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Abstract

Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of sin-

gle DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes.

These barcodes can be mapped to theoretical counterparts obtained from DNA reference

sequences, which in turn allow for DNA identification in complex samples and for detecting

structural changes in individual DNA molecules. There are several types of DNA labeling

schemes for ODM and for each labeling type one or several types of match scoring methods

are used. By combining the information from multiple labeling schemes one can potentially

improve mapping confidence; however, combining match scores from different labeling

assays has not been implemented yet. In this study, we introduce two theoretical methods

for dealing with analysis of DNA molecules with multiple label types. In our first method, we

convert the alignment scores, given as output from the different assays, into p-values using

carefully crafted null models. We then combine the p-values for different label types using

standard methods to obtain a combined match score and an associated combined p-value.

In the second method, we use a block bootstrap approach to check for the uniqueness of a

match to a database for all barcodes matching with a combined p-value below a predefined

threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel

assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the

cut sites serve as sequence-specific markers, which together with barcodes obtained using

the established competitive binding labeling method, form a dual-labeled barcode. All exper-

imental data in this study originates from this assay, but we point out that our theoretical

framework can be used to combine data from all kinds of available optical DNA mapping

assays. We test our multiple labeling frameworks on barcodes from two different plasmids

and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It

is demonstrated that by simultaneously using the information from all label types, we can

substantially increase the significance when we match experimental barcodes to a database

consisting of theoretical barcodes for all sequenced plasmids.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260489 November 29, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Torstensson E, Goyal G, Johnning A,

Westerlund F, Ambjörnsson T (2021) Combining

dense and sparse labeling in optical DNA mapping.

PLoS ONE 16(11): e0260489. https://doi.org/

10.1371/journal.pone.0260489

Editor: Ruslan Kalendar, University of Helsinki:

Helsingin Yliopisto, FINLAND

Received: September 13, 2021

Accepted: November 10, 2021

Published: November 29, 2021

Copyright: © 2021 Torstensson et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Experimental data

and software are available from https://gitlab.com/

dnadevcode/cdsodm.

Funding: TA, Grant number 2014-4305, The

Swedish Research Council, https://www.vr.se/

english.html The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. FW,

Grant number T2019-0010, The Swedish

Childhood Cancer Foundation, https://www.

barncancerfonden.se/en/ The funders had no role

in study design, data collection and analysis,

https://orcid.org/0000-0002-6439-8842
https://doi.org/10.1371/journal.pone.0260489
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260489&domain=pdf&date_stamp=2021-11-29
https://doi.org/10.1371/journal.pone.0260489
https://doi.org/10.1371/journal.pone.0260489
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/dnadevcode/cdsodm
https://gitlab.com/dnadevcode/cdsodm
https://www.vr.se/english.html
https://www.vr.se/english.html
https://www.barncancerfonden.se/en/
https://www.barncancerfonden.se/en/


1 Introduction

Optical DNA mapping (ODM) is a method for generating sequence-dependent fluorescence

“fingerprints” (DNA barcodes) along single DNA molecules [1]. Before imaging, the DNA

molecules are labeled and stretched using nanochannels or surface adsorption. In contrast to

DNA sequencing, ODM does not provide nucleotide level resolution; however, the method

offers valuable contextual information for hundreds of kilobases long DNA molecules and has

been very effective in detecting large structural variations that are missed by sequencing [2].

The most common method for fluorescent labeling DNA for ODM is sparse labeling. [3] In

this method, each label can be identified in the barcode. This includes restriction enzyme cut

DNA fragmentation mapping [4], where DNA molecules are digested by restriction enzymes

and each cut site serves as a sequence-specific mark; enzymatic nick-labeling [5–7], where a

nicking enzyme is used to make single-stranded cuts and then a polymerase is used to incorpo-

rate fluorescently labeled nucleotides at the cut sites; and finally, direct labeling and staining

(DLS), where a methyltransferase (with a modified co-factor) is used to attach a fluorescent

label at its recognition site. The use of sparsely labeled DNA barcodes has resulted in two types

of commercially available platforms: the OpGen Argus [8] and the BioNano Genomics Irys

and Saphyr systems [9–11].

In contrast to sparse labeling, in dense labeling, the sequence-dependent DNA fingerprint is

a continuous intensity signal along the stretched DNA. This includes DNA melt mapping [12,

13], competitive binding (CB) [14–17] and dense enzymatic labeling [18]. We pioneered the

use of the CB strategy for ODM. The CB assay is based on one-pot mixing of DNA with the

fluorescent dye YOYO-1 and the non-fluorescent molecule netropsin that has high specificity

for AT-rich regions and competes with YOYO-1 for AT sites. The result is an emission inten-

sity variation along the DNA that corresponds to the underlying sequence—a DNA barcode.

We have demonstrated the use of CB-based ODM for plasmid mapping [19–22], bacterial spe-

cies identification [15, 17] and mapping fragments of the human genome [16].

The experiments in this study involve plasmids. These extrachromosomal, circular DNA

molecules are of interest since they often encode genes that make bacteria resistant to common

antibiotics. We have in several previous studies demonstrated how CB-based ODM can be

used to characterize a sample by the number of plasmids and their sizes [19]. This was in turn

used to identify a nosocomial spread of bacteria, as well as plasmid conjugation during resis-

tance outbreaks in hospitals [21–23]. By combining the ODM assay with Cas9 we have also

been able to identify the gene that makes the bacteria resistant [20].

Although the different labeling methods are robust by themselves, some of them could

potentially be combined to generate dual- or multiply-labeled DNA barcodes. This would in

principle allow the complementary labeling channels to support mapping in the areas of the

genome where the primary labeling fails to provide sufficient mapping confidence. Despite the

potential advantages of multiple labeling, there are currently no general-purpose theoretical

frameworks for combining the mapping information from different types of assays.

In this study, we introduce a theoretical approach for combining the mapping information

from sparsely and densely labeled DNA barcodes. Our method is based on converting align-

ment scores from different label types to p-values. The p-values, in turn, are obtained by utiliz-

ing randomized barcodes and functional fits based on extreme-value statistics. The different p-

values are then combined using standard methods. Our p-value method allows us to separate

significant (better than “random”) from non-significant matches when matching to a reference

database.

We also introduce a new resampling method to determine the uniqueness-of-match of the

top-scoring barcode compared to other barcodes which also match significantly to the
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reference database. Our block bootstrap resampling method generalizes the method from Bou-

wens [24] to include both dense-, sparse- and multiply-labeled DNA barcodes.

The experimental dual-labeled DNA barcodes used in this study were obtained by combin-

ing CB-based densely-labeled barcodes [14] with sparsely-labeled barcodes acquired from an

enzymatic cutting of plasmid DNA molecules. The plasmids were partially digested resulting

in a single cut (when multiple cut sites were present). This allowed us to align the molecules to

each other using the CB barcode and identify the cut positions which then serve as sequence-

specific markers. Compared to the original enzymatic cutting approach by Schwartz et al. [4]

(see also [25]), our method allows us to preserve long DNA molecules (which are essential for

ODM in nanochannels) during partial enzymatic digestion and still place a sufficient number

of sparse labels on the DNA for robust mapping.

2 Methods

This methods section is organized as follows: We first describe the plasmid barcode database

used herein and how it was generated. We later match experimental barcodes and mimicked

experiments (synthetic barcodes) to the barcodes in this database. We then describe our

method for experimentally generating dually labeled DNA barcodes (CB-labeled and cut-

labeled barcodes) for plasmid DNA molecules. We then show how we generate synthetic CB

and nick-labeled DNA barcodes. We proceed by introducing our framework for combining

alignment scores for different label types. Finally, we describe our block bootstrap approach

for addressing the uniqueness-of-match problem when matching barcodes to a database.

Our software is publicly available as a MATLAB package “cdsodm”, see the Data availability

statement.

2.1 Database of plasmid reference DNA barcodes

In this study, we use a database consisting of theoretical DNA barcodes obtained from plasmid

DNA sequences. The database is used for testing the capabilities of our new methods for iden-

tifying plasmids using multiply-labeled barcodes. To generate the database, we use reference

DNA sequences from a public repository as input. The generated database contains barcodes

corresponding to three different labeling assays (see Introduction): cut-labeled barcodes (our

new experimental method for generating sparse labels, see next section), nick-labeled barcodes

(sparse labeling), and CB barcodes (dense labeling). For each reference sequence, there are Nc
+ Nn + 1 barcodes in the database, where Nc is the number of enzymes used in the cut-labeling

assay and Nn is the number of label types used for nick-labeling. Below we describe the public

sequence repository and how theoretical barcodes for each labeling type are generated.

The public repository used is the NCBI (National Center of Biotechnology Information)

RefSeq database [26] of fully sequenced plasmids. At the time of access (2021–05-18), the data-

base contained 28293 plasmid sequences. Whether a comparison between experiment and

database results in a unique match or not will depend on the database—there might be refer-

ence plasmids that are near-identical on the sequence level. We therefore made a further

refinement of the RefSeq database, where we kept plasmids with complete and verified

genomes (prefix ‘NC’) and of lengths between 50 kbps to 800 kbps. This resulted in 1420 plas-

mids with lengths roughly exponentially distributed with a mean length of 156 kbps.

Cut-labeled theoretical DNA barcodes were generated using enzymatic cutting at

sequence-specific positions. Using DNA sequences from the RefSeq repository, we first locate

the restriction sites for the enzyme at hand in the DNA sequence. We then represent the

sparsely-labeled DNA barcodes by a sum of Gaussians, with a standard deviation σcut = 1.3 pix-

els (estimate from the type of experiments described in Sec. 2.2), centered at each restriction
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site. More precisely, we denote by xðnÞj the jth determined location of the sequence-specific

markers (dots) for enzyme n. We then convert the dot positions to a sparsely labeled experi-

mental barcode, An(x), using:

AnðxÞ ¼
XJðnÞ

j¼1

exp �
½x � xðnÞj �

2

2s2
j

 !

; ð1Þ

with σj = σcut. Above, x denotes positions along the DNA barcode and J(n) is the number of

restriction sites for enzyme n. Finally, we convert the barcode An(x) from base-pairs to pixels

we use a moving mean of 1 pixel (� 758 base-pairs).

Nick-labeled theoretical DNA barcodes were generated in the same way as cut-labeled bar-

codes, with the exception that σj was instead set equal to the estimated standard deviation of

the experimental point spread function: σj = σpsf = 300nm� 1.88 pixels [15].

The densely labeled DNA barcodes, U(x), in this study were based on the competitive bind-

ing (CB) method [14]. Using the DNA sequences from the repository as input, we generate

theoretical CB barcodes using a procedure described previously [15, 27].

2.2 Dual labeling experiments using cut labeling and competitive-binding

labeling

All experiments in this study originate from two DNA samples containing plasmids of lengths

130 kbps and 220 kbps, respectively. S1 File provides details about plasmid sources and the iso-

lation protocol. DNA molecules were labeled with both dense and sparse labels (CB- and cut-

labeling). A schematic illustration of our experimental dual-labeling assay is found in Fig 1.

Sparse cut-labeling was achieved by enzymatic digestion of the plasmids. We wanted to par-

tially digest the plasmids such that each molecule was cut only once even when more than one

cut site for the enzyme was present. To this end, the 130 kbps plasmid was cut with AscI (New

England Biolabs, 3 cut sites) or PmeI (New England Biolabs, 5 cut sites) and the enzyme con-

centration was titrated against the picomoles of cut sites (see S1 File). In this way, different

molecules get cut at different cut sites and each single linear molecule carries the complete

sequence. This strategy allowed us to align the molecules based on the dense CB labeling and

use different cut sites as sparse sequence markers. However, partial digestion with a set of

restriction enzymes requires knowledge of the number of cut sites and careful titration with

enzymes to obtain full-length linear plasmids. Optimizing partial digestion for every enzyme

set could slow down the process of data collection. Therefore, for the 220 kbps plasmid, we

performed complete digestion by the restriction enzymes SgrDI (ThermoFisher Scientific, 4

cut sites), PacI (New England Biolabs, 4 cut sites) and PmeI (New England Biolabs, 3 cut sites).

The restriction enzymes used are listed in Table 1.

The densely labeled DNA barcodes were generated using the CB assay which has been

described elsewhere [1, 14]. Briefly, digested plasmid samples were stained with YOYO-1

(YOYO, Invitrogen) and netropsin (Sigma Aldrich) using ratios basepair:YOYO:netropsin ::

10:1:300. λ-DNA (48502 bps, New England Biolabs) was included in the sample as an internal

size reference. Staining using YOYO and netropsin creates a variable intensity profile along

the DNA based on the relative distribution of AT/GC rich regions.

Labeled DNA molecules were stretched and imaged using nanochannels (microscopy setup

and nanochannel imaging details are described in S1 File). For the partially digested 130 kbps

plasmid, a mixed population of circular, partially digested (with a single cut, *130 kbps linear

DNA) and fully digested plasmids were seen, see Fig 1. Only the linear *130 kbps long DNA

molecules were used for further analysis. Further details are found in S1 File.
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For the 220 kbps plasmid, all fragments were imaged (regardless of the level of digestion).

The longest fragments were put together to form a consensus barcode using established meth-

ods [19]. Each of the shorter fragments was then positioned on this CB consensus barcode at

an optimal position (the position which maximized the Pearson correlation coefficient). The

edge positions of the fragments at these optimal positions served as cut labels.

Our post-processing procedures of the experimental cut position data are described in S1

File. The purpose of the post-processing is to locate the common sequence-specific cut posi-

tions with as high precision as possible using a set of aligned DNA barcodes, as well as remov-

ing false cuts. Once all cut positions have been located, these are converted into a sparsely-

Table 1. Restriction enzymes used in this study. The names and recognition sequences (restriction sites) of the

restriction enzymes that were used to produce experimental dually labeled DNA barcodes. Note that the complement

recognition sequences of each listed recognition sequences is a palindromic and that these enzymes cleave both strands

of the DNA molecule. This means that when a plasmid reference sequence is searched for the recognition sequence,

only one of the DNA strands has to be considered and only the 5’ to 3’ direction.

Enzyme Recognition sequence

AscI 5’. . .GG-CGCGCC. . .3’

PmeI 5’. . .GTTT-AAAC. . .3’

PacI 5’. . .TTAAT-TAA. . .3’

SgrDI 5’. . .CG-TCGACG. . .3’

https://doi.org/10.1371/journal.pone.0260489.t001

Fig 1. Generating dually labeled DNA barcodes using partial plasmid enzyme digestion and competitive binding labeling. a)

Plasmid with three theoretical cut sites for a restriction enzyme. b) After the plasmid is partially digested and stained with YOYO/

netropsin, we get three sub-populations with cuts at one of the three sites. Here green circles depict YOYO/netropsin stained

plasmids and black circular curves around plasmids depict the fluorescent intensity profile. The discontinuity depicts enzyme cut

on the plasmid. c) Shows representative experimental kymographs of three sub-populations when 130 kb plasmid was digested

with the AscI enzyme. d) After imaging many molecules, their intensity profiles can be aligned to create a circular consensus plot.

Here we see a circular consensus plot with three cut sites marked with red circles. e) A consensus intensity profile can then be

obtained and cut-labels can be placed on it to generate a dually-labeled barcode. f) Potentially, the process can be repeated with

another set of enzymes in order to add more cut-labels to the barcode.

https://doi.org/10.1371/journal.pone.0260489.g001
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labeled barcode using Eq (1), where σj is the estimated standard deviation, σcut, in the cut

positions.

2.3 Generating synthetic barcodes with combined nick and competitive-

binding labeling

Besides experimental barcodes, we also generate synthetic barcodes (mimicking experimental

barcodes). These barcodes have the added value that the ground truth plasmid identity in the

database is known. In this study, our particular use of synthetic barcodes is to investigate

whether combining nick-labeled barcodes (the most common labeling strategy today) [28, 29]

with CB barcodes can improve plasmid identification as compared to only using nick-labeling.

To generate synthetic nick-labeled barcodes, we proceed as follows: From the DNA

sequence, we locate all specific sites for nick-labeling for a given plasmid DNA sequence. We

then choose a probability for each site to be labeled and a rate of false-positive labeling [30].

We here choose to use the default parameters of the software OMTools [31]. The probability

of a site being labeled is then 90%, and the rate of DNA having a false positive label is one per

100 kbps. The set of sites that are obtained this way are represented by a binary vector, where a

‘1’ corresponds to a nick-label at that position and a ‘0’ corresponds to no label. We then

mimic the effect of the system’s point spread function by convolving the binary vector with a

normal PDF (probability density function) with standard deviation σpsf (standard deviation of

the point spread function). Finally, we mix this nick-labeled barcode with a noise profile (the

same type as described for densely labeled DNA barcodes below) at proportions α and (1 − α),

where α = 0.025.

For generating synthetic densely labeled (CB) DNA barcodes, we start with the theoretical

barcodes as calculated using the DNA sequence as input (see Sec 2.1). Background noise and

shot noise [32] present in the experiment is then modeled as correlated normally distributed

random numbers. To generate such numbers, we first generate a noise profile by drawing ran-

dom numbers from a normal distribution with a mean equal to the mean intensity of the theo-

retical barcode and standard deviation 1 for each pixel (i.e., we draw random numbers from

N ðm; 1Þ, where μ is the mean intensity of the theoretical barcode). We then mimic the effect of

the system’s point spread function by convolving this noise profile with a normal PDF with

standard deviation σpsf (standard deviation of the point spread function). Finally, we mix the

convolved noise profile with the theoretical barcode at proportions α and (1 − α), where α =

0.025. Through these steps, we generate a synthetic CB barcode. We validate our procedure for

generating synthetic CB barcodes in S1 File, where we show that with the procedure above we

get optimal alignment scores in agreement with experiments.

2.4 Combining alignment scores for different label types

In this section we show how to calculate alignment scores for densely- and sparsely-labeled

DNA barcodes, by comparing experimental or synthetic barcodes to theoretical counterparts.

Since plasmids are circular, we calculate such alignment scores for all possible circular shifts

(and the two barcode orientations) of the barcodes being compared. We then convert optimal

alignment scores (the maximum alignment score over all shifts and orientations) to p-values

for each label type, and show how to merge these p-values into a single combined match score,

Z, and an associated combined p-value.

2.4.1 Alignment and match scores. Our new choice of alignment score, D, for sparsely

labeled barcodes is a correlation coefficient that can be summed and normalized when using
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multiple sparsely-labeled barcodes in conjunction:

DðA;BÞ ¼
PN

n¼1
½
PL

x¼1
AnðxÞBnðxÞ�

ð
PN

n¼1
½
PL

x¼1
jAnðxÞj

2
�Þ

1=2
ð
PN

n¼1
½
PL

x¼1
jBnðxÞj

2
�Þ

1=2
ð2Þ

Above, An(x) (Bn(x)) is the experimental (theoretical) sparsely-labeled barcode for (nicking or

digestion) enzyme n, where N is the total number of enzymes. Note that the values of D are

within the range [0, 1] (which follows from the Cauchy–Schwartz inequality). The score D is

calculated for every possible orientation and circular shift of two barcodes, and the best overall

score is denoted as D̂ðA;BÞ. The score D̂ will henceforth be referred to as the optimal align-
ment score for sparsely-labeled barcodes.

A few comments regarding Eq 2 are in order. In previous studies, either a summed square

difference between distances of dot locations on the experiment and theory, or, a Pearson cor-

relation coefficient (PCC) was used [18, 33]. Our choice of score is similar to the PCC, but we

do not subtract the means of the barcodes. In effect, our choice makes sure that non-matching

regions in the barcodes provide no contribution to the overall score. In S1 Fig we compare our

new sparse-labeling alignment score to the PCC, and find that in a large majority of cases the

PCC and D yield the same best plasmid match in the database. The main reason we here use D
instead of the PCC is that D, for our choice of null model (see Sec 2.4.2), has a distribution that

is accessible in analytic form.

For densely labeled barcodes our choice of alignment score is the PCC as in previous studies

[15, 21, 27]. In brief, for two densely labeled barcodes U and V of length L (number of pixels),

the PCC is calculated using:

CðU;VÞ ¼
1

L � 1

XL

x¼1

ðUðxÞ � mUÞðVðxÞ � mVÞ
sUsV

ð3Þ

Here, μU, μV are the mean of the two barcodes, and σU and σV are associated standard devia-

tions. The value of C(U, V) is within the range [−1, 1] where 1 is a perfect match. When the

PCC has been calculated for every possible orientation and circular shift of two barcodes, the

best overall score is denoted as ĈðU;VÞ. The score Ĉ will henceforth also be referred to as the

optimal alignment score for densely labeled barcodes.
Our two choices of scores above encompass all possible DNA barcodes (see Introduction).

2.4.2 Null models and p-values. We here describe our procedures for converting the

observed optimal alignment scores from the previous sections to p-values. The p-value mea-

sures how good an observed optimal alignment score is compared to that of a “random”

match. More precisely, the p-value is computed using a null model which is represented by M
randomized DNA barcodes. By comparing the experimental barcode at hand to all M bar-

codes, a null-model optimal-alignment-score histogram is obtained. By subsequently fitting a

PDF to this histogram, the p-value is obtained as the area under the curve for scores above the

observed optimal alignment score. We use M = 1000 throughout this study.

For sparsely labeled barcodes, we here introduce a new method for generating randomized

sparsely-labeled barcodes. Our procedure to generate M randomized sparsely-labeled barcodes

is: Draw with replacement 30 kbps long regions from the selected reference plasmids in the

sequence repository. For each region identify the positions for the restriction sites (“dot posi-

tions”). This is repeated until a long dot-map has been produced that is M times the mean

base-pair length of selected reference plasmids. Then draw M regions of length L with replace-

ment from the randomized long dot-map. The resulting M dot-maps of length L are then
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turned into dot-barcodes using Eq (1). This procedure is the same for barcodes obtained using

cut labeling and nick labeling. Examples of randomized dot-barcodes are found in S2 Fig.

Once the M randomized dot-barcodes have been generated, we then match the experimen-

tal barcode at hand to all M randomized barcodes, and thereby generate a null-model optimal-

alignment-score histogram. This histogram is fitted (using the maximum likelihood method)

to the following extreme-value PDF (see S1 File for details):

N EV
PDFðxjm; s; lÞ ¼ lðN EV

CDFðxjm; s; lÞÞ
l� 1
l

1

s

N PDFððx � mÞ=sÞ
N CDFðð1 � mÞ=sÞ � N CDFð� m=sÞ

; ð4Þ

with three fit parameters: μ, σ, and λ. Also, N CDFðyÞ ¼ ð1þ erfðy=
ffiffiffi
2
p
ÞÞ=2 and

N PDFðyÞ ¼ expð� y2=2Þ=
ffiffiffiffiffiffi
2p
p

, where erf (z) is the Gauss error function and N EV
CDFðxjm; s; lÞ is

given below. An example of an optimal-alignment-score histogram, with the associated fit, is

found in Fig 2a).

Once the fit parameters have been obtained, we convert the observed optimal alignment

score D̂ to a p-value using:

Psparse ¼ 1 � N EV
CDFðD̂ jm; s; lÞ; ð5Þ

where we introduced the cumulative distribution function (CDF),

N EV
CDFðxjm; s; lÞ ¼

N CDFððx � mÞ=sÞ � N CDFð� m=sÞ

N CDFðð1 � mÞ=sÞ � N CDFð� m=sÞ

� �l

; ð6Þ

associated with the PDF in Eq (4). Eq (5) is simply stating that the p-value is obtained as the

area under the curve for scores above the observed optimal alignment score.

For densely-labeled DNA barcodes, the procedure for generating a null model (represented

by randomized barcodes) and for calculating a p-values Pdense, for competitive binding bar-

codes is described in [27]. In brief, randomized barcodes are generated using a phase randomi-

zation procedure. Examples of randomized barcodes matched to an experimental barcode at

their optimal position are found in S3 Fig. The associated optimal-alignment-score histogram

is found in Fig 2b).

For the other two types of dense labeling, DNA melt mapping and dense enzymatic label-

ing, the phase randomization procedure and functional fit procedure from [27] can be applied

as is with the sole modification that the theoretical barcodes used as input in the phase ran-

domization procedure must be replaced by their corresponding analogues.

2.4.3 Combining p-value and generating a combined match score, Z. Unlike the indi-

vidual optimal alignment scores, individual p-values are straightforward to combine into an

overall p-value. To that end, we here use Stouffer’s method [34] which involves calculating a

Z-score from a set of p-values, pi (i = 1, . . ., nscores), according to:

Z ¼ �
Pnscores

i¼1
Zi �N

� 1
ðPij0; 1ÞffiffiffiffiffiffiffiffiffiffiffiP

iZ
2
i

p ; ð7Þ

where nscores is the number of scores (number of p-values) being combined, N � 1
ðPjm; sÞ is the

inverse normal cumulative distribution function, and ηi are weight parameters (see below). By

introducing a minus sign as a prefactor in Eq (7) we have that small p-values correspond to

large positive Z values. We use the Z-score as defined in Eq (7) as our combined alignment

score, and the best Z-score is referred to as our combined match score used when comparing

two dually (or multiply) labeled barcodes. Note that we can also use Eq (7) to turn a single p-

value (nscores = 1) into a single match score.
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By construction [34], the combined match score can be turned into a combined p-value
using the normal cumulative distribution function according to:

Pcombined ¼ 1 � N CDFðZÞ ¼
1

2
1 � erf

Z
ffiffiffi
2
p

� �� �

: ð8Þ

By adjusting the weight parameters ηi the distribution of Z can be given a bias with respect to

the individual p-values pi. In this study we, however, combine the two p-values Pdense and

Psparse using equal weights: ηdense = ηsparse = 1.

As demonstrated in Sec 2.4.2 and in this section, we now have means for calculating p-val-

ues (and associated match scores) for three cases: (i) sparsely-labeled barcodes matchings to

Fig 2. Optimal alignment score histograms obtained by matching to randomized densely- and sparsely-labeled barcodes. In order to generate a

null model optimal alignment score histogram we first calculate many randomized barcodes, see S2 Fig for sparsely labeled barcodes and S3 Fig for

densely labeled examples. We then calculate the alignment scores between the experimental barcode at hand and these randomized barcodes for every

possible orientation and circular shift. Selecting the best score (optimal alignment) gives a score distribution that can be fitted to an extreme value

distribution. (a) Optimal alignment score distribution for sparsely labeled barcodes. (b) Optimal alignment score distribution for densely labeled

barcodes. Using these fitted distribution, we then convert any observed optimal alignment score to a match score Z and a p-value, as described in sec

2.4.2. The arrows in the two panels indicate the observed optimal alignment scores for the cases shown in Fig 4. Since these optimal alignment scores

are far out in the tail of the distribution (p-values = 2 � 10−10 and 7 � 10−12, respectively), the optimal alignment scores in that figure are deemed to be

significant. S4 Fig gives the distributions for all alignment scores (not just the best).

https://doi.org/10.1371/journal.pone.0260489.g002
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the database, (ii) densely-labeled barcodes matchings and (iii) dually-labeled barcode match-

ings. A small p-value indicates a good match (as compared to a match against a randomized

barcode). As in previous studies [21], we use a p-value threshold pthresh = 0.01 to separate

between significant and non-significant matches.

2.5 Uniqueness-of-match to a database and block bootstrap resampling

When matching an experimental barcode to our database of theoretical barcodes, there may

be several barcode matches that are deemed significant (p-values smaller than pthresh). As an

example scenario where this could happen, imagine two experimental barcodes: one is per-

fectly matching to theory (within experimental errors), whereas for the other barcode only,

say, half the barcode is perfectly matching. Both of these barcode matches will be deemed sig-

nificant in the sense that their matches to theory are better than to a randomized barcode. Yet,

we would probably be inclined to say that the first barcode, the top match, is a “better” match

compared to the second-best match, given the database at hand. How to deal with such cases?

In Bouwens et. al. [24] a resampling type approach for dealing with this type of problem

was introduced. By “reshuffling” (resampling) the dot positions of the top matching theoretical

dot-barcode, the authors were able to estimate the variance in match score for the top case.

Based on this variance, one then tests whether the second-best match is within those fluctua-

tions (non-unique top match) or not (a unique top match). Below, we extend the ideas from

[24] by introducing a resampling method that is sufficiently general to include also densely-

and multiply-labeled barcodes as well as can cope with experiment-to-experiment compari-

sons (the framework in [24] deals with experiments versus theory for sparsely-labeled bar-

codes, only).

In order to evaluate whether the top significant match is statistically better than other sig-

nificant matches, we would ideally like to repeat the experiments many times. We would then

simply count how many times a particular match is a top match, and if in a large majority of

cases this particular match ends up at the top match, then we deem this match unique. In prac-

tice, this would typically be very time-consuming. Instead, a resampling method is presented

here that serves as a poor man’s variant of performing repeated experiments.

In short, we consider the top matching barcode pair (experiment versus theory) at optimal

alignment see Fig 3a). We then simultaneously divide the two barcodes into contiguous blocks,

Fig 3b), larger than the correlation length (see below). In the next step we resample these

blocks, with replacement, using the block-bootstrap procedure [35], as shown in Fig 3c). We

then calculate a match-score for the resampled barcode pair. By repeating this procedure

many times, a variance is estimated for the top match-score Zdual (Eq (7)). Ideally, this variance

is close to the variance in the top match-score that would appear due to experimental-to-exper-

iment variations and the resampling procedure is then a substitute for repeating the experi-

ment many times.

In detail, our procedure is:

1. Barcodes of plasmids with statistically significant match-scores (Pcombined� pthresh = 0.01)

are identified. The top barcode pair (a theoretical barcode and its experimental equivalent)

is divided into equally sized blocks of width W (we here use W = 15pixels� 8 σPSF).

2. Blocks from the top densely- and sparsely labeled barcode pair are simultaneously ran-

domly sampled with replacement (we pick blocks at random, and allow for the same block

to be picked several times) and then “glued” together into resampled barcode pairs. This

process is repeated, generating in total M resampled barcode pairs (in this study,

M = 1000).
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3. The resampled barcode pairs are compared to each other and a set of match-scores are

obtained. From this set, we calculate the sample variance, σZ.

4. The uniqueness of match: A database plasmid is said to have passed the resampling test if

its match-score is within three σZ of Zdual for the top-matching barcode pair.

Fig 3. Resampling of a top-matching dually labeled barcode pair using the block-bootstrap method. The goal, as described in Sec 2.5, is to estimate

the variance in the match-score of a top matching database plasmid. (a) The top-matching experimental barcode and the optimally aligned theoretical

barcode are divided into blocks of equal size. (b) The blocks are sampled with replacement (see sec 2.5) and glued together into (c) a resampled barcode

pair. The resampled barcode pair is used as if it were a variation of the original barcode and to calculate a new match-score. This can be repeated as

many times as necessary to produce a set of resampled match scores. From this set, we calculate a sample estimate of the match-score variance for the

top case. In the present study, we choose to generate 1000 resampled barcode pairs. Note that the blocks in the figure are larger than the ones used in

practice for visual purposes.

https://doi.org/10.1371/journal.pone.0260489.g003
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Table 2 provides a fictive example of our resampling procedure for the case of five

plasmids.

A few comments regarding our method are in place. In step 1 above, the block width was

chosen such that it is just small enough to divide barcodes into two blocks for the shortest data-

base plasmids that can typically be matched (*20 kbps). The block width is also chosen to be

longer than the length over which barcode intensity values are correlated (these correlations

are mainly due to the point spread function of the imaging system). In step 2, note that both

experimental barcodes and matching theoretical barcodes are simultaneously divided into

blocks in order to keep track of the optimal alignment for each block. The method described

here is inspired by error estimation of correlated data [36, 37].

3 Results

In this section, we first present the results of matching dual-labeling experiments (cut- and

CB-labeling) to all theoretical barcodes in our plasmid barcode database (Sec 3.1). We show

that by using dual labeling we increase the significance of matches as compared to using single

labels. We then proceed to consider nick- and CB-labeled synthetic barcodes (Sec 3.2).

To speed up computations, whenever an experimental plasmid barcode or synthetic bar-

code is compared to the reference barcodes in the database, we make a pre-selection of refer-

ence barcodes within ±10% of the estimated experimental length.

3.1 Cut- and CB-labeling experiments versus theory

The partially digested 130 kbps plasmid is used for the first demonstration. The experiment

involves two data sets of the 130 kbps plasmid where the DNA sample for each data set was

partially digested by the restriction enzymes AscI and PmeI, respectively. After post-process-

ing, see S1 File, a consensus CB barcode and a set of significant cut locations (black circles)

were obtained, as seen in Fig 4, panels a) and b). Fig 4, panel c), shows the experimental con-

sensus CB barcode that has been aligned to its theoretical counterpart in the orientation and

circular shift that maximizes its alignment score (see 2.4.1 and Eq 3). The optimal alignment

score, Ĉ, is also given in the figure. The significant cut locations identified in the barcodes

were then turned into two cut-labeled barcodes and in turn compared to the theoretical bar-

codes, using Eq (2), as seen in Fig 4, panel (d). The optimal alignment score, D̂, is also given in

the figure.

As a second demonstration, a similar analysis was performed for the 220 kbps plasmid. For

this plasmid, we demonstrate dual labeling with complete digestion of the plasmid with restric-

tion enzymes PacI, PmeI and SgrDI. Since we did not expect full-length linear molecules, all

the cut fragments were imaged. After post-processing, a consensus CB barcode, as well as

Table 2. Fictional example of how five plasmids sorted by match-score Z would be separated into the two levels of precision: ‘Significant match-score’ and ‘passed

resampling test’. In this table five imaginary plasmids have been sorted by match-score Z. The top 4 plasmids are found to have Pdual� 0.01, i.e., these plasmids are

deemed to have statistically significant match scores. However, only the top 2 plasmids are considered to pass the resampling test, where a 3-σZ rule is used to exclude any

plasmid where the difference in match-score, compared to the top case, is deemed to be too large.

Plasmid Zdual σZ Pdual Significant match-score Passed re-sampling test

1 7 0.8 1.3 � 10−12 True True

2 6 — 9.9 � 10−10 True True

3 4 — 3.2 � 10−5 True False

4 3 — 1.4 � 10−3 True False

5 2 — 2.3 � 10−2 False False

https://doi.org/10.1371/journal.pone.0260489.t002
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three sets of significant cut locations, were obtained, as seen in Fig 5, panels a), b), and c). The

consensus CB barcode and the three cut-labeled barcodes were then compared to their theo-

retical counterparts (see 2.4.1), as seen in Fig 5, panel d) and e). The optimal alignment scores,

Ĉ and D̂, are also given in the figure.

The comparison of experimental and theoretical sparse labels for the 220 kbps plasmid

highlights the value of partial digestion. Since it is difficult to map small fragments in the nano-

fluidics setup, all theoretical cut sites for PmeI and SgrDI could not be captured in the experi-

mental data when full-length fragments were not available (The theoretical digestion maps of

the 220 kbps plasmid for PacI, PmeI and SgrDI are shown in S1 File). These results demon-

strate that the performance of the assay when the plasmid is fully digested depends on the dis-

tance between the cut sites. All cut sites for PacI could be mapped; however, the cut sites for

PmeI and SgrDI that were too close to one another could not be mapped. We here limit ODM

to fragments larger than 30 kbps for practical purposes. However, as we demonstrated in [27],

we can position CB barcodes as small as 12 kbps, provided that we use a p-value threshold to

discard false positives. Although the complete plasmid digestion strategy does not always allow

all cut sites to be mapped, it is much faster than the partial digestion approach as no digestion

optimization is needed and prior knowledge of the number of cut sites is not required. We

place eight cut labels on the 220 kbps plasmid (total theoretical cut labels for the three enzymes

are eleven) but it is possible to set up more digestion reactions with other restriction enzymes

to increase the label density.

This novel experimental assay relies heavily on the enzymes used for the plasmid restric-

tion. One would ideally avoid enzymes that produce too few cuts, but one would also like to

avoid having many closely-spaced cuts (within the spatial resolution limit). Therefore, for an

unknown plasmid, it is not straightforward to pick a set of enzymes that are “suitable”. In the

Fig 4. Experimental dually-labeled barcodes for the 130 kbps plasmid. The 130 kbps plasmids were digested sub-optimally (one cut per molecule)

using two different enzymes [(a) AscI and (b) PmeI]. DNA barcodes for these digested plasmids were obtained through dense labeling (competitive

binding assay). The experimental competitive binding barcodes were aligned into a consensus barcode as illustrated in the concentric plots above. The

locations of cuts for each barcode are shown as the white regions. The determined locations of significant clusters of cuts (see Methods) are shown by

the black circles (the sparse labels). The enzyme AscI produced three cuts while the enzyme PmeI produced five cuts. (c) Two theoretical cut-labeled

barcodes have been aligned to the corresponding experimental cut-labeled barcodes in the orientation and circular shift where the alignment score, Eq

(2), is maximized. The regions of overlap between experimental and theoretical barcodes corresponding to the same enzyme have been highlighted. (d)

Densely labeled experimental consensus barcode aligned to the corresponding theoretical barcode. The alignment is at the orientation and circular shift

where its alignment score, Eq (3), is maximized. The intensity values have been re-scaled such that the intensity values of each barcode have the same

mean and standard deviation as the other.

https://doi.org/10.1371/journal.pone.0260489.g004
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S1 File, we present an analysis that generalizes our findings and presents how to select an

enzyme library that is expected to work well for a plasmid sample with unknown content.

Next, we tested our framework for combining the information from the two types of label-

ing. In Fig 6, we show histograms with the individual and combined match-scores Z for all

database plasmids within the length threshold of the 130 kbps and the 220 kbps plasmids,

respectively. For these two plasmids, we find that the experimental barcodes matched uniquely

for both individual label types, suggesting that both dense and sparse labeling from our experi-

ments is robust enough to generate unique matches for the two plasmids against the plasmid

barcode database. However, the combined match score (see sec 2.4.3) was significantly larger

than any of the two individual match scores. As a consequence, the combined p-value was sig-

nificantly lowered (10−17) compared to the two individual p-values (10−10 and 10−9 for densely-

and sparsely labeled barcodes, respectively).

3.2 Nick- and CB-labeled synthetic barcodes versus theory

Next we investigate how barcodes obtained through nick-labeling could potentially be made

more informative if combined with CB labeling. To that end, we mimic experiments by gener-

ating synthetic barcodes for all plasmids as described in Sec 2.3 in Methods. These synthetic

barcodes, within the length threshold of ±10%, were then compared to the plasmid barcode

database (which contains theoretical barcodes, see Sec 2.1 in Methods) using the matching

procedure described in Methods (Sec 2.4). The number of plasmids matches at the two levels

of precision, statistically significant match-score and passing the resampling test, were calcu-

lated. This number was calculated for three cases: (i) sparsely-labeled barcodes, (ii) densely-

labeled barcodes, and (iii) dually-labeled barcodes. In Fig 7 we show stacked-bar-plots of the

Fig 5. Experimental dually labeled barcodes for the 220 kbps plasmid. Three data sets containing fragments of a 220 kbps plasmid were obtained

using competitive binding barcoding and sparsely cut-labeled barcodes obtained through full digestion using the restriction enzymes (a) PacI, (b) PmeI,

and (c) SgrDI. The experimental competitive binding barcodes were aligned into a consensus barcode. The locations of cuts for each barcode are shown

as white regions and the determined locations of significant clusters of cuts (see Methods) are shown by the black circles. (d) Three theoretical cut-

labeled barcodes have been aligned to the corresponding experimental cut-labeled barcodes in the orientation and circular shift where the alignment

score, Eq (2), is maximized. Enzyme PacI produced four cuts while enzyme PmeI and enzyme SgrDI produced two cuts each. The regions of overlap

between experimental and theoretical barcodes corresponding to the same enzyme have been highlighted. (e) Densely labeled experimental consensus

barcode aligned to the corresponding theoretical barcode. The alignment is at the orientation and circular shift where its alignment score, Eq (3), is

maximized. The intensity values have been re-scaled such that the intensity values of each barcode have the same mean and standard deviation as the

other.

https://doi.org/10.1371/journal.pone.0260489.g005
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distribution of the number of matches to the plasmid database, sorted by plasmid length. The

panels on the left show the number of matches with statistically significant match-scores, and

the panels on the right show the number of best subset matches (plasmids that passed the

resampling test) using the block-bootstrap resampling procedure. It is clear that single CB- or

nick-labeling yields similar results when it comes to the fraction of matches. Importantly, we

find that for all length ranges using dual labeling instead of nick-labeling improves, in a pro-

nounced way, the matching to the database. Also, the longer the plasmid is, the better is the

matching performance.

Fig 6. Match scores for the two plasmid barcodes against the plasmid barcode database. Histograms of match scores are obtained by comparing

experimental dually labeled barcodes in Figs 4 and 5 against all theoretical barcodes in the plasmid barcode database. The histograms show match

scores for each barcode type (top row = CB labeling, middle row = cut-labeling) as well as the combined match-score (bottom row). The arrows indicate

the match scores at the optimal align position with respect to the combined match score. The error bars represent the uncertainty in the maximum

match-scores as estimated by the bootstrap resampling procedure described in sec 2.5. For the 130 kbps plasmid, the p-values are Psparse = 2.8 � 10−12,

Pdense = 3.7 � 10−10, Pcombined = 1.4 � 10−17. For the 220 kbps plasmid the p-values are Psparse = 1.8 � 10−10, Pdense = 2.3 � 10−19, Pcombined = 3.3 � 10−27. A

quantitative measure of the uniqueness-of-match of the top case is how many, X, standard deviations (σZ) there is between the Z-values for the top and

second-best case. For the 130 kbps plasmid, we have Xsparse = 25.0, Xdense = 13.0, Pcombined = 16.0. For the 220 kbps plasmid, we find Xsparse = 2.3, Xdense

= 7.7, Xcombined = 4.9.

https://doi.org/10.1371/journal.pone.0260489.g006
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Fig 7. Number of matches when comparing all synthetic plasmid barcodes (nick- and CB-labeling) to the theoretical barcodes in the plasmid

barcode database. For each plasmid in the database, the experiment for obtaining nick-labeled barcodes was emulated using the nicking enzyme

BspQI. CB barcodes were obtained as described in Methods. The panels on the left show the number of matches with statistically significant match-

scores, and the panels on the right show the number of best subset matches (passed the resampling test). The plasmids are sorted and binned by their

lengths. ‘No match’ means that no database plasmid had a statistically significant match-score, and ‘Random matches’ means that matches were found,
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4 Summary and outlook

In this study, we investigated DNA barcodes with multiple label types. In particular, we intro-

duced a theoretical method that allows for combining the alignment scores from different

labeling schemes. We also put forward a novel method for dealing with the uniqueness-of-

match problem when matching barcodes to a database using a block-bootstrap approach. To

experimentally generate dually-labeled DNA barcodes, we introduced an experimental assay

that uses competitive binding combined with restriction enzyme cutting. We tested out our

frameworks by matching multiply-labeled experimental DNA barcodes, and synthetic bar-

codes, from plasmids to a database of theoretical barcodes for all sequenced plasmids. In gen-

eral, we found that using multiply-labeled barcodes can significantly improve the number of

matches to a barcode database as compared to using only a single label type.

The present study opens up for combining the results of several kinds of ODM assays for

enhanced DNA analysis capabilities. The commercially available ODM systems, such as Bio-

Nano Genomics Saphyr, work with sparse labels (nick or DLE labeling chemistries); however,

in the BioNano workflow the DNA backbone is still stained with YOYO-1 for the analysis

pipeline to recognize the DNA molecules and localize dots on them. This DNA staining with

YOYO-1 could be very easily extended to CB staining by including netropsin in the backbone

staining step and converting the sparse labeled DNA into dual-labeled DNA. As demonstrated

in this work, dual labeling can then be used to improve mapping accuracy. This kind of dual

labeling could be especially useful for providing mapping support in the genomic regions

where the sparse labeling is not sufficient (because of lower dots coverage), locally fails (epige-

netic modification of labeling motif prevents label attachment, fluorophore bleaching, blinking

etc), or when critical structural variations are present between two dots.

We hope the experimental demonstrations and the theoretical framework introduced in

this work for combining sparse and dense labels will stimulate further efforts towards multi-

labeled ODM.

Supporting information

S1 Fig. The PCC alignment score versus our new alignment score D for sparsely-labeled

DNA barcodes. We ran a comparison of all synthetic sparsely-labeled DNA barcodes towards

the plasmid database and identified the top plasmid (the plasmid with the largest alignment

score). We find that in around 96% of the cases, the same plasmid ends up as the top case. In

all of these cases is the optimal position identical for the two types of alignment scores.

(TIF)

S2 Fig. Randomized dot barcodes. Two examples of randomized sparsely-labeled barcodes

(cut-labeling) compared to an experimental barcode of the same length. Cut-labeled barcodes

were obtained for the enzymes AscI and PmeI. By generating many such randomized barcodes

and matching experiments to these, we get optimal alignment score distributions of the form

in Fig 2a) in the main text.

(TIF)

S3 Fig. Randomized densely-labeled DNA barcodes. Two examples of randomized densely-

labeled barcodes (competitive binding) compared to an experimental barcode of the same

but none of them were the correct plasmid. A unique (and correct) match is highly preferred, so the larger the proportion of green in the bar is, the

better is the matching performance to the database. Note, however, that whether we get a unique match will depend on the database at hand. This is

the main reason that we restrict the database to complete and verified genomes, see Methods. The proportion of unique (and correct) matches is given

above each stacked bar.

https://doi.org/10.1371/journal.pone.0260489.g007
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length. By generating many such randomized barcodes and matching experiments to these, we

get optimal alignment score distributions of the form in Fig 2b) in the main text.

(TIF)

S4 Fig. Alignment score distributions for all positions. (a) When sparse-labeling alignment

score, Eq (2) in the main text, is calculated between sufficiently long barcodes for every possi-

ble orientation and circular shift, the distribution is well described by a truncated normal dis-

tribution. (b) When the densely-labeling alignment score, Eq (3) in the main text, is calculated

between sufficiently long barcodes for every possible orientation and circular shift, the distri-

bution is centered around 0 and fitted by a functional form given in [27]. Compare these

results to Fig 2 in the main text, which shows the associated optimal alignment score distribu-

tion for the best alignment.

(TIF)

S1 File. Supporting methods. Here we provide further details about the experiments and the-

oretical methods.

(PDF)
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