

OPEN d ACCESS

Cu $K\alpha$ radiation

 $0.42 \times 0.31 \times 0.19 \text{ mm}$

1234 independent reflections

1207 reflections with $I > 2\sigma(I)$

 $\mu = 0.91 \text{ mm}^{-3}$

T = 293 K

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 60.0^{\circ}$

2.2. Data collection

b = 7.6567 (14) Å

c = 10.115 (2) Å

V = 875.2 (3) Å³

 $\beta = 98.688 \ (7)^{\circ}$

Z = 4

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.749, T_{\max} = 0.841$ 3786 measured reflections

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.140$	independent and constrained
S = 1.20	refinement
1234 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 benzene ring.

$\begin{array}{ccccccc} O3-H3\cdots O1^{i} & 0.94 \ (4) & 1.82 \ (4) & 2.758 \ (2) & 175 \ (4) \\ C8-H8 A \cdots Cg^{ii} & 0.97 & 2.83 & 3.613 \ (3) & 138 \\ C9-H9 A \cdots Cg^{ii} & 0.97 & 2.79 & 3.579 \ (3) & 139 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$D3-H3\cdots O1^{i}$ $C8-H8A\cdots Cg^{ii}$ $C9-H9A\cdots Cg^{ii}$	0.94 (4) 0.97 0.97	1.82 (4) 2.83 2.79	2.758 (2) 3.613 (3) 3.579 (3)	175 (4) 138 139

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer facility, University of Mysore, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2752).

References

- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1977.
- Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1269
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Crystal structure of N-(3-hydroxyphenyl)succinimide

P. A. Suchetan,^a S. Naveen,^b N. K. Lokanath^c and S. Sreenivasa^d*

^aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ^bInstitution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570023, India, ^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India, and ^dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India. *Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 8 July 2014; accepted 14 July 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{10}H_9NO_3$, the dihedral angle between the benzene and pyrrolidine rings is $53.9(1)^{\circ}$. In the crystal, molecules are linked through strong O-H···O hydrogen bonds into zigzag C(8) chains running along [010]. The chains are linked by $C-H\cdots\pi$ interactions forming sheets lying parallel to (100).

Keywords: crystal structure; succinimide; hydrogen bonding.

CCDC reference: 1013858

1. Related literature

For the crystal structures of the 3-methyl and 3-chloro derivatives of N-phenylsuccinimide, see: Saraswathi et al. (2010, 2011).

2. Experimental

2.1. Crystal data

C10H9NO3 $M_r = 191.18$ Monoclinic, $P2_1/c$ a = 11.432 (2) Å

supporting information

Acta Cryst. (2014). E70, o927 [doi:10.1107/S1600536814016328]

Crystal structure of N-(3-hydroxyphenyl)succinimide

P. A. Suchetan, S. Naveen, N. K. Lokanath and S. Sreenivasa

S1. Introduction

As a part of a study on the effect of ring and side-chain substitutions on *N*-(Aryl)-succinimides (Saraswathi *et al.*, 2010,2011), the title compound has been synthesized and we report herein on its crystal structure.

S2. Experimental

S2.1. Synthesis and crystallization

The title compound was prepared according to the reported procedure (Saraswathi *et al.*, 2010,2011). Colourless prisms of the title compound were obtained by slow evaporation of an aqueous methanolic solution at room temperature.

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned with idealized geometry and treated as riding atoms: C—H = 0.93-0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

S3. Results and discussion

The title molecule, Fig. 1, is non-planar with the benzene and pyrrolidine [r.m.s. deviation = 0.039 Å] rings tilted at 53.9 (1) °. This is close to the values of 52.5 (1) and 59.5 (1) ° observed in *N*-(3-methylphenyl)-succinimide (Saraswathi *et al.* 2010) and *N*-(3-chlorophenyl)-succinimide (Saraswathi *et al.* 2011).

In the crystal, molecules are linked through strong O—H···O hydrogen bonds into zigzag C(8) chains running along [010] (Table 1 and Fig. 2). The chains are linked by C—H··· π interactions (Table 1 Fig. 3) forming sheets lying parallel to (100).

Figure 1

Molecular structure of the title molecule, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the a axis of the crystal packing of the title compound, showing the formation of the zigzag C(8) chains through O—H…O hydrogen bonds (dashed lines; see Table 1 for details).

Figure 3

A partial view along the a axis of the crystal packing of the title compound, showing the C—H $\cdots\pi$ interactions (dashed lines; see Table 1 for details).

1-(3-Hydroxyphenyl)pyrrolidine-2,5-dione

Crystal data

C₁₀H₉NO₃ $M_r = 191.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.432 (2) Å b = 7.6567 (14) Å c = 10.115 (2) Å $\beta = 98.688$ (7)° V = 875.2 (3) Å³ Z = 4F(000) = 400

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.749, T_{\max} = 0.841$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.140$ S = 1.201234 reflections 131 parameters 0 restraints Prism $D_x = 1.451 \text{ Mg m}^{-3}$ Melting point: 393 K Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 25 reflections $\theta = 3.9-60.0^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.42 \times 0.31 \times 0.19 \text{ mm}$

3786 measured reflections 1234 independent reflections 1207 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 60.0^\circ, \theta_{min} = 3.9^\circ$ $h = -12 \rightarrow 12$ $k = -7 \rightarrow 8$ $l = -5 \rightarrow 11$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0766P)^2 + 0.2946P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement	t parameters ($Å^2$))
--	--------------------------	---

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.91904 (12)	0.1492 (2)	0.88087 (15)	0.0436 (5)	
O2	0.56202 (12)	-0.1251 (2)	0.82562 (16)	0.0482 (5)	
03	0.92280 (13)	-0.1661 (2)	0.43867 (15)	0.0454 (5)	
N1	0.74293 (13)	0.0058 (2)	0.82293 (16)	0.0293 (5)	
C1	0.74308 (15)	-0.0001 (2)	0.68070 (19)	0.0281 (6)	
C2	0.83725 (16)	-0.0782 (2)	0.63281 (18)	0.0300 (6)	
C3	0.83605 (17)	-0.0861 (3)	0.49542 (19)	0.0326 (6)	
C4	0.74209 (18)	-0.0147 (3)	0.4099 (2)	0.0391 (7)	
C5	0.64917 (18)	0.0627 (3)	0.4603 (2)	0.0407 (7)	
C6	0.64839 (17)	0.0704 (3)	0.5970 (2)	0.0361 (6)	
C7	0.65000 (16)	-0.0592 (2)	0.8850 (2)	0.0327 (6)	
C8	0.68144 (17)	-0.0292 (3)	1.0320 (2)	0.0374 (7)	
C9	0.80476 (18)	0.0493 (3)	1.0518 (2)	0.0367 (6)	
C10	0.83298 (16)	0.0764 (2)	0.91334 (19)	0.0313 (6)	
H2	0.90020	-0.12450	0.69140	0.0360*	
Н3	0.978 (3)	-0.223 (5)	0.502 (4)	0.088 (10)*	
H4	0.74170	-0.01900	0.31800	0.0470*	
Н5	0.58650	0.11000	0.40200	0.0490*	
H6	0.58570	0.12170	0.63140	0.0430*	
H8A	0.68090	-0.13840	1.08050	0.0450*	
H8B	0.62560	0.05040	1.06340	0.0450*	
H9A	0.80610	0.15940	1.09940	0.0440*	
H9B	0.86130	-0.02960	1.10190	0.0440*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0306 (8)	0.0573 (10)	0.0443 (9)	-0.0123 (7)	0.0103 (7)	-0.0083 (7)
02	0.0306 (8)	0.0641 (10)	0.0501 (9)	-0.0141 (7)	0.0066 (7)	0.0068 (8)
)3	0.0417 (9)	0.0634 (10)	0.0328 (9)	0.0051 (7)	0.0110 (7)	-0.0054 (7)
V 1	0.0224 (8)	0.0360 (9)	0.0305 (9)	-0.0012 (6)	0.0071 (6)	0.0000 (6)
C1	0.0248 (10)	0.0305 (10)	0.0290 (10)	-0.0052 (7)	0.0045 (8)	0.0009 (7)
22	0.0248 (10)	0.0362 (11)	0.0283 (10)	-0.0014 (8)	0.0021 (8)	0.0010 (8)
03 N1 C1 C2	0.0417 (9) 0.0224 (8) 0.0248 (10) 0.0248 (10)	0.0634 (10) 0.0360 (9) 0.0305 (10) 0.0362 (11)	0.0328 (9) 0.0305 (9) 0.0290 (10) 0.0283 (10)	$\begin{array}{c} 0.0051 \ (7) \\ -0.0012 \ (6) \\ -0.0052 \ (7) \\ -0.0014 \ (8) \end{array}$	0.0110 (7) 0.0071 (6) 0.0045 (8) 0.0021 (8)	-0.0054 (7) 0.0000 (6) 0.0009 (7) 0.0010 (8)

supporting information

C3	0.0302 (10)	0.0375 (11)	0.0304 (10)	-0.0074 (8)	0.0060 (8)	-0.0009 (8)
C4	0.0377 (12)	0.0478 (13)	0.0299 (10)	-0.0099 (9)	-0.0010 (9)	0.0044 (9)
C5	0.0308 (11)	0.0470 (13)	0.0406 (12)	-0.0039 (9)	-0.0067 (9)	0.0116 (9)
C6	0.0241 (10)	0.0386 (11)	0.0452 (12)	-0.0010 (8)	0.0043 (8)	0.0051 (9)
C7	0.0250 (10)	0.0340 (10)	0.0405 (11)	0.0024 (8)	0.0100 (9)	0.0054 (8)
C8	0.0349 (11)	0.0431 (12)	0.0371 (11)	0.0054 (8)	0.0151 (9)	0.0020 (8)
C9	0.0333 (11)	0.0447 (11)	0.0333 (11)	0.0060 (9)	0.0085 (8)	-0.0043 (9)
C10	0.0250 (10)	0.0345 (11)	0.0353 (11)	0.0028 (8)	0.0072 (8)	-0.0048 (8)

Geometric parameters (Å, °)

O1—C10	1.218 (2)	C5—C6	1.385 (3)
O2—C7	1.202 (2)	C7—C8	1.494 (3)
O3—C3	1.364 (3)	C8—C9	1.518 (3)
O3—H3	0.94 (4)	C9—C10	1.498 (3)
N1—C1	1.440 (2)	C2—H2	0.9300
N1—C7	1.404 (2)	C4—H4	0.9300
N1—C10	1.380 (2)	С5—Н5	0.9300
C1—C2	1.382 (2)	С6—Н6	0.9300
C1—C6	1.380 (3)	C8—H8A	0.9700
C2—C3	1.389 (3)	C8—H8B	0.9700
C3—C4	1.386 (3)	С9—Н9А	0.9700
C4—C5	1.380 (3)	С9—Н9В	0.9700
C3 O3 H3	112 (2)	N1 C10 C0	108 71 (16)
$C_{1} = 0.00$	112(2) 124(14(15))	01 C10 N1	123.55(18)
C7 N1 C10	124.14(15) 112.43(16)	C1 $C2$ $H2$	125.55 (18)
$C_1 = N_1 = C_1 C_7$	112.43(10) 123.43(15)	$C_1 - C_2 - H_2$	121.00
N1 - C1 - C6	118 80 (16)	C_{3} C_{4} H_{4}	121.00
$C_{2} - C_{1} - C_{6}$	122 34 (18)	C_{5} C_{4} H_{4}	120.00
$N_1 - C_1 - C_2$	118 85 (16)	C4 - C5 - H5	120.00
C1 - C2 - C3	118.63 (17)	C6-C5-H5	120.00
$C_1 = C_2 = C_3$	117.31(17)	C1	120.00
C_{2} C_{3} C_{4}	117.31(17) 119.80(18)	C5-C6-H6	121.00
$C_2 - C_3 - C_7$	122.87 (18)	C7 - C8 - H8A	111.00
$C_{3}^{-}C_{4}^{-}C_{5}^{-}$	122.07(10) 120.42(10)	C7 - C8 - H8B	111.00
C4 - C5 - C6	120.42(19) 120.57(19)	C9 - C8 - H8A	111.00
$C_{1} - C_{6} - C_{5}$	120.37(19) 118 24 (19)	C_{0} C_{8} H8B	111.00
$0^{2}-0^{7}-1^{1}$	123.91(18)	$H_{8}A = C_{8} = H_{8}B$	109.00
N1 - C7 - C8	107.82 (16)	C8-C9-H9A	111.00
$0^{2}-0^{7}-0^{8}$	128 27 (18)	C8-C9-H9B	111.00
C^{7} C^{8} C^{9}	105 74 (16)	C10-C9-H9A	111.00
$C_{8}^{8} - C_{9}^{9} - C_{10}^{10}$	104.97 (16)	C10-C9-H9B	111.00
01 - C10 - C9	127 74 (18)	H9A - C9 - H9B	109.00
01 010 07	127.77 (10)		107.00
C7—N1—C1—C2	-125.04 (18)	N1—C1—C2—C3	178.96 (16)
C10-N1-C1-C2	55.4 (2)	C2—C1—C6—C5	-0.4 (3)
C7—N1—C1—C6	54.1 (2)	C1—C2—C3—C4	0.7 (3)

C10—N1—C1—C6	-125.46 (19)	C1—C2—C3—O3	-177.55 (17)
C7—N1—C10—C9	3.7 (2)	C2—C3—C4—C5	-0.6 (3)
C1-N1-C10-O1	4.0 (3)	O3—C3—C4—C5	177.7 (2)
C7—N1—C10—O1	-175.62 (16)	C3—C4—C5—C6	0.1 (3)
C1—N1—C7—O2	-0.3 (3)	C4—C5—C6—C1	0.4 (3)
C10—N1—C7—C8	-0.1(2)	O2—C7—C8—C9	177.14 (19)
C10—N1—C7—O2	179.37 (17)	N1—C7—C8—C9	-3.4 (2)
C1—N1—C10—C9	-176.69 (16)	C7—C8—C9—C10	5.3 (2)
C1—N1—C7—C8	-179.75 (16)	C8—C9—C10—O1	173.70 (18)
C6—C1—C2—C3	-0.2(3)	C8—C9—C10—N1	-5.6 (2)
N1—C1—C6—C5	-179.51 (18)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O3—H3…O1 ⁱ	0.94 (4)	1.82 (4)	2.758 (2)	175 (4)
C8—H8A····Cg ⁱⁱ	0.97	2.83	3.613 (3)	138
C9—H9 <i>A</i> ··· <i>Cg</i> ⁱⁱ	0.97	2.79	3.579 (3)	139

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) x, -y+3/2, z+1/2.