in G. From the ensemble of

estimated networks Ge~fGigb
i~1 one obtains a probabilistic

network GP. The edge weights of GP give the TPR for each edge

which quantifies how often an edge was observed in the

ensemble. The edge weights between gene i and j of GP are

defined by

Figure 5. Shown are three Erdös-Rényi networks with edge density E~f0:003,0:006,0:008g.
doi:10.1371/journal.pone.0029279.g005

Figure 6. The influence of different discretization methods on the global network inference performance (AUC-PR) for three Erdös-
Rényi networks and 4 MI estimators. The simulated gene expression datasets have sample size 200.
doi:10.1371/journal.pone.0029279.g006
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GP(i,j)~
1

b

Xb

k~1

I1(Gk(i,j))~
1

b
#fGk(i,j)~1jfGkgb

k~1g: ð14Þ

The indicator function I() is 1 if an edge between gene i and j is

observed in a network Gk(i,j)~1 and 0 otherwise. From Eqn. 14

follows that GP(i,j) corresponds to the probability that an edge is

present in Ge connecting gene i with j. The combination of the

networks in Ge~fGigb
i~1 leading to the probabilistic network GP

is visualized in Fig. 3.

Local network-based error measure
We study the influence of the MI estimator on the inference

performance for two classes of edges. The first class (Class I) of

edges corresponds to linearly connected nodes and the second

class (Class II) of edges corresponds to nodes with a high degree.

The two edge classes are defined via local network-based measures.

We define the local network-based measure De for each edge in an

undirected graph, by the sum of the degrees of node i and the

degrees of node j:

De
ij~deg(vi)zdeg(vj) ð15Þ

Based on the values of De we define a binary classification for the

edges by:

N Class I: edges with De
ƒ4 (corresponds to a chain-like

structure)

N Class II: all other edges

In order to visualize our definition, we present in Fig. 4 two

examples for De. The left side shows an example for a Class I edge

(with a score ƒ4) and the right side an example for a Class II edge

(with a score w4). As described in the section ‘Ensemble data and

local network-based measures’, a TPR is obtained for each edge.

From the ensemble of datasets the distribution of the average

TPRs is obtained for the two edge classes which we use for their

comparison.

Simulation of gene expression data
In order to study the influence of the network connectivity on

the MI value estimators we are using random networks with

different values of E. Here E is the probability for the presence of an

edge between two nodes [47]. Because real gene networks, e.g., the

transcriptional regulatory network or the protein interaction

network, are sparsely connected, the value of E needs to be chosen

to fall within a realistic interval. Typically, gene networks have an

edge density of about *10{3 [48].

We generate three Erdös-Rényi graphs [47,49] with 150 genes

and an edge density of E [f0:003, 0:006, 0:008g. The resulting

networks have f60,22,19g unconnected genes to model non-

expressed genes. These three networks are shown in Figure 5. For

Figure 7. The influence of the equal frequency discretization method on the global network inference performance (AUC-PR) for
three Erdös-Rényi networks and 4 MI estimators.
doi:10.1371/journal.pone.0029279.g007
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our study we generate steady-state gene expression data using

SYNTREN [50]. For each Erdös-Rényi network and sample size

s[f50,100,200,500,1000g we generate M~100 datasets.

Results

In the following we study 4 MI estimators in combination with 3
discretization methods. We assess the influence of these estimators

on the inference of regulatory networks obtained with the C3NET

algorithm by application of global and local network-based error

measures. To ensure that our results are statistically robust, we base

our study on ensemble data by simulating M datasets for each

studied condition. Using simulated data enables the comparison of

the inferred networks with the true reference networks and also the

control of important parameters. In the last results section we study

the influence of data heterogeneity on the MI estimates.

Influence of MI estimators on the global error measure
AUC-PR

First, we compare the impact of the discretization method on

the AUC-PR (Figure 6). For all three Erdös-Rényi networks, the

equal width and the global equal width discretization lead to a better

inference performance of C3NET compared to the equal frequency

discretization (Figure 6). Further, the equal width and global equal

width discretization in combination with the Miller-Madow

estimator is better than any other combination of MI estimator

and discretization method. The second best MI estimator is the

Empirical estimator. The Schürmann-Grassberger estimator and

the Shrink estimator perform worse, whereas the Schürmann-

Grassberger estimator performs better than the Shrink estimator

(Figure 6). When using the equal frequency discretization, all MI

estimators perform equally and show no substantial difference, see

Fig. 6. Further, one can see that the network inference

performance is decreasing with an increasing edge density. This

is reasonable and related to the working mechanism of C3NET.

Due to the fact the C3NET allows each gene to contribute at most

one edge to the resulting network, the inference of networks that

have a higher edge density is systematically disfavored.

In addition, we study also the dependency of the MI estimators,

for each of the 3 discretization methods, on the sample size. The

corresponding results are shown in Fig. 7 (equal frequency

discretization) Fig. 8 (equal width discretization) and Fig. 9 (global

equal width discretization). For all investigated network types the

inference performance increases with the sample size, as expected.

However, independent of the influence of the sample size, the

Miller-Madow estimator in combination with the equal width or the

global equal width discretization show the best performance with

respect to the inference performance of C3NET.

Influence of MI estimators on the local error measure De

In the previous section we studied MI estimators by using a global

error measure. When a global error measure is used, we actually do

Figure 8. The influence of the equal width discretization method on the global network inference performance (AUC-PR) for three
Erdös-Rényi networks and 4 MI estimators.
doi:10.1371/journal.pone.0029279.g008

Influence of Statistical Estimators

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29279



not obtain information about the performance of individual edges,

but only of the average performance of all edges in the network. In

order to zoom in to local properties of the network, we study in this

section the local network-based measure De. This measure allows to

divide the edges in a network into two classes, according to the

structural neighborhood of an edge, as defined in section ‘Local

network-based error measure’. Specifically, this will allow us to gain

information about the influence the MI estimators have on edges

with a certain structural property. We use the local network-based

measure De to distinguish between two edge classes. The first class

represents edges from linearly connected genes (Class I) and the

second class represents edges that belong to genes with multiple

edges (Class II), see Fig. 4 for a visualization. In the following, we

study the influence of the MI estimators on these two edge classes

separately. We expect that edges from linear connected genes have

only few dependencies that affect the underlying gene expression

patterns and thus are more easier to infer. In contrast, edges

connected to genes that are influenced by multiple other genes are

expected to show more complex gene expression patterns and are

therefore more difficult to estimate.

For the following simulations we use the equal width discretiza-

tion in combination of the 4 MI estimators for gene regulatory

network inference with C3NET. In Figure 10 and 11 we show the

distributions of true positive rates for the three random networks

and different sample sizes for the two edge classes. In general, the

Class I edges show a much better inference performance

compared to the Class II edges. Also, for the Class I edges the

estimators do not have a substantial influence on the inference

performance. However, for the Class II edges we observe that the

Miller-Madow estimator performs best, followed by the Empirical

estimator. The Schürmann-Grassberger estimator and the shrink-

age estimator rank last. In contrast to the global error measure

(AUR-PR), for edges of Class II the shrinkage estimator performs

better than the Schürmann-Grassberger estimator (Figure 11).

Influence of data heterogeneity
Traditionally, when MI estimators are investigated, they are

studied by making an assumption about the joint probability

distribution p(x,y) of the two random variables the MI estimator

depends on. From this, the marginal distributions

p(x)~
Ð

p(x,y)dy and p(y)~
Ð

p(x,y)dx are obtained. Frequently,

normality is assumed but also other probability distributions have

been studied [32–34]. Regardless of the actual probability

distribution selected, all studies have in common to make an

implicate assumption which translates into a homogeneity of the data.

That mean a MI estimator is investigated with respect to a fixed

probability distribution from which data are sampled. This may be

repeated for several different but fixed probability distributions.

The crucial point here is that this investigation is done for each

probability distribution separately which means that a MI

estimator is assessed by using datasets that come from only one

underlying distribution. With respect to this distribution, the

Figure 9. The influence of the global equal width discretization method on the global network inference performance (AUC-PR) for
three Erdös-Rényi networks and 4 MI estimators.
doi:10.1371/journal.pone.0029279.g009
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sampled datasets are homogeneous because no otherwise distrib-

uted data are present. In this section we will study different aspects

of the homogeneity assumption and consequences thereof. We

proceed by, first, investigating various tests about the normality of

the data and then consider arbitrarily distributed data.

We start by testing the null hypothesis if a gene expression

profile is normally distributed, by using the Anderson-Darling test

[51]. For the M~100 simulated gene expression datasets, we

tested the null hypothesis of normality for the expression profiles.

For the three Erdös-Rényi networks with edge density

E~f0:003,0:006,0:008g containing 150 genes, 74%, 80% and

88% of the genes reject in average the null hypothesis testing for

normality. These values are obtained for a significance level of

a~0:001 and a Bonferroni correction [52]. We repeated the same

analysis for a normalized gene expression dataset from S. cerevisiae

[42] containing 4837 genes and 904 samples to see if our simulated

data represent realistic aspects of biological data. Testing each of

the 4837 genes for normality leads to a rejection of 35% of the tests

(a~0:001, Bonferroni corrected). This demonstrates, first, that the

characteristics of our simulated data is comparable to that of

biological data and, second, that there is a non-negligible fraction

of genes whose expression is not normally distributed, even after

appropriate normalization of the data.

Next, we investigate the relation between the occurrences of TP

and FP edges and the normality of the gene expression values.

From testing the null-hypothesis that a gene expression profile

follows a normal distribution, using the Anderson-Darling

normality test, we obtain p-values for all genes. Combining pairs

of p-values with Stouffer’s method [53] gives us a p-value we assign

to all gene pairs which correspond to edges and non-edges in the

reference network. More precisely, we test the null hypothesis for

normality of the gene expression profile of a gene using the

Anderson-Darling test [51], as before. Then for each gene pair,

their p-values are combined using the Stouffer method [53]. This

method, first, transforms individual p-values into z-scores,

zi~W{1(1{pi). Here W is the cumulative distribution function

of the standard normal distribution. After this transformation the

resulting z-scores are aggregated into a combined z-score,

z~
P2

i zi=
ffiffi
(

p
2), from which the combined p-value is obtained.

These combined p-values reflect the normality of the genes that

enclose an edge (or a non-edge). We estimate these p-values for

each of the M datasets. This results in M vectors of length

Lp~11,175(~(p2{p)=2) of p-values, which we rank in ascending

order. We call these vectors vi, for i[f1, . . . ,Mg. From the

comparison of the inferred network with the reference network we

obtain for each dataset a categorization of these p-values into the

four categories TP, FP, TN and FN with respect to correctly/

falsely identified edges. Considering TP and FP edges only, we

obtain two categories which we use in the following. Due to the

fact that, usually, the number of TP(i) edges is not equal to the

number of FP(i) edges for a given dataset i, we identify their

common length,

Figure 10. Local network inference performance for Class I edges. Simulated gene expression datasets for Erdös-Rényi networks with edge
density E for sample sizes ranging from 50 to 1000 samples.
doi:10.1371/journal.pone.0029279.g010
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Li~ argmin (#(TP(i)),#(FP(i))), ð16Þ

and use exactly Li true positive and false positive hits from this

dataset only. This information is used to define two rank vectors vt

and vf , each of length Lp, one for TP and one for FP edges, by

extracting the ranks for the first Li TP and FP edges for the i-th
dataset from the vector vi. This results in two Li dimensional vectors

I t
i and I

f
i containing the ranks of the TP and FP edges in vi. Starting

from vt(k)~0 and vf (k)~0 for k[f1, . . . ,Lpg, I t
i and I

f
i are used to

update these vectors for every dataset by vt(I
t
i (j))~vt(I

t
i (j))z1 and

vf (I
f
i (j))~vf (I

f
i (j))z1 for j[f1, . . . ,Lig. Repeating this procedure

for all M datasets provides us with two vectors, vt and vf , whose

components reflect the frequency with which they occurred in all

datasets. For example, vt(17)~6 would mean that the edge ranked

at position 17 appeared 6 times in the set of TP edges among the

first Li hits in the M datasets that were considered. The

interpretation for vf for the FP edges is analogously. For each set

of datasets with sample size 200 of the Erdös-Rényi network with

E~f0:003,0:006,0:008g, we compare the ranks of the p-values

between TP edges, denoted by vt, and FP edges denoted by vf .

In Figure 12 we show the empirical cumulative distribution

functions (ecdf) for vt and vf calculated for a Erdös-Rényi network

with E~0:003. One can see that the TP edges are more likely to

occupy lower ranked p-values compared to the FP edges. Hence,

the distributions corresponding to TP edges have the tendency to

show a stronger deviation from normality. In contrast, the curves

of the FP edges follow a straight line which indicates the absence of

a systematic relation between FP edges and the normality of the

data. For the networks with E~f0:006,0:008g we obtain

qualitatively similar results.

Finally, we generalize the above analysis by testing for general

probability distributions, to see if there is a systematic relation

between the occurrences of TP and FP edges and the distribution

of the gene expressions. For this analysis we use a Kolmogorov-

Smirnov test to compare the gene expression distributions for all

edge and non-edge gene pairs. For a significance level of a~0:05
(Bonferroni corrected) the equality of the expression distribution

was rejected for 39:9%, 59:8% and 76:5% (E~0:003,0:006,0:008)

of all gene pairs. For reasons of comparison, we performed a

similar analysis for the gene expression dataset from yeast [42] and

found that 96% of the tests were rejected. Then we compared the

ranks obtained from the Kolmogorov-Smirnov tests between TP

and FP edges, as explained above for the normality test. Again,

this procedures was performed for the Empirical, Miller-Madow,

Shrinkage and Schürmann-Grassberger estimator for each

expression dataset with sample size 200 of the Erdös Rényi

networks with E~f0:003,0:006,0:008g. Similar to the results

shown in Figure 12, we find that gene pairs of TP edges are likely

Figure 11. Local network inference performance for Class II edges. Simulated gene expression datasets for Erdös-Rényi networks with edge
density E for sample sizes ranging from 50 to 1000 samples.
doi:10.1371/journal.pone.0029279.g011
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to show a more prominent difference between their underlying

expression profile (not shown). Hence, this observation is in

agreement with the rank comparisons of TP and FP edges

obtained from the Anderson-Darling normality test, and demon-

strate that TP and FP edges behave quantitatively different,

independent of distributional assumptions.

In Fig. 13 we summarize our findings about the data

heterogeneity graphically. We found that for a given gene

regulatory network one can find a multitude of different joint

probability distributions, visualized by the different edge colors.

Similarly, for gene pairs that are not directly connected by an edge

(non-edges) one can also find many different probability distribu-

tions. From this one can obtain (discrete) probability distributions of

the occurrence of probability distributions, visualized in the bottom

part of Fig. 13. In these two diagrams, each color bar represents one

specific probability distribution that can be found for the edges or

non-edges. These discrete probability distributions Pe and Pn can

even be different from each other.

Mathematically, the distributions Pe and Pn can be used to

define the terms data heterogeneity respectively data homogeneity.

More precisely, if we would observe Pe(i)~1~Pn(i) for one

distribution i~i0, and Pe(i)~0~Pn(i) for all other distributions

(i=i0), the underlying data would be homogeneous because they

can be described by the probability distribution i. For all other

distributions of Pe and Pn the data show, at least to some degree, a

heterogeneity. It is easy to see that the case

Pe(i)~Pn(i)~
1, for i~i0

0, for all other i

�
ð17Þ

corresponds to the conventional (implicit) assumption made when

MI estimators are studied in isolation.

Figure 12. Empirical cumulative distribution functions (ecdf) for the four MI estimators. The green curves correspond to TP edges and the
blue curves to FP edges as a function of their rank.
doi:10.1371/journal.pone.0029279.g012
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Discussion

In this study we presented a comprehensive investigation of the

influence the MI estimators have on the inference performance of

C3NET. We observed a strong influence of the MI estimators and

the discretization methods on the inference performance, revealed

by global and local network-based error measures. In summary,

we found that the Miller-Madow estimator in combination with

the equal width and the global equal width discretization methods

provided the best performance. However, the major influence on

the C3NET inference performance was observed for the

discretization method itself, whereas the equal width and the global

equal width lead to significantly better results than the equal frequency

discretization method. Hence, using the equal frequency discretiza-

tion in applications is likely to lead to a reduced performance of

C3NET because the inference performance is prominently lower

compared to the other two discretization methods. A potential

explanation why the Miller-Madow estimator performs better than

the other estimators is that the Miller-Madow estimator is the only

estimator among the used MI estimators that considers a bias

correction, which depends on the sample size and the number of

bins that are introduced by the discretization.

In [31] it was shown that the influence of the discretization

method and a MI estimator is method specific, e.g., for ARACNE,

CLR and MRNET. In their study, MRNET and ARACNE

performed best with the equal frequency discretization in combina-

tion with the Empirical or Miller-Madow estimator while CLR

was observed to be less influenced by different estimators. In

contrast to our results for C3NET, the equal width discretization

method was observed to outperform the equal frequency discretiza-

tion method if used in combination with the Miller-Madow

estimator. A major factor that explains the differences of the

discretization methods on the network inference performance of

our study compared to the study performed by [31] are likely due

to the different working mechanisms and characteristics of the

statistical principles, employed by the different network inference

methods. For this reason it is necessary to identify the optimal

combination of a statistical MI estimator and a discretization

method for each network inference algorithm individually, as

pointed out in [31].

Interestingly, the influences of the different MI estimators found

in [31] are less pronounced than the one we found for the C3NET

algorithm. A reason for this may be that the ensemble data used in

[31] consist of only 10 expression datasets for each setting. A large

ensemble size of 100 datasets, as used in our study, allows to

capture finer variations among the simulated datasets and thus

allows more robust comparisons.

Another factor that could lead to differences, is the simulation

strategy used for the simulation of gene expression data. For

example, the effect of noise and missing data were studied in [31]

and it was shown that this is an important influence that needs to

be taken into account when assessing the inference performance.

However, future studies are necessary to investigate this influence

in more detail and also to provide guidance with respect to the

selection of a simulation setting.

Global error measures make the implicit assumption to observe

an approximately equal inference performance for all edges in the

network. However, for C3NET it was shown that edges of linearly

connected nodes, e.g., edges of leaf nodes, have a higher inference

performance than edges of highly connected nodes [21]. Hence, it

is likely that edges of highly connected genes are more difficult to

infer due to the more complex expression patterns of the

corresponding genes. For this reason, we used in addition to

global error measures also local network-based error measures to

study the inference performance for edges of linearly connected

genes (Class I) and all other edges (Class II). We found that edges

from genes with a high degree (Class II) are likely to be

underrepresented in the inferred networks because they have a

lower (median) true positive rate than edges from Class I. Further,

we compared the influence of the MI estimator on the edge classes

Class I and Class II. Among the tested combinations of

discretization methods and estimators, the Miller-Madow estima-

tor with equal width or global equal width discretization showed the

best performance on the inference performance of C3NET,

independent from the edge density and the sample size.

In order to obtain the above results we simulated gene

expression data from underlying regulatory networks, instead of

making a distributional assumption to sample data from such a

distribution. The latter is the traditional approach to study MI

Figure 13. Schematic summary of the effect of data heterogeneity. Top row: Shown is a gene regulatory network (left) and the occurrence of
different probability distributions observed on edges (middle) and non-edges (right). Bottom row: From the occurrence frequency of different
probability distributions the two discrete distributions Pe and Pn are obtained.
doi:10.1371/journal.pone.0029279.g013
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estimators [32–34]. Despite its popularity and simplicity we

demonstrated that in the context of the inference of GRNs this

reductionistic approach is not appropriate because of the data

heterogeneity. Specifically, we showed that one can find a

multitude of different probability distributions in simulated as

well as biological expression data which can be represented as a

(discrete) distribution of probability distributions, Pe, for edges

and, Pn, for non-edges. Hence, assuming the presence of merely

one probability distribution is not supported by data. For this

reason, if one would like to study MI estimators in isolation, one

would need to make assumptions not only about the usage of one

probability distribution, but of the distribution of probability

distributions (Pe, for edges and, Pn for non-edges). In order to

avoid this complication, we recommend to simulate expression

data from an underlying gene regulatory network because this

provides naturally such a distribution of probability distributions.

In summary, we studied the influence of discrete MI estimators

and discretization methods on the inference performance of

C3NET and provided suggestions for the most beneficial

combination. However, our study may be also useful for the

development of novel MI estimators that take the various

underlying probability distributions for different edge classes into

consideration. Future studies are required to evaluate the vast

catalogue of existing and novel MI estimators, the impact of

different network structures and the simulation procedures in

order to explore the particular factors that are required to

understand the influence of different MI estimators on individual

inference algorithms to enable an efficient analysis of real

biological gene expression datasets.
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34. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information.

Phys Rev E 69: 066138.

35. Nemenman I, Shafee F, Bialek W (2002) Entropy and inference, revisited. In:

Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information

Processing Systems 14. CambridgeMA: MIT Press. pp 569–595.

36. Cover T, Thomas J (1991) Elements of Information Theory John Wiley & Sons,

Inc.

37. Almudevar A, Klebanov L, Qiu X, Salzman P, Yakovlev A (2006) Utility of

correlation measures in analysis of gene expression. NeuroRx 3: 384–395.

38. Emmert-Streib F, Altay G (2010) Local network-based measures to assess the

inferability of different regulatory networks. IET Syst Biol 4: 277–88.

39. von Bertalanffy L (1950) The theory of open systems in physics and biology.

Science 111: 23–29.

40. von Bertalanffy L (1950) An Outline of General Systems Theory. British Journal

for the Philosophy of Science 1: 134–165.

41. Butte A, Kohane I (2000) Mutual information relevance networks: Functional

genomic clustering using pairwise entropy measurements. Pacific Symposioum

on Biocomputing 5: 415–426.

42. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-

Scale Mapping and Validation of Escherichia coli Transcriptional Regulation

from a Compendium of Expression Profiles. PLoS Biol 5.

43. Yang Y, Webb GI (2001) Proportional k-Interval Discretization for Naive-Bayes

Classifiers. Proceeding EMCL ’01 Proceedings of the 12th European

Conference on Machine Learning.

44. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters

27: 861–874.

Influence of Statistical Estimators

PLoS ONE | www.plosone.org 13 December 2011 | Volume 6 | Issue 12 | e29279



45. Kent A, Berry MM, Luehrs Jr. FU, Perry JW (1955) Machine literature

searching VIII. Operational criteria for designing information retrieval systems.
American Documentation 6: 93–101.

46. Altay G, Emmert-Streib F (2011) Structural influence of gene networks on their

inference: analysis of C3NET. Biol Direct 6: 31.
47. Gilbert EN (1959) Random graphs. Annals of Mathematical Statistics 20:

1141–1144.
48. Leclerc R (2008) Survival of the sparsest: robust gene networks are

parsimonious. Mol Syst Biol 4: 213.
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