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Abstract. Malignant tumors are often exposed to hypoxic and 
glucose‑starved microenvironments. AMP‑activated protein 
kinase (AMPK) is an energy sensor that is stimulated during 
energy‑deficient conditions and protects cells from hypoxic 
injury by regulating metabolism. AMPK‑related protein 
kinase 5 (ARK5) is a member of the catalytic sub‑unit of the 
AMPK family and has an important role in energy regulation 
and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and 
is associated with numerous tumor‑related molecules to exert 
the negative effects of tumors. Studies have revealed ARK5 
overexpression in cases of tumor invasion and metastasis and a 
positive association with the degree of cancer cell malignancy, 
which is regarded as a key element in determining cancer 
prognosis. Furthermore, ARK5 downregulation improves 
drug sensitivity through the epithelial‑mesenchymal transi‑
tion pathway, indicating that it may be a potential therapeutic 
target. In other non‑cancer conditions, ARK5 has various roles 
in neurodegenerative diseases (Alzheimer's and Huntington's 
disease), renal disorders (diabetic nephropathy and renal 
fibrosis) and physiological processes (striated muscle genera‑
tion). In the present review, the upstream and downstream 
molecular pathways of ARK5 in cancer and other diseases are 
described and potential therapeutic strategies are discussed.
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1. Introduction

Malignant tumors often feature inadequate angiogenesis, 
structure and function as well as over‑proliferation and 
increased energy demand when growing in microenviron‑
ments with insufficient blood supply (1). When cancer cells 
proliferate in these harsh conditions, they must adapt by 
regulating their cell cycles to improve blood flow and adjust 
the balance of energy metabolism to maintain proliferation. 
This is a hypoxic reaction and various molecules are involved 
in this process (2). Cancer cell response in hypoxic conditions 
has been extensively studied and hypoxia is widely accepted as 
a specific marker indicating poor cancer prognosis (3).

AMPK‑related protein kinase 5 (ARK5) is a serine/threonine 
kinase that has been identified as the fifth member of the 
AMP‑activated protein kinase (AMPK) family  (4). ARK5 
serves a role in the metastasis and invasion of colorectal (CRC) 
cancer, pancreatic cancer (PC), gastric cancer, hepatic cancer 
and squamous cell carcinoma (5‑8). Akt, the most important 
ARK5 upstream regulator, phosphorylates ARK5 at the Ser600 
residue (a C‑terminal site outside the catalytic domain) ans acti‑
vates 74 kDa kinases (9). Akt is also an important mediator of 
cancer proliferation, survival and oncogenesis (9,10). 

ARK5‑mediated Akt was established as a key element 
that functions as a survival factor in the complex tumorigen‑
esis network (9). ARK5 prevents cell death under hypoxic 
and glucose‑starved conditions by avoiding death receptor 
(RAS) activation in cells and inhibiting caspase‑8 activa‑
tion by inducing cellular Fas‑associated protein with death 
domain‑like interleukin (IL) 1β‑converting enzyme‑inhibitory 
protein (c‑FLIP) in cancer cells (9,11). Previous studies have 
revealed that ARK5 is involved in hypoxia‑induced cancer 
cell tolerance to glucose starvation by regulating the trans‑
forming growth factor‑β (TGF‑β) signaling pathway (12,13). 
Furthermore, ARK5 causes drug resistance by inducing 
certain cellular morphology transformations, including myosin 
filament reorganization (13).

As an important and recently investigated intermediate 
molecule, ARK5 has promising long‑term research value. 
In the current review, the molecular interactions, physical 
progress and different functions of ARK5 in cancer and 
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other diseases, as well as potential therapeutic strategies, are 
discussed (Fig. 1).

2. Relevance of ARK5 in cancer

Multiple myeloma. Multiple myeloma is a common cancer 
where ~20,000 new cases are diagnosed annually in the 
United States (14,15). The introduction of autologous stem cell 
transplantation and novel drugs with various mechanisms of 
action (including proteasome inhibition and immunomodula‑
tion) have fundamentally changed the treatment strategy for 
multiple myeloma and have significantly prolonged the overall 
survival of patients (16‑19). However, despite these advances, 
patients only survive for 7‑8 years after diagnosis due to drug 
resistance and minimal residual disease (20).

c‑Musculoaponeurotic fibrosarcoma (MAF), which is 
transcription factor that involved in immune responses and 
works as a T cell stimulator that induces IL‑4 and IL‑10 
release to control T  cell, was revealed to participate in 
the regulation of fiber cell differentiation (21‑23). c‑MAF 
translocation and overexpression have been reported in 
numerous cases of multiple myeloma (24‑26). In various 
clinical trials, 351 clinical specimens exhibited clear ARK5 
and c‑MAF overexpression in multiple myeloma‑derived 
cell lines. Sequence analysis of the ARK5 gene promoter 
further revealed that the gene contained two putative 
MAF‑recognition elements and that ARK5 mRNA acts as 
a regulator in c‑MAF‑induced multiple myeloma (8). These 
results suggested that ARK5 may be a transcriptional target 
of the large MAF family. 

A previous in vitro study has demonstrated that ARK5 
expression is a key element in multiple myeloma invasion and 
metastasis and participates in these processes by modulating 
insulin‑like growth factor (IGF)‑1 expression (8). Schiller et al 
and Perumal  et  al  (27,28) demonstrated that the ratio of 
AMP/ATP increased during energy deficiency, leading to 
phosphoric acid‑dependent AMPK activation. Eventually, 
the level of ATP returned to normal due to the inhibition of 
energy‑consuming pathways.

The overexpression of ARK5 has been previously found to 
exert negative effects on the apoptosis regulation of multiple 
myeloma by inducing glucose starvation tolerance  (29). 
ARK5 is directly stimulated by Akt, which regulates cancer 
cell survival and proliferation (9‑11,30). Inhibition of ARK5 
can lead to the reduction in ATP levels in cells that abnor‑
mally express MYC, leading to a variety of pro‑apoptotic 
reactions (31). MYC is widely known as a strong factor in 
tumorigenesis (29,32).

In conclusion, AKR5 has become a more promising choice 
to inhibit malignant tumors and prolong patient survival due 
to high reversal of drug resistance. ARK5 is closely associated 
with multiple myeloma and may be an effective therapeutic 
target.

CRC. CRC is one of the most lethal cancers worldwide (15). 
An available treatment method for all stages of CRC is tumor 
resection, with chemotherapy and radiotherapy commonly 
used as neoadjuvants in locally advanced CRC (33). However, 
the prognosis of patients with CRC remain poor (33). A total 
of 241 pairs of cDNA from normal tissues and 13 different 

tumor specimens from patients with CRC were sequenced 
via DNA array analysis. The results revealed that ARK5 was 
overexpressed in CRC. Additionally, a total of 56 clinical 
specimens of primary CRC and liver metastasis demonstrated 
high ARK5 expression (31).

Poor clinical prognosis caused by ARK5 is primarily 
associated with a hypoxic microenvironment (34). Hypoxia 
is very common in tumors and is associated with prolif‑
eration, invasiveness, metastasis and drug resistance  (35). 
Hypoxia‑inducible factor (HIF)1 serves a regulatory role and 
can be used as a key prognostic indicator of tumor hypoxia 
in CRC  (36). HIF‑1 is a dimer composed of HIF1‑α and 
HIF1‑β subunits (37). HIF1‑α is a regulator that is triggered by 
hypoxia and subsequently regulates the activity of the entire 
complex (37). The expression and absence of HIF1‑α is associ‑
ated with poor prognosis in patients with CRC (38). 

Kusakai et al (31) revealed that ARK5 was overexpressed 
in malignant CRC tumors and that this expression dynamically 
increased in hypoxic conditions. Additionally, it was deter‑
mined that ARK5 and HIF1‑α were overexpressed in CRC, 
demonstrating a clear linear correlation. ARK5 is regulated 
by HIF1‑α, which amplifies the ARK5 signal and promotes 
cancer cell survival in hypoxic conditions (37). Due to this, 
ARK5 is highly expressed in hypoxic solid tumor‑associated 
blood vessels, which is an another important factor in cancer 
cell angiogenesis and metastasis (37). 

HIF1‑α expression downstream of ARK5 is associated 
with tumor stage, tumor grade, lymph node metastasis and 
liver metastasis (35). However, further research is required to 
assess the degree of malignancy in solid tumors.

PC. PC is the most fatal cancer and is the eighth leading cause 
of cancer‑related death worldwide (39). Prognosis is often poor 
due to high invasiveness, rapid proliferation and limited treat‑
ment (15,39). 

By analyzing a rank‑based meta‑analysis of individual 
histological features associated with pancreatic ductal adeno‑
carcinoma (40), 8 genes associated with PC progression were 
identified: ARK5, E2F transcription factor 3, high mobility 
group AT‑Hook  2, RAS P21 protein activator  1, insulin 
receptor substrate 1, actinin α1, Sloan‑Kettering oncogene 
and Δ‑like protein 1 pre‑cursor. ARK5 is one of the potential 
regulators that was significantly differentially expressed (40). 
These results may indicate that AKR5 serves a significant role 
in PC.

Gemcitabine (GEM) is the sole first‑line drug for advanced 
PC, although it only prolongs patient survival for a few months 
due to clinical multi‑drug resistance (41). Further research 
into this resistance mechanism is required to improve PC 
treatment (15,42,43). Studies have demonstrated that hypoxia 
increases PC cell resistance to GEM‑induced apoptosis (44,45). 

Additionally, under hypoxic conditions, ARK5 inhibition 
significantly increases the sensitivity of PC cells to GEM (44). 
In a previous study, the inhibition of ARK5 reversed the effects 
of hypoxia on E‑cadherin and vimentin expression, whichh 
are markers of epithelial‑mesenchymal transition (EMT) (46). 
Therefore, ARK5 regulates GEM resistance under hypoxic 
conditions through the EMT process (47). 

Furthermore, in vivo and in vitro ARK5 overexpression 
was demonstrated in PC metastasis and invasion models 
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through EMT (9,10). The detection and intervention of ARK5 
expression may therefore improve drug sensitivity and improve 
prognosis and survival time in patients with PC.

Other cancers. ARK5 expression was confirmed in various 
types of cancer, including osteosarcoma, ovarian, hepatic, 
CRC, gastric, breast and non‑small cell lung cancer (NSCLC). 
NSCLC is one of the most common malignant tumors world‑
wide and accounts for ~1/3 of all cancer‑related deaths (48,49). 
Currently, chemotherapy is one of the most effective treat‑
ments for NSCLC, with cisplatin being the standard first‑line 
drug, though its long‑term therapeutic efficacy reduced by 
drug resistance (49). 

Although various factors are known to induce chemical 
resistance, the mechanism of cisplatin resistance remains 
unclear (50). A report has previously indicated that epithe‑
lial phenotype NSCLC is more sensitive to chemotherapy 
compared with a mesenchymal phenotype (51). Mesenchymal 
tumors that express E‑cadherin regain chemical sensi‑
tivity (51). In ARK5‑knockdown cells, sensitivity to cisplatin 
increased significantly, suggestomg that it may serve as 
a potential strategy to improve NSCLC drug resistance. 
Furthermore, in head and neck squamous cell carcinoma 
(HNSCC), a study has demonstrated that the expression of 
micro RNA (miRNA or miR) associated with the invasion and 
metastasis of melanoma. This was also observed in epithelial 
ovarian cancer (52).

ARK5 overexpression is associatied with poor prog‑
nosis (53‑55) and has been identified in various solid tumors. 
Numerous studies have also demonstrated that ARK5 activa‑
tion can induce the survival of cancer cells during nutritional 
deficiency (8,56).

3. Emerging role of ARK5 in cancer genesis and progression

ARK5 and Akt. ARK5 is a member of the AMPK family and its 
highly conserved T loop is phosphorylated by two molecules: Akt 
kinase, which acts on serine600 and liver kinase (LK) B1, which 
acts on threonine200 (57). Research has revealed that ARK5 
transcription is regulated by sp1 transcription‑activated protein, 
metabolic pressure and cofactors required at the sp‑1 site (58,59). 
This covers almost all the pathways that involve ARK5.

Akt is a serine‑threonine protein kinase that functions as 
a key regulator of cell survival and serves an important role 
in tumor genesis, cell survival, proliferation and differen‑
tiation (60). Accelerated Akt activation in malignant tumors 
(including invasion and metastasis) is associated with gene 
amplification in various types of cancer, including CRC, PC, 
gastric and ovarian cancer (61‑63). Therefore, Akt is essential 
to malignant tumors. 

Numerous studies have confirmed the role of Akt in 
promoting. tumor invasion and metastasis (31,64) during nutri‑
tional starvation. However, the downstream factors of Akt in 
these processes have not been determined. 

A previous study has indicated that Akt‑1 and Akt‑2 
expression in CRC and liver metastasis is higher compared 
with normal tissue and that ARK5 is expressed in highly 
malignant clinical specimens, especially in those with invasive 
morphology (29). Since it has been demostrated that Akt is the 
most direct upstream pathway of ARK5 and ARK5 is the only 
known protein of the AMPK familiy assocuated with the Akt 
pathway, this would indicate a close regulatory effect between 
Akt and ARK5 (55). 

Furthermore, Akt mediates several cellular responses 
induced by insulin and IGF, such as glycogen synthesis via 

Figure 1. ARK5 serves a role in various diseases. ARK5, AMP‑activated protein kinase‑related protein kinase 5. AD, Alzheimer's disease; HD, Huntington's 
disease.
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the phosphorylation of glycogen synthase kinase 3 (65). In a 
previous study, ARK5 was revealed to mediate the invasion 
of PC and CRC and to promote cancer cell survival by acti‑
vating the Akt signaling pathway via IGF‑1 (66). Furthermore, 
nuclear DBF‑related kinase 2  (NDR2) was revealed to be 
activated by IGF‑1 treatment, phosphorylating threonine211 
on the active T loop of ARK5 (56). ARK5 was also demon‑
strated to be downstream of NDR2 during activation of IGF‑1 
signaling (67). Therefore, ARK5 promotes cancer cell survival 
under the regulation of Akt and ARK5 serves an important 
role in hypoxia and the Akt pathway in apoptosis in various 
types of cancer.

The RAF‑MEK‑ERK and PI3K‑Akt‑HIF‑α pathways 
serve an important role in cancer development as they are 
downstream of RAS (68), a protein that regulates cancer cell 
survival. Akt, as the most direct downstream regulator of 
RAS, regulates the downstream factor HIF1‑α (69). Previous 
studies have determined a close association between the 
HIF1‑α‑mediated RAS pathway and ARK5 (68‑70).

A linear correlation was reported between ARK5 and 
HIF1‑α expression (68,70). In a previous study, short inter‑
fering RNA suppressed HIF1‑α expression under hypoxic 
conditions. The results revealed that the protein and mRNA 
levels of ARK5 were significantly decreased indicating that 
ARK is regulated by HIF1‑α and that ARK5 lie downstream 
of HIF1‑α under hypoxic conditions where HIF1‑α amplifies 
the role of ARK5 in hypoxia (57). In conclusion, ARK5 is the 
key gene of HIF1‑α‑mediated cancer proliferation and migra‑
tion under hypoxic conditions.

ARK5 overexpression was demonstrated to significantly 
stimulate the invasiveness and metastasis of PC cells in vitro 
and in vivo by activating matrix metallopeptidase (MMP) 
and matrix metalloproteinase 1  (MT1)‑MMP  (7). MMPs, 
especially MMP‑2 and MMP‑9, participate in tumor metas‑
tasis and MT1‑MMP is the most common activating agent of 
these (34,71). Research has demonstrated that ARK5 increased 
MMP‑2 and MMP‑9 production levels and induced their 
activation via MT1‑MMP production (7). 

Davis et al (58) previously hypothesized that ARK5 acti‑
vation served as a metabolic checkpoint in the regulation of 
apoptosis, cell cycle progression and arrest, which confirmed 
ARK5‑modulated ‘glucose metabolism’ as the most signifi‑
cantly aberrantly affected cellular signaling pathway in a 
model system for highly metastatic tumors. 

ARK5 and EMT. EMT is involved in numerous biological and 
pathological processes, is associated with chemotherapeutic 
resistance and has an invasive and anti‑apoptotic role in cancer 
tissues (72). EMT is the process by which polar epithelial cells 
with firm cell‑cell adhesion transform into mesenchymal cells 
with highly invasive capacity (73). At the molecular level, the 
gene expression of these cells undergoes numerous changes: 
The expression of epithelial genes (E‑cadherin, tight junc‑
tion protein 1 and occludin) decreases and the expression of 
mesenchymal genes (N‑cadherin, vimentin and fibronectin) 
increases (74). 

In a study on epithelial ovarian cancer, ARK5 was highly 
expressed in cancer cells compared with normal tissue and was 
revealed to be strongly associated with EMT (51). Furthermore, 
ARK5 was reported to regulate the progression of EMT in 

various solid tumors (74‑78). When ARK5 expression was 
decreased in cells, the resultant inhibition of E‑cadherin 
expression and the downregulation of vimentin expression 
were related to ARK5 activation (79).

Since the recurrence of E‑cadherin expression was 
demonstrated to increase the sensitivity of cancer tissues to 
chemotherapeutic agents in various studies, reducing the 
expression of ARK5 may increase sensitivity to drugs such as 
doxorubicin (dox) and cisplatin (75,78).

TGF‑β1 is a key induction factor of the EMT pathway 
in tumors (80) and induces EMT in NSCLC  (81). ARK5 
knockdown was reported to decrease TGF‑β1‑induced EMT 
and invasion and metastasis of cells under hypoxic condi‑
tions (82). The results indicated that ARK5 may be involved in 
the hypoxia‑induced TGF‑β1 pathway in cancer cells, which 
contributes to glucose starvation tolerance (82). In a liver study, 
ARK5 expressed lipid fibers and ultimately induced hepatic 
cell necrosis (52,83). This process is also observed in PC (84). 
ARK5 inhibits cancer cell death stimulation and promotes 
normal tissue necrosis. Additionally, another study reported 
that the suppression of ARK5 reversed hypoxia‑induced EMT 
in hepatic cancer cells (81). The results suggested that ARK5 
overexpression is indicative of hypoxia. An additional protein, 
zinc finger E‑box‑binding homeobox 1 (ZEB1), also acts as 
an activator of EMT in mantle cell lymphoma cells and deter‑
mines resistance to different chemotherapeutic drugs (81). 
ARK5 was demonstrated to suppress ZEB1 to improve drug 
sensitivity (81,85).

In conclusion, ARK5 is associated with drug resistance in 
solid tumors and mediates the EMT pathway and numerous 
EMT‑related molecules such as TGF‑β1 and ZEB1. Since 
ARK5 knockdown improves resistance to clinical drugs, 
ARK5 may serve as a new target to reverse drug resistance.

ARK5 and Fas. Fas is a member of the tumor necrosis factor 
receptor family (86). As a transmembrane protein, it transmits 
apoptotic signals in cells and induces apoptosis when Fas 
ligands bind to the Fas receptor (87). Fas is widely expressed 
in normal tissues and tumors. 

Fas‑cell mediated apoptosis serves an important role in 
various biological processes as it triggers a series of down‑
stream pathways  (86,87), suggesting that ARK5 inhibits 
the activation of caspase‑8 and the expression of caspase‑6 
containing two putative ARK5 phosphorylation sites: Ser80 
and Ser257 (29), and ultimately inhibits the phosphorylation 
induced by Fas ligand and Fas. This could promote 
the survival of cancer cells under conditions of nutritional 
starvation (12,86). 

In further studies, ARK5 was revealed to inhibit caspase‑8 
activation by preserving c‑FLIP in response to Akt stimula‑
tion (4,88), preventing cell death caused by glucose starvation 
and RAS activation in cancer cells (8,86). RAS‑induced apop‑
tosis was demonstrated to be inhibited by increased ARK5 
expression (11). These results suggested that ARK5 is associ‑
ated with energy metabolism and cell apoptosis. 

ARK5 and MYC. MYC is an important inducer protein in 
cancer that interferes with cell cycle metabolism and ribosome 
synthesis (89). When combined with MYC‑associated factor X, 
MYC regulates transcription and oncogenic activity (90). MYC 
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overexpression has been demonstrated to induce cell apoptosis 
as it cannot maintain an adequate ratio of ATP/ADP (91,92). 
Kusakai et al and Cox and Der (67,68) previously demonstrated 
that, using synthetic lethal RNAi screening, ARK5 kinases 
regulated protein expression by activating various pathways 
that ultimately maintained or triggered cancer cell survival, 
particularly when MYC was overexpressed. 

Activation of ARK5 and AMPK in response to metabolic 
stress combats apoptosis in cancer cells and they are markers 
for most solid tumors  (93,94). AMPK is activated by the 
tumor inhibitor LKB1 (95). In the absence of LKB1, AMPK 
responds to calcium ions by phosphorylating calcium/calmod‑
ulin‑dependent protein kinase kinase 2 (95,96). As a member 
of the AMPK family, ARK5 is also primarily activated by 
LKB1 (55). 

However, Ciccarese et al (97) revealed a second pathway 
that maintains ARK5 activity in the absence of LKB1: 
ARK5 responds to calcium signaling through protein 
kinase C α (PKCα) to regulate AMPK activation (98) and 
mTORC1‑dependent protein translation, protecting cells from 
MYC‑driven apoptosis. 

The Calcium‑AMPK‑mTORC1 metabolic check‑
point‑dependent activation requires PKCα and ARK5 while 
in the absence of ARK5, activated mTOR increases ATP 
consumption and impairs MYC response to AMPK  (98). 
Therefore, in the presence of ARK5, ATP synthesis is 
enhanced through the MYC pathway. The depletion of PKCα 
and ARK5 leads to apoptosis, which suggests that this pathway 
serves an active role in tumor maintenance (29). The results 
indicated a novel role for calcium ions in supporting cancer 
cell viability and elucidated the synthetic lethal interaction 
between ARK5 and MYC (98). Similarly, PKCα and ‑β have 
been demonstrated to phosphorylate Akt (99,100), preventing 
typical MYC‑induced apoptosis by inhibiting the expression 
and function of apoptotic Bcl‑2 homology protein (100‑102). 
Therefore, ARK5 expression is necessary for MYC overex‑
pression, even if Akt is overexpressed (29), suggesting that 
ARK5 may be a potential target for treating MYC‑driven 
cancer (4,103).

Overall, ARK5 and PKCα may control multiple pathways 
that promote cancer cell survival. The targeted suppression 
of these pathways may therefore have potential therapeutic 
benefits in numerous types of cancer in which MYC is deregu‑
lated (103).

At the organelle level, ARK5 is involved in energy regula‑
tion by maintaining mitochondrial adaptability and stability 
and increases the expression of proteins in the respiratory chain 
by activating MYC, which enhances respiratory capacity (55). 
When ARK5 is depleted, this phenomenon is eliminated (55). 
As an important upstream regulator of MYC, ARK5 serves an 
important role in tumor regulation at the organelle level.

ARK5 and aneuploidy. The AMPK family has 13 different 
sub‑groups with different regulatory modes (104). However, 
all of them are activated by LKB1 under conditions of meta‑
bolic pressure, when ATP levels are low (105). Tumor protein 
P53 is a downstream protein of AMPK and its phosphorylation 
serves an important role in apoptosis and cell aging (105).

ARK5 is part of the AMPK subfamily. It was demonstrated 
experimentally that ARK5 regulates P53 phosphorylation 

in vivo and in vitro, directly interacting with the P53 nucleus 
under the regulation of LKB1  (106). Additionally, ARK5 
activation via P21 and weak acid resistance protein 1 prevents 
cells from entering the S phase from the G1 phase (106).

ARK5 was demonstrated to induce premature cell aging, 
which is closely associated with genetic aneuploidy, which had 
been previously demonstated in fibroblast (89). ARK5 regulates 
ploidy and senescence. Decreased ARK5 prevents aneuploidy 
in cells and enhance their replicative lifespan, while increased 
ARK5 induces gross aneuploidies and senescence (89). 

 This ARK5‑induced aneuploidy increased the genomic 
instability of cancer cells and allowed them to overgrow, 
invade and metastasize, demonstrating the role of ARK5 
in tumor regulation (89). Similarly to how cancer develops 
and exacerbates, genomic instability tends to induce cell 
senescence (107‑109). Genomic instability often manifests 
as an increase in aneuploidy and a decrease in large tumor 
suppressor kinase 1 (LATS1) expression, a kinase involved in 
mitotic exit (109). Decreased LATS1 levels block cell division, 
affect genomic stability and increase the amount of abnormal 
DNA in each cell  (109). AMPK accelerates P53‑mediated 
cell senescence and ARK5 also leads to genomic aneuploidy 
changes without the involvement of P53  (110). However, 
experimental knockdown or overexpression of ARK5 did not 
affect cellular P53 activity (110). 

In summary, in terms of cellular senescence regulation, 
ARK5 knockdown extends the lifespan of cells, metabolism 
and slows fibroblast senescence in normal individuals, even 
in the absence of LKB1. LATS1 is a regulator of stable gene 
expression and the overexpression of ARK5 weakens the 
expression of LATS1  (89). Such changes are independent 
of P53, which highlights the potential role of aneuploidy in 
ARK5‑mediated senescence (89), and suggests a difference 
between the ARK5 and AMPK families at downstream 
action sites. 

Furthermore, ARK5‑induced aneuploidy leads directly to 
the death of MCF10a immortal cells rather than to senescence 
in other types of cells (89), indicating that aneuploidy serves a 
different role in different cells.

ARK5 and miRNA. miRNAs are non‑coding RNAs 18‑22 
nucleotides in length that regulate various physiological 
activities through specific binding to the 3'‑untranslated 
regions (3'UTR) of mRNA (111). miRNAs are involved in 
cell proliferation, invasion and metastasis  (111). Currently, 
different miRNA families serve different roles in malignant 
tumors (112). For example, the miR‑200 family (miR‑200a, 
‑200b, ‑200c, ‑141 and ‑429) slowed EMT in cancer cells by 
lowering ZEB1/ZEB2 expression (111,113). 

It has been demonstrated that ARK5 was regulated 
by different miRNAs in different cancers and that ARK5 
was negatively associated with the expression of certain 
miRNAs  (112). In a liver cancer study, miR‑204 reduced 
ARK5 expression and invasion, and reversed drug resis‑
tance (114). Similarly, miR‑145 acted as a negative regulator of 
intrahepatic cholangiocarcinoma via the regulation of ARK5. 
miR‑145 also reduced MT1‑MMP, MMP‑2 and MMP‑9 
expression to alter cell metastasis (115). miR‑211 is associated 
with cell invasion and response to melanoma adhesion (116). 
In HNSCC, miR‑203 regulated EMT by targeting ARK5 and 
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miR‑96 regulated PC malignancy in the same manner (117). 
These three RNAs function upstream of ARK5 to block cell 
invasion  (112). Overall, ARK5‑associated miRNA could 
be regarded as a potential therapeutic target in the future 
treatment of cancer.

4. ARK5 as a potential therapeutic target

While chemotherapy is still a major strategy in cancer treat‑
ment, drug resistance has become a novel limitation that has 
led to its failure in long‑term use (118). Therefore, there is an 
urgent requirement to elucidate novel strategies to increase 
drug efficacy. 

Salinomycin. It has been established that ARK5 is highly 
expressed after treatment with certain clinical therapeutic 
drugs, including dox, 5‑fluorouracil and cisplatin (50). Since 
ARK5 is associated with cancer cell drug resistance, its 
downregulation may serve as a potential therapeutic strategy 
to increase drug sensitivity (50). To increase drug sensitivity, 
salinomycin may be used as it targets ARK5 (50). 

Salinomycin is an ionophore antibiotic that kills cancer 
stem cells and reverses EMT (50). A previous study on lung 
cancer demonstrated that salinomycin increased dox sensi‑
tivity and demonstrated a synergistic effect (combination 
index, 0.430 with dox) (50). Furthermore, it was revealed that 
salinomycin suppresses ZEB1, an important EMT pathway 
molecule (83,84). Therefore, salinomycin may be a novel drug 
that could be used in drug combinations. However, weight loss 
and nerve injury are side effects of salinomycin treatment and 
may affect its application in a clinical setting (119).

Additionally, it has been demonstrated that combination 
treatment reversed dox‑induced EMT morphology, reversed 
EMT marker protein (vimentin and E‑cadherin) expression 
and inhibited ARK5 expression (75). This process was also 
demonstrated in breast cancer, gastric cancer, non‑small cell 
lung cancer, cholangiocarcinoma and hepatic cancer (120).

ON123300. ON123300 is a novel second‑generation oral drug 
and CDK inhibitor, which exerts dual inhibitory effects on 
CDK4 and ARK5 (121). Compared with first‑generation drugs, 
the site‑specific ON123300 reverses the poor curative effects 
exerted by other drugs and the resultant poor cancer prognosis, 
which was demonstrated in multiple myeloma treatment (120). 
ON123300 was also revealed to exert beneficial effects in 
breast cancer, glioma and mantle cell lymphomas in vivo and 
in vitro without obvious harm to normal tissue (122).

ARK5 is a molecule that may lead to first‑generation drug 
failure (20,28,122). However, while ARK5 overexpression has 
been observed in primary multiple myeloma cells, ON123300 
caused cell cycle arrest and apoptosis, serving as an ARK5 
and CDK4 inhibitor (32,28). MYC‑CDK4 binding in multiple 
myeloma cells is a key interaction in tumorgenesis and 
ON123300 also has an impact on the MYC pathway as well 
as on the retinoblastoma/mTOR pathway (122). Furthermore, 
ARK5 knockdown significantly increased first‑generation 
drug sensitivity of multiple myeloma (123,124).

7x. As 7x is a novel cyanopyridopyrimidine compound that 
acts as a multi‑kinase inhibitor, 7x targets CDK4/cyclin D1 

and ARK5 kinases (122). ARK5 is also negatively regulated 
by 7x  (124). A previous study demonstrated that ARK5 
targeting resulted in high efficacy when cancer cell prolifera‑
tion and metastasis were inhibited with no significant signs of 
toxicity (122). 

With the increasing number of compounds that have been 
discovered as effective drugs targeting the ARK5 protein for 
cancer treatment, the current study hypothesizes that ARK5 
could be considered a significant therapeutic strategy for 
cancer under 7x treatment.

HTH‑01‑015. HTH‑01‑015 is a highly selective protein kinase 
inhibitor, which mainly affects ARK5 by inhibiting the phos‑
phorylation of myosin phosphatase target subunit 1 (MYPT1), 
a substrate of ARK5 (125). Experimentally, HTH‑01‑015 was 
revealed to slow mitosis by inhibiting the phosphorylation of 
MYPT1 and preventing the entry of cells into the M phase by 
regulating DNA replication in the S phase (126). This indicated 
that HTH‑01‑015 inhibited ARK5 and modulated cell migra‑
tion and adhesion. Additionally, HTH‑01‑015 was revealed 
to detect the physiological function of ARK5 abnormalities, 
further elucidating its role (126). 

In summary, HTH‑01‑015 was demonstrated to regulate 
the physiological functions of cells by acting on ARK5 and 
could potentially serve as a novel drug to combat clinical drug 
resistance.

5. Relationship between ARK5 and other diseases

ARK5, diabetic nephropathy and renal fibrosis. ARK5 
is associated with Tau protein stability. This may explain 
the potential link between ARK5 and a range of diseases, 
including neurodegenerative diseases and diabetes (55).

ARK5 serves an important role in human diabetic 
nephropathy (DN) along with TGF‑β1 (127,128). DN is often 
accompanied by a series of renal diseases in which TGF‑β1 
mediates glomerular sclerosis and tubular fibrosis (127). 

In  vitro, TGF‑β1 was used to induce a model of renal 
tubular fibrosis. The protein changes that occur during the 
EMT process in epithelial cells include: E‑cadherin (epithelial) 
to N‑cadherin (mesenchymal) transformation and increased 
vimentin, α‑smooth muscle actin, connective tissue growth 
factor and Notch ligand Jagged‑1 (129). By silencing ARK5 and 
thereby lowering TGF‑β1 expression, fibrosis was reversed in 
renal tubular cells. This also influenced downstream proteins 
of TGF‑β1 by preventing the stimulation of Jagged‑1, verifying 
the link between ARK5 and EMT (130,131).

ARK5 and striated muscle generation. ARK5 protein was not 
previously identified in murine skeletal muscle. However, in 
later studies, ARK5 was demonstrated to be highly expressed in 
cardiac muscle and skeletal muscle, and ARK5 mRNA was iden‑
tified via reverse transcription‑quantitative PCR (130). Muscle 
contraction increased ARK5 phosphorylation (132). However, 
this did not alter ARK5 activity, indicating that phosphorylation 
of ARK5 at Ser400 cannot stimulate this kinase (132). 

Uncordinated‑82 (UNC‑82) kinase serves a key role in 
Caenorhabditis elegans, a nematode, and is an orthologue 
of human ARK5 and SNF1/AMP kinase‑regulated kinase 
(SNARK) that is necessary for myosin filament reorganization 
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during cellular elongation (27). Research has suggested that 
ARK5 may exert a similar function to UNC‑82 in striated 
muscle development  (130). ARK5 knockout could lead to 
alterations in contractile apparatus protein (the actin‑myosin 
cytoskeleton) phosphorylation and SNARK reduction may 
lead to muscle mass disruption with increasing age. These 
results revealed the conserved role of UNC‑82/ARK5/SNARK 
in muscle generation across diverse animal lineages (27). 

Additionally, ARK5 was demonstrated to be a direct target of 
large musculoaponeurotic fibrosarcoma proteins and its activa‑
tion was mediated by MAF‑recognition element sequences (133). 
Activation of ARK5 in muscle allows it to interact with 
several types of myosin phosphatases (134). Furthermore, the 
ARK5‑MYPT1‑serine/threonine‑protein phosphatase  1B 
complex promoted the interaction between ARK5 and 1433 
protein, which inhibited phosphatase activity (134). 

Ultimately, ARK5 controls cell adhesion and as a regulator 
of myosin phosphatase compounds; it prevents the phosphory‑
lation of AMPK targets by LKB1 and controls phosphatase 
compounds to influence the phosphorylation of its targets (135).

Furthermore, experiments have demonstrated that ARK5 
is involved in the negative feedback regulation of insulin 
signaling transduction and inhibits insulin‑mediated glucose 
uptake in skeletal muscle (136).

ARK5 and neurodegenerative diseases. The effects of ARK5 
in neurological diseases primarily manifest in three aspects: 
Promoting the polarization and migration of neurons, affecting 
the expression and accumulation of Tau protein and affecting 
neuron apoptosis through CASP6 (137). 

Neuronal axons need energy to grow and branch, and 
this energy comes from the large consumption of ATP in the 
mitochondria (138). As a mediating factor, ARK5 regulates the 
growth of axons and cortical neuron branches. The LKB1‑ARK5 
pathway controls the fixation of mitochondria in axons and 
ARK5 mediates axon growth and growth of cortical neuron 
branches (138). Overexpression of ARK5 can increase the axon 
branch, and knockout can cause growth stagnation (138). 

Numerous neurodegenerative proteinopathies share a 
common pathogenesis: Abnormal accumulation of disease‑
related proteins (139). ARK5 was revealed to regulate Tau 
by stabilizing the protein via specific Ser356 phosphorylation 
and its inhibition inhibited Tau expression in Drosophila 
neurodegeneration (139). The results suggested that reducing 
Tau expression is potentially an effective strategy to alle‑
viate Tau‑related neurodegenerative changes. Furthermore, 
ARK5 may serve as a new entry point for the treatment of 
Tau‑associated diseases (139). 

CASP6 was demonstrated to be an impor tant 
molecule in neurodegenerative diseases, particularly in 
Alzheimer's disease  (AD) and Huntington's disease  (137). 
Research has revealed that avoiding destruction of CASP6 
protected mice from neural diseases, such as AD (140). This 
protection is the result of ARK5 phosphorylating CASP6 
at Ser257, which caused CASP6 inhibition and prevented 
neural cell death  (86). The phosphorylation achieved by 
AKR5 is indirect and is mediated via the downregulation of 
p53 expression (106) due to the direct relationship between 
p53 and CASP6  (141). Furthermore, ARK5‑mediated 
CASP6 phosphorylation inhibited its activation, mediating 

CASP6 activity (86). This phosphorylation site is specific for 
CASP6 (86,142).

The aforementioned study offered a potential site for future 
drug discovery by targeting this unique site to gradually inhibit 
neural death. Since ARK5 is a negative regulator of CASP6, 
a potential strategy could involve activating ARK5 expression 
or interfering with CASP6 phosphorylation at this specific site.

6. Conclusion and future perspectives

The current review summarized all known functions of ARK5 
and potential drugs from a limited study size. Being a member 
of the AMPK family, ARK5 serves a metabolic role through 
its expression: Promoting the survival of cancer cells in harsh 
microenvironments. Additionally, ARK5 serves an important 
role in cell adhesion and metastasis (84). 

Various processes are involved in cancer cell drug resis‑
tance and further research into this resistance mechanism is 
required to fully elucidate it. As an emerging molecule, ARK5 
exerts multiple functions in certain diseases, particularly 
in malignant tumors. Since AKR5 can be used to evaluate 
the malignancy of tumors, metastasis and drug restistancy, 
it is a potential therapeutic target for cancer and drug resis‑
tance. Targeting ARK5 in combination with other drugs 
could potentially improve drug resistance and inhibit tumor 
metastasis. 

The current review hypothesized that in the future, drugs 
targeting ARK5 will have impactful and specific effects that 
will improve clinical drug resistance. However, further research 
into the role of ARK5 in normal cells may be beneficial as it 
could reduce the targeting side effects of ARK5 therapy. The 
present review also hypothesized that the relationship between 
ARK5 and TAU stability is conducive to further elucidating 
the molecular mechanism of neurodegenerative diseases in 
future studies.
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