The Glutathione S-Transferase P1 341C>T Polymorphism and Cancer Risk: A Meta-Analysis of 28 Case-Control Studies

Sheng-xin Huang¹, Fei-xiang Wu¹, Min Luo², Liang Ma¹, Ke-feng Gao³, Jian Li¹, Wen-juan Wu⁴, Shan Huang¹, Qi Yang¹, Ke Liu¹, Yin-nong Zhao¹, Le-qun Li¹*

1 Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China, 2 Department of Experiment, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China, 3 Department of Thoracic Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China, 4 Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China

Abstract

Background: GSTP1, which is one major group of the glutathione S-transferase family, plays an important role in the metabolism of carcinogens and toxins, reducing damage of DNA as a suppressor of carcinogenesis. The 341C>T polymorphism of the GSTP1 has been implicated in cancer risk through cutting down its metabolic detoxification activities. However, results from previous studies remain conflicting rather than conclusive. To clarify the correlation and provide more statistical evidence for detecting the significance of 341C>T, a meta-analysis was conducted.

Methodology/Principal Findings: The relevant studies were identified through searching of PubMed, Embase, ISI Web of Knowledge and China National Knowledge Infrastructure in August 2012, and selected based on the established inclusion criteria for publications, then a meta-analysis was performed to quantitatively summarize the association of GSTP1 341C>T polymorphism with cancer susceptibility. Stratified analyses were employed to identify the source of heterogeneity. Publication bias was evaluated as well as sensitivity analysis. Based on 28 case-control studies with 13249 cases and 16798 controls, the pooled results indicated that the variant genotypes significantly increased the risk of cancer in homozygote comparison (TT versus CC: P = 0.012, OR = 1.40, 95% CI: 1.08-1.81, $P_{het.} = 0.575$), and recessive model (TT versus CT/CC: P = 0.012, OR = 1.40, 95% CI: 1.08-1.81, $P_{het.} = 0.575$), and recessive model (TT versus CT/CC: P = 0.012, OR = 1.40, 95% CI: 1.08-1.81, $P_{het.} = 0.575$), and recessive model (TT versus CT/CC: P = 0.012, OR = 1.40, 95% CI: 1.08-1.81, $P_{het.} = 0.575$). This was confirmed when stratified analyses were conducted according to ethnicity, source of control, matched control, quality score and cancer types. Moreover, significantly increased risk of cancer was also found in lung cancer (heterozygote comparison and dominant model). The stability of these observations was confirmed by a sensitivity analysis. Begger's funnel plot and Egger's test did not reveal any publication bias.

Conclusions/Significance: This meta-analysis suggests that the GSTP1 341C>T polymorphism may contribute to genetic susceptibility to cancer, especially to lung cancer, and in Asian population. Nevertheless, additional well-designed studies focusing on different ethnicity and cancer types are needed to provide a more exact and comprehensive conclusion.

Citation: Huang S-x, Wu F-x, Luo M, Ma L, Gao K-f, et al. (2013) The Glutathione S-Transferase P1 341C>T Polymorphism and Cancer Risk: A Meta-Analysis of 28 Case-Control Studies. PLoS ONE 8(2): e56722. doi:10.1371/journal.pone.0056722

Editor: Giuseppe Novelli, Tor Vergata University of Rome, Italy

Received October 20, 2012; Accepted January 14, 2013; Published February 21, 2013

Copyright: © 2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current external funding sources for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wufxiang@yahoo.com.cn

• These authors contributed equally to this work.

Introduction

Approximately 12.7 million new cases of cancer, and 7.6 million cancer-related deaths occurred in 2008, which indicated global burden of cancer continues to aggravate [1]. Prevention and diagnosis of cancer have become one of the most important challenges of the world. Potent markers for screening high-risk populations are urgently needed for early detection and preventive actions. The development of cancer is a complicated biological process, which is involved with multi-gene mutations and multiple factors, while the individual hereditary background may be the primarily determined risk of cancer susceptibility. The interaction between genetic susceptibility genes with environmental factors and metabolism dysfunction throughout the body plays an important role in the development of cancer [2]. The glutathione S-transferase family (GSTs), which are composed of four major groups including GSTA (α), GSTM1 (μ), GSTT1 (θ), and GSTP1 (π), are phase II detoxifying enzymes that catalyze a variety of reduced glutathione-dependent reactions with electrophilic substrates [3]. Based on the catalytic activity, GSTs metabolize carcinogens and toxins to reduce damage of DNA as a suppressor of carcinogenesis. The risk of cancer is correlated with exposure to xenobiotics or endogenous substances, which may be modified in metabolic detoxification activities by genetic variation [4]. It is well known that deletion variants of the GSTM1, GSTT1 and GSTP1 loci could result in loss of functional activity. Hendersonet *et al.* [5] found that GSTP1 null mice, disposed with carcinogen polycyclic aromatic hydrocarbons, had a highly significantly increased risk of skin cancer, anddemonstrated that GSTP1 may be an important determinant in cancer susceptibility. Chromosomal polymorphisms in genes involved in DNA repair, cell cycle control, apoptosis or metabolic enzymes may determine individual susceptibility to cancer [6].

Variants of prevalent allele in every GSTs gene may lower the efficiency of detoxification and aggravate the susceptibility to cancer. It was identified that there are two single nucleotide polymorphisms in GSTP1 that lead to changes in amino acids. One at nucleotide 313 (codon 104) in exon 5 (rs1695) has an A to G transition, which results in an amino acid change from isoleucine (*Ile*) to valine (*Val*). The other has a C to T transition in nucleotide 341 (codon 113) in exon 6 (rs1138272) which results in an amino acid change from alanine (*Ala*) to valine (*Val*) (**Figure S1**). This two loci were reported to cause minimal catalytic activity in individuals who carry one or more copies of the allele G or T [7,8].

A large number of studies have investigated the role of GSTP1 polymorphism in the etiology of cancer of various organs, including lung, breast, colorectal, bladder, prostate and so on. However, most of these studies contained small number of subjects, and the results of these studies remain conflicting rather than conclusive. In recent years, plenty of meta-analysis studies were extensively carried out to quantitatively evaluate the association between GSTP1 and cancer susceptibility. As a consequence, statistically significant increased risk was found between GSTP1 313A>G and breast cancer [9], esophageal cancer [10], bladder cancer [11], leukemia [12] and other cancers. Nevertheless, no pooled evaluation on GSTP1 341C>T has been performed yet. In light of the ubiquity of 341C>T polymorphism and the critical role of GSTP1 in the carcinogenic process, we performed a meta-analysis on all eligible case-control studies to estimate the cumulative cancer risk of this polymorphism, and quantitatively analyze the potential influencing factors, with an expectation to provide the most comprehensive evidence for the relationship between this variant and cancer susceptibility.

Materials and Methods

Search Strategy

We searched the PubMed, Embase, ISI Web of Knowledge and China National Knowledge Infrastructure for all articles of the association between GSTP1 341C>T polymorphism and cancer risk. The following terms were used in various combinations in this search: ("glutathione S-transferase P1" OR "GSTP1") AND ("polymorphism" OR "variant" OR "variation") AND ("neoplasm" OR "cancer" OR "carcinoma" [last search was updated on August 30, 2012]). All qualified studies were retrieved, and their references were manually checked for additional related publications. Review articles and references of other relevant studies identified were hand-searched as well to search for extra eligible studies. This search strategy was performed iteratively until no further pertinent article was found. Only published studies with full-text articles were included, without language limited. Non-Chinese or non-English articles were translated by Google Translate. When overlapping data on the same subjects were included in more than one publication, only the one with the larger sample size was included in this meta-analysis.

Inclusion and Exclusion Criteria

Eligible studies in the current meta-analysis had to meet all the following criteria: (a) evaluating the association between GSTP1

Ala114Val polymorphism and cancer risks, (b) using a case-control design, (c) sufficient data of genotypes (CC, CT and TT) were presented with estimated odds ratios (ORs) and 95% confidence intervals (CIs). The major exclusion criteria were: (a) genotype distribution of the control population was deviated from Hardy-Weinberg equilibrium (HWE), (b) family-based control or lack of the control group, (c) duplicated studies.

Data Extraction

Data were independently extracted in duplicate by two investigators (Shengxin Huang, Feixiang Wu) using a standard protocol and data-collecting form according to the inclusion criteria. Original extraction data were checked by another investigator (Min Luo), and any disagreement was resolved by discussion among the three investigators. The following information was collected from each study: first author's surname, year of publication, country, and ethnicity of the study population, cancer types, and source of control groups, genotyping methods, and frequency of genotypes in both groups. Diverse ethnicity descents were categorized as Asian, African, and Caucasian. If a study was impossible to separate participants according to such phenotypes, the group reported was termed as "mixed ethnicity". For studies which included subjects of diverse ethnic groups or cancer types, data were extracted separately if possible.

Quality Assessment

We developed a quality assessment scale (**Table 1**), which was modified from previous studies [13–15], to evaluate the quality of eligible studies. Three reviewers (Min Luo, Liang Ma, Kefeng Gao) independently assessed the quality of studies according to the scale for quality assessment. Any disagreement was resolved by discussion among reviewers. The evaluation mainly focused on representativeness of both cases and controls, specimens of cases for determining genotypes, quality control of genotyping method, sample size. Total score ranged from 0 (worst) to 12 (best). Reports scoring ≥ 9 ($\geq 75\%$) were classified as "high-quality", scoring 6–8 (50%–75%) as "moderate-quality", <50% as "low-quality".

Statistics Method

Firstly, the allelic frequency was calculated, and the observed genotype frequencies of the GSTP1 341C>T polymorphism were assessed for Hardy-Weinberg equilibrium using χ^2 test in the control group in each study. The strength of the association between the GSTP1 341C>T polymorphism and cancer risk was assessed by calculating ORs with 95% CIs. The overall pooled analysis was performed for homozygote comparison (TT versus CC), heterozygote comparison (CT versus CC), dominant model (TT/CT versus CC) and the recessive model (TT versus CT/CC), respectively. Comparison of the various subjects, stratified analyses were processed according to ethnicity, source of controls, sample size, matched control, quality score and cancer types (if one cancer type contained less than two individual studies, it would be combined into other cancers group). To achieve sufficient statistical power, we only conducted the meta-analysis on cancer types with more than three studies. Otherwise, we merged the studies into the "other cancer" group. The significance of the pooled ORs was determined by the Z-test and P < 0.05 was considered as statistically significant. We also computed the power of the selected studies, in order to assess the probability of detecting an association between this polymorphism and cancer at the 0.05 level of significance, assuming genotypic risks of 1.2, 1.5 and 2.0.

The heterogeneity of studies was assessed through the Cochran's Q-test and the l^2 test. If P < 0.1 or $l^2 > 50\%$, it was

Table 1. Scale for quality assessment.

Parameter	Score
1. Source of cases	
Selected from population or cancer registry	2
Selected from oncology department or cancer institute	1
No description	0
2. Representativeness of controls	
Population-based	2
Population-hospital mixed	1.5
Hospital-based	1
No description	0
3. Diagnosis of cancer	
Histological or pathologically confirmed	2
Patient medical record	1
No description	0
4. Specimens of cases for genotyping	
Peripheral blood or normal tissues	2
Tumor tissues or exfoliated cells	1
No description	0
5. Quality control of genotyping	
Different genotyping assays confirmed the result	2
Quality control by repeated assay	1
No description	0
6. Total sample size	
>1000	2
200–1000	1
<200	0

doi:10.1371/journal.pone.0056722.t001

considered substantial heterogeneity among studies, and the random-effects model (the DerSimonian and Laird method) was applied as the preferred method for estimating the summary ORs and 95% CIs; the fixed-effects model (the Mantel-Haenszel method) was used when there was without substantive heterogeneity. Moreover, sensitivity analysis, by which a single study in the meta-analysis was deleted each time to determine the influence of the individual data set for the overall pooled OR, was performed to assess the stability of the results. To assess the potential publication bias, visual inspection of Begger's funnel plot symmetry [16] was performed. Egger's test was also conducted to analyze the publication bias statistically. The meta-analysis was conducted using Stata software (version 12.0; StataCorp LP, College Station, Texas), with all the P values were two-sided. Power was calculated using the power and sample size calculation software PS version 3.0 (http://biostat.mc.vanderbilt.edu/twiki/ bin/view/Main/PowerSampleSize). [17].

Results

Characteristics of Studies

As showed in **Figure 1**, 46 studies exploring the relationship between GSTP1 polymorphisms and cancer susceptibility were identified. After reading the full texts, 21 studies were excluded because they did not provide allele frequencies, which were needed for OR calculation, deviated from the HWE, family-based control or lack of the control group. In addition, one qualified study was identified from review articles and bibliography through hand searching. Finally, a total of 26 eligible publications with 28 case-control studies [18–43] met the preset inclusion criteria, in which 13249 cases and 16798 controls were included for the pooled analysis. All studies' characteristics were summarized in **Table 2**. All the studies were published in English except for one [42]. This meta-analysis included seven colorectal cancer studies, six lung cancer studies, four breast cancer studies, three upper digestive tract cancer studies, two thyroid cancer studies, and six other cancer studies (including lymphoma, melanoma *etc.*). There were 14 population-based studies, 13 hospital-based studies and one population-hospital mixed study [20]. Nineteen of 28 studies were conducted in Caucasians; four studies were conducted in Asians [18,21,34,38]; one study was conducted in Africans [36], and four studies of mixed population [23,30,40].

Generally, the quality of these included studies was satisfactory. Cancers were confirmed by histology or pathology in 78.6% (22/ 28) studies. Most of the studies described genotyping measures of controls, such as positive and/or negative controls (4/28), blindness to case-control status (5/28), confirmation by different genotyping methods(2/28) and random repetition in 50%(14/28)studies. 60.7% (17/28) studies used matched control population by age, gender, ethnicity or other factors. Most of the included studies adopted rational sample size, and 60.7% (17/28) of all studies were with large sample size (>500). The total sample size of each group was more than 1000 in seven studies. However, only two studies had statistical power over 80% when we assumed an allelic OR of 1.5. According to the preset Quality Assessment Scale, most of the included studies were identified as "moderate-quality" (13 studies) and "high-quality" (12 studies), only three studies as "lowquality". Different genotyping methods were utilized in these

Figure 1. Studies identified with criteria for inclusion and exclusion.

doi:10.1371/journal.pone.0056722.g001

Public list list list list list list list list															
Alternational Alternat	Author	Publication year	Country	Ethnicity	Cancer type	Control source	Genotyping methods	Matching criteria	n(case)	n(control)	MAF	Power	*(%)		Quality score
Applei 2001 Studi Anda Agam Per PAPPE Aga set 11 32 31 11 32												1.2	1.5	01	
Image Spain Cauciant Leaderrish R-R Nut Tot	Al-Dayel	2008	Saudi Arabia	Asian	Lymphoma	PB	PCR-RFLP	Age, sex	145	510	0.126	11.4	36.9 8	30.5	5
Renetice 204 USA Curusian Ledeenia Res Curusian Ledeenia Res Curusian Ledeenia Res Curusian Res Res Res Res Res Res Res Res	Landi	2005	Spain	Caucasian	Coleractal	阳	APEX	NA	360	325	0.055	8.6	25.6 6	5.8	5
Workeise 1999 Sweden Caucialin Prestate Res	Barnette	2004	USA	Caucasian	Leukaemia	HB	AS-PCR	NA	170	288	0.075	8.6	24.1 6	50.1	5
Wartmind Disk Mrian Beach HB PGN Mat FF TA Mod S5 74 74 75 <td>Wadelius</td> <td>1999</td> <td>Sweden</td> <td>Caucasian</td> <td>Prostate</td> <td>PB</td> <td>PCR-SSCP</td> <td>Age</td> <td>171</td> <td>148</td> <td>0.095</td> <td>7.7</td> <td>20.4</td> <td>53.1</td> <td>9</td>	Wadelius	1999	Sweden	Caucasian	Prostate	PB	PCR-SSCP	Age	171	148	0.095	7.7	20.4	53.1	9
Bernols-Villes 2012 Spain Gaucsian Melhorma He Taquity Region S55 S3 S3 S4 S4 Dehnimhain 2012 Finan Caucsian He Provequerong NA S4 S5 S4	Van Emburgh	2008	USA	African	Breast	НВ	PCR-SSCP	Age, ethnicity	54	74	0.027	5.7	7.6 1	2.9	9
Behalimkhai 201 Ian Aian Celeacial HB Pyrosequencing NA So So <td>Ibarrola-Villava</td> <td>2012</td> <td>Spain</td> <td>Caucasian</td> <td>Melanoma</td> <td>HB</td> <td>TaqMan</td> <td>Region</td> <td>555</td> <td>359</td> <td>0.025</td> <td>6.8</td> <td>16.1 4</td> <td>13.5</td> <td>2</td>	Ibarrola-Villava	2012	Spain	Caucasian	Melanoma	HB	TaqMan	Region	555	359	0.025	6.8	16.1 4	13.5	2
Machiak 2006 Paland Cuasaia Thyroid HB CR-RFLP Nd 103 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 53 113 73 73 Mart Enbugh 1988 Finada Cuasaia Lung PB CR-RFLP N4 206 53	Ebrahimkhani	2012	Iran	Asian	Coleractal	НВ	Pyrosequencing	NA	73	95	0.063	6.3	11.2 2	5.1	5
Reliation Sauch Achaia Aian Thyoid Res CR-RFL Age Tot Tot <td>Marciniak</td> <td>2006</td> <td>Poland</td> <td>Caucasian</td> <td>Thyroid</td> <td>HB</td> <td>PCR-RFLP</td> <td>NA</td> <td>103</td> <td>53</td> <td>0.113</td> <td>5.9</td> <td>11.2 2</td> <td>17.3</td> <td>9</td>	Marciniak	2006	Poland	Caucasian	Thyroid	HB	PCR-RFLP	NA	103	53	0.113	5.9	11.2 2	17.3	9
Mathematical USA Caucasian Beast HB CR-SSCP Age ethnicity 386 385 0.064 98 3.1 Sarikosidi 1998 Frland Caucasian Lung PB CR-RFLP NA 206 203 0.064 9.5 3.2 703 Sarikosidi 1998 Frland Caucasian Lung Res MALPLOFMS Age extra tion 206 203 0.064 9.6 3.2 323 343 Zaucasian Lung Resat HB MALLOFMS Age sex stroking 319 319 319 318 343 323 323 343 Zared Caucasian Lenerati PB MALLOFMS Age sex stroking 319 319 323 323 323 323 324 324 323 323 323 323 323 324 324 324 324 323 323 324 324 324 324 324 324	Siraj	2008	Saudi Arabia	Asian	Thyroid	PB	PCR-RFLP	Age	40	510	0.126	8.2	18.8 4	13.3	7
Aarikoski198FinlandCaucasianLungRepRCR-RILPNA2062032030.006153222703Like2003USACaucasianParceaticHBMaLD-TOF MSAge. sex.3352980.0061405334Kim2008KemanyCaucasianBreastHBMALD-TOF MSAge. sex.3352980.0061405334Zienoldithy2008KomanyCaucasianLongPBAge. sex.349593333834Zienoldithy2011IndiaAsianClenatalPBAmthipic PCAge. sex.313313303134Winphy2007FanceCaucasianLongPBAmthipic PCAge. sex.31331330313232Winphy2007FanceCaucasianLongPBTaqManAge. sex.34924730313232Winphy2007GaucasianLongPBTaqManAge. sex.Age. sex.31331323232Winp2010GermanyCaucasianLongPBTaqManAge. sex.3483483434343434Winp2010GermanyCaucasianLongPBTaqManAge. sex.34834834343434343434343434	Van Emburgh	2008	USA	Caucasian	Breast	НB	PCR-SSCP	Age, ethnicity	386	385	0.064	9.8	32.1 7	7.3	2
Index 2007 USA Caucasian Panceatic HB Masscode PCR Age, sex, 236 289 0006 106 366 365 Kin 2008 Gernary Caucasian Breast HB MLU-TOF MS Age, sex, smoking 313 289 0006 106 314 323 Zenoldrity 2008 Noway Caucasian Breast PB APCK Age, sex, smoking 319 381 0006 31 32 33 Zenoldrity 2009 France Caucasian Breast PB APL Age, sex, smoking 313 321 323 39 Kurp 2009 France Caucasian Breast PB TapMan Age, sex, smoking 313 303 307 323 39 30 Kurp 2009 France Caucasian Breast PB TapMan Age, sex, smoking 313 307 307 303 303 303 K	Saarikoski	1998	Finland	Caucasian	Lung	PB	PCR-RFLP	NA	206	293	060.0	9.5	29.2	6.0	8
Rim 2008 Germany Caucial Breat HB MALD-TOF MS Age S66 609 0.076 1.0 5.25 6.3 Zheolddiny 2008 Noway Caucial Lung PB APK Age, sex, smoking 319 319 310 0.06 9.7 308 744 Vang 2011 India Asian Coleratal PB PCR-RFLP Age, sex, smoking 319 311 0.065 9.7 308 393 393 Wuply 2007 reland Caucial Percept PB AutD-TOF MS Age, sex, smoking 313 101 0.07 314 433 393 393 Wuply 2007 relands Beder PB TaqMan Age, sex, smoking 313 131 107 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 <t< td=""><td>Jiao</td><td>2007</td><td>USA</td><td>Caucasian</td><td>Pancreatic</td><td>阳</td><td>MassCode PCR</td><td>Age, sex</td><td>335</td><td>298</td><td>0.096</td><td>10.6</td><td>36.6 8</td><td>32.7</td><td>8</td></t<>	Jiao	2007	USA	Caucasian	Pancreatic	阳	MassCode PCR	Age, sex	335	298	0.096	10.6	36.6 8	32.7	8
Zeroldriy 2008 Noway Cacasian Lung PB APEX Age, sex, smoking 319 811 0.066 9.7 30.8 743 Wang 2011 India Asian Coleactal PB FCR-FRLP Age, sex, smoking 302 291 0.056 7.3 203 593 Wang 207 Ireland Cacasian Oseophageal PB Mutpiper, PCR Age, sex, smoking 302 291 0.07 32 393 593 Wang 207 Ireland Cacasian Oseophageal PB Mutpiper, PCR Age, sex, ethnicity, region 103 1121 0.073 203 203 593 593 Kity 2010 Gerasian Badet HB TaqMan Age, sex, ethnicity, region 1343 5437 0.076 513 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 <td>Kim</td> <td>2008</td> <td>Germany</td> <td>Caucasian</td> <td>Breast</td> <td>НВ</td> <td>MALDI-TOF MS</td> <td>Age</td> <td>596</td> <td>609</td> <td>0.076</td> <td>14.0</td> <td>52.5 5</td> <td>15.4</td> <td>8</td>	Kim	2008	Germany	Caucasian	Breast	НВ	MALDI-TOF MS	Age	596	609	0.076	14.0	52.5 5	15.4	8
Wang 2011 India Asian Coleactal PB PCR-RLP Age, sex 302 291 0.050 79 214 56.2 Muphy 2007 Ieland Caucasin Oesophageal PB Muphy PCR Age, sex 207 237 007 83 33 59 Kity 2008 Fance Caucasin Oesophageal PB TaqMan Age, sex, ethnicity, region 103 1121 0.073 203 569 97 Kity 2006 Spain Caucasin Badder HB TaqMan Age, sex, ethnicity, region 103 1121 0.073 203 </td <td>Zienolddiny</td> <td>2008</td> <td>Norway</td> <td>Caucasian</td> <td>Lung</td> <td>PB</td> <td>APEX</td> <td>Age, sex, smoking</td> <td>319</td> <td>381</td> <td>0.066</td> <td>9.7</td> <td>30.8</td> <td>74.4</td> <td>8</td>	Zienolddiny	2008	Norway	Caucasian	Lung	PB	APEX	Age, sex, smoking	319	381	0.066	9.7	30.8	74.4	8
Murphy 2007 Ireland Caucasian Oscophageal PB Mutplex PCR Age, sex 207 233 0078 83 233 938 Kiry 2008 France Caucasian Coleractal PB TaqMan Age, sex 1023 1121 0.073 208 75.7 988 Kiry 2008 Fance Caucasian Badder HB TaqMan Age, sex ethnicity, region 1033 1017 0.078 75.7 988 KirkE-CENICA 2010 Germany Eacasian Bradder HB TaqMan Age, sex ethnicity, region 1033 1017 1019 101 10	Wang	2011	India	Asian	Coleractal	PB	PCR-RFLP	Age, sex	302	291	0.050	7.9	21.4 5	56.2	8
Kiry 2008 France Caucasian Coleractal PB TaqMan Age, sex, ethnicity, region 1023 1121 0073 20.8 75.7 99.8 Garcia-Closas 2005 Spain Caucasian Blader HB TaqMan Age, sex, ethnicity, region 103 107 107 10.9 50.9 7.7 99.8 MRF-GENICA 2010 Germany Breast PB MALD-TOF MS Age, region 138 5487 0.036 65.7 100 1001 MRF-GENICA 2010 Germany Lausain Ling PB MALD-TOF MS Age, region 1318 5487 0.036 65.5 100 1010 MRF-GENICA 2010 UK Guestain Ling PB PAFRLP NA 213 214 213 211 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 113	Murphy	2007	Ireland	Caucasian	Oesophageal	PB	Multiplex PCR	Age, sex	207	223	0.078	8.3	23.3 5	8.63	6
darcia-Closas Spain Caucasian Bidder HB TaqMan Age, sex, ethnicity, region 103 107 0.47 14,9 56.9 97.2 MRHE-GENICA 2010 Germany Caucasian Braat PB MALD-TOF MS Age, region 103 547 0.047 14,9 56.9 97.1 MRHE-GENICA 2010 Germany Caucasian Lung PB MALD-TOF MS Age, region 1318 547 0.047 14.9 56.9 71.3 Vorthwood 2010 UK Caucasian Lung PB TaqMan NA 253 266 0.111 11.2 38.9 71.3 Vorthwood 2010 UK Caucasian Lung PB TaqMan NA 233 266 0.111 11.2 38.9 58.3 Vang 2004 UK PB TaqMan NA 233 266 0.113 11.1 23.9 58.7 Vang 2004 <td>Küry</td> <td>2008</td> <td>France</td> <td>Caucasian</td> <td>Coleractal</td> <td>PB</td> <td>TaqMan</td> <td>Age, sex</td> <td>1023</td> <td>1121</td> <td>0.073</td> <td>20.8</td> <td>75.7 9</td> <td>8.6</td> <td>6</td>	Küry	2008	France	Caucasian	Coleractal	PB	TaqMan	Age, sex	1023	1121	0.073	20.8	75.7 9	8.6	6
MARIE-GENICA 2010 Germany Caucasian Breast PB MALD ¹ -TOF MS Age, region 3148 5487 0.086 65 10.0 100.0 rensen 2004 Damark Caucasian Lung PB PR-PLP NA 233 266 0.086 9.3 289 73.1 vertence 2010 UK Caucasian Lung PB TaqMan NA 233 266 0.011 11.2 38.9 73 85.3 vertence 2004 UK Caucasian Lung PB TaqMan NA 239 229 0.011 11.2 38.9 55.3 56.3 50.0 73.1 39.9 Vertunco 2004 UK Caucasian UNP PB APA APA APA 299 203 20.1 7.0 7.3 58.9 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.1 73.0 73.1 73.1	García-Closas	2005	Spain	Caucasian	Bladder	HB	TaqMan	Age, sex, ethnicity, region	1083	1007	0.047	14.9	56.9 9	7.2	6
orensen 2004 Damark Carcasian Lung PB CR-RELP NA 253 266 0.086 9.3 289 713 Northwood 2010 UK Carcasian Coleactal PB TaqMan NA 308 296 0.111 11.2 389 853 Northwood 2010 UK Carcasian Lung PB TaqMan NA 229 299 0.011 11.2 389 683 Jandi 2004 USA Mixed Lung PB TaqMan NA 229 229 0.021 78 711 399 Jandi 2009 Italy Carcasian WPM PB APEX NA 391 0.071 78 711 399 Canova 2009 Italy Carcasian UPM PB APEX Age, sex, ethnicity, region 1501 149 0.073 161 418 Canova 2005 USA Vere	MARIE-GENICA	2010	Germany	Caucasian	Breast	PB	MALDI-TOF MS	Age, region	3148	5487	0.086	66.5	100.0	0.00	6
Northwood 2010 UK Caucasian Celeractal PB TaqMan NA 308 296 0.111 11.2 389 855 Yang 2004 USA Mixed Lung PB TaqMan NA 299 296 0.111 11.2 389 855 Jandi Lundi Lung PB PAEX NA 299 299 0.092 90 273 683 Jandi 2007 Italy Caucasian MPM PB AFEX NA 88 391 0.051 78 731 399 Lanova 2009 Italy Caucasian UTC Mixed AFEX Age, sex, ethnicity, region 1501 1449 0.073 767 78 700 Vanova 2003 USA Caucasian UTC Mixed AFEY Age, sex, ethnicity, region 1501 149 0.073 151 948 Moore 2005 USA Mixed	sorensen	2004	Danmark	Caucasian	Lung	PB	PCR-RFLP	NA	253	266	0.086	9.3	28.9	71.3	6
Ang 2004 USA Mixed Lung PB TaqMan NA 229 229 0.092 9.0 273 683 Landi 2007 Italy Caucasian MPM PB AFEX NA 29 29 0.092 9.0 73 683 Landi 2007 Italy Caucasian UDTC Mixed AFEX Age, sex, ethnicity, region 1501 1449 0.073 26.7 875 1001 vang 2003 USA Lung PB PCR-RELP Age, sex, ethnicity, region 1501 1449 0.073 26.7 875 1001 vang 2003 USA Lung PB PCR-RELP Age, sex, ethnicity, region 1501 1449 0.073 26.7 875 Moore 2003 USA Mixed Cleractal HB TaqMan Sex, ethnicity, sexion 700 714 0.073 76 13.7 241 More USA <	Northwood	2010	UK	Caucasian	Coleractal	PB	TaqMan	NA	308	296	0.111	11.2	38.9 8	35.5	6
Landi 2007 Italy Caucasian MPM PB APEX NA 88 391 0.051 7.8 7.1 399 Canova 2009 Italy Caucasian UDTC Mixed APEX Age, sex, ethnicity, region 1501 1449 0.073 26.7 87.5 1001 wang 2003 USA Caucasian Uno PB PCR-RFLP Age, sex, ethnicity, region 1501 1449 0.073 26.7 87.5 1001 wang 2003 USA Caucasian Lung PB PCR-RFLP Age, sex, ethnicity, region 1749 0.075 13.7 51.1 94.8 Moore 2005 USA Mixed Coleractal HB TaqMan Sex, ethnicity, smoking 579 598 70.6 78 76 78.4 94.6 Moore 2005 USA Mixed Coleractal HB PCR-RFLP NA 700 714 0.073 76 18.7	Yang	2004	USA	Mixed	Lung	PB	TaqMan	NA	229	229	0.092	9.0	27.3 6	58.3	6
Canova 2009 Italy Caucasian UDTC Mixed AFX Age, sex, ethnicity, region 1501 1449 0.073 26.7 87.5 100. wang 2003 USA Caucasian Ung PB PCR-RFLP Age, sex, ethnicity, smoking 579 598 0.075 13.7 51.1 94.8 Moore 2005 USA Caucasian Lung PB PCR-RFLP Age, sex, ethnicity, smoking 579 598 0.075 13.7 51.1 94.8 Moore 2005 USA Mixed Coleractal HB TaqMan Sex, ethnicity, smoking 579 508 16.8 63.4 98.6 Harris 1998 Australia Mixed Long HB PCR-RFLP NA 131 199 0.073 7.6 187 47.2 Harris 1998 Australia Mixed Lung HB PCR-RFLP NA 184 199 0.073 7.6 187	Landi	2007	Italy	Caucasian	MPM	PB	APEX	NA	88	391	0.051	7.8	17.1 3	6.6	6
wang 2003 USA Caucasian Lung PB PCR-RELP Age, sex, ethnicity, smoking 579 598 0.075 13.7 51.1 948 Moore 2005 USA Mixed Coleractal HB TaqMan Sex, ethnicity, smoking 579 598 0.075 13.7 51.1 948 Moore 2005 USA Mixed Coleractal HB TaqMan Sex, ethnicity 700 714 0.085 16.8 634 986 Harris 1998 Australia Mixed Coleractal HB PCR-RFLP NA 131 199 0.073 7.6 18.7 472 Harris 1998 Australia Mixed Lung HB PCR-RFLP NA 184 199 0.073 7.6 18.7 472	Canova	2009	Italy	Caucasian	UDTC	Miexed	APEX	Age, sex, ethnicity, region	1501	1449	0.073	26.7	87.5 1	0.00	9.5
Moore 2005 USA Mixed Coleractal HB TaqMan Sex, ethnicity 700 714 0.085 16.8 6.34 98.6 Harris 1998 Australia Mixed Coleractal HB PCR-RELP NA 131 199 0.073 7.6 18.7 47.2 Harris 1998 Australia Mixed Lung HB PCR-RELP NA 131 199 0.073 7.6 18.7 47.2 Harris 1998 Australia Mixed Lung HB PCR-RELP NA 184 199 0.073 7.8 20.3 52.6	wang	2003	USA	Caucasian	Lung	PB	PCR-RFLP	Age, sex, ethnicity, smoking	579	598	0.075	13.7	51.1 5	94.8	10
Harris 1998 Australia Mixed Coleractal HB PCR-RFLP NA 131 199 0.073 7.6 18.7 47.2 Harris 1998 Australia Mixed Lung HB PCR-RFLP NA 184 199 0.073 7.8 20.3 52.6	Moore	2005	USA	Mixed	Coleractal	먬	TaqMan	Sex, ethnicity	700	714	0.085	16.8	63.4 9	9.6	10
Harris 1998 Australia Mixed Lung HB PCR-RFLP NA 184 199 0.073 7.8 20.3 52.6	Harris	1998	Australia	Mixed	Coleractal	HB	PCR-RFLP	NA	131	199	0.073	7.6	18.7 4	17.2	10
	Harris	1998	Australia	Mixed	Lung	HB	PCR-RFLP	NA	184	199	0.073	7.8	20.3	52.6	10

*Power was calculated by the PS software with MAF in controls as the frequency of risk factor and OR was selected with 1.2, 1.5 and 2 as the relative risk. doi:10.1371/journal.pone.0056722.t002

studies, including the classical method PCR-RFLP, TaqMan assay, APEX technology, MALDI-TOF MS and other methods in the remaining studies.

Quantitative Synthesis

Table 3 lists the main results of this pooled analysis and **Figure 2 and 3** show the association of GSTP1 341C>T polymorphism with cancer risk in the form of forest plots. For the overall analysis, significant association between the risk of cancer and the variant genotypes of GSTP1 341C>T polymorphism was found in homozygote comparison (TT versus CC: P=0.012, OR = 1.40, 95% CI: 1.08–1.81, $P_{het.} = 0.575$), and recessive model (TT versus CT/CC: P=0.012, OR = 1.40, 95% CI: 1.08–1.81, $P_{het.} = 0.562$). However, no significant association was found in heterozygote comparison (CT versus CC) nor the dominant model (TT/CT versus CC).

In a stratified analysis by cancer type, significant risk was observed in lung cancers in heterozygote comparison (CT versus CC: P = 0.033, OR = 1.21, 95% CI: 1.02–1.45, $P_{\text{het.}} = 0.197$) and dominant model (TT/CT versus CC: P=0.013, OR = 1.25, 95% CI: 1.05–1.48, $P_{\text{het.}} = 0.114$). Interestingly, statistically significantly ascending cancer risk was also observed in "other cancers" in the recessive model (TT versus CT/CC: P=0.048, OR = 1.98, 95% CI: 1.01–3.91, $P_{\text{het.}} = 0.447$). No significant association was found between this polymorphism and thyroid cancer, breast cancer, upper digestive tract cancers and colorectal cancer. In subgroup analysis according to ethnicity, significantly increased risk was found in the Asian population (TT versus CC: P=0.002, OR = 3.42, 95% CI: 1.56–7.47, $P_{het.} = 0.997$; TT versus CT/ CC: P = 0.002, OR = 3.49, 95% CI: 1.59–7.63, $P_{\text{het.}} = 0.998$), but this association was not found in the African, Caucasian and mixed population. After stratified analysis by the source of controls, significantly increased risk was observed in populationbased studies (TT versus CC: P = 0.023, OR = 1.45, 95% CI: 1.05–1.99, $P_{\text{het.}} = 0.206$; TT versus CT/CC: P = 0.024, OR = 1.45, 95% CI: 1.05–1.99, $P_{\text{het}} = 0.196$). Moreover, this association was found in those studies with matched controls (TT versus CC: P = 0.015, OR = 1.42, 95% CI: 1.07-1.89, $P_{\text{bet}} = 0.468$; TT versus CT/CC: P = 0.016, OR = 1.45, 95% CI: 1.07–1.89, $P_{\text{het}} = 0.444$). According to the quality assessment, this association was found in those "moderate-quality" studies (TT versus CC: P = 0.001, OR = 2.82, 95% CI: **1.56–5.09**, $P_{\text{bet}} = 0.982$; TT versus CT/CC: P = 0.001, OR = 2.78, 95% CI: 1.54–5.03, $P_{\text{het.}} = 0.986$), and this similar result was also detected when three "low-quality" studies were excluded (TT versus CC: P=0.023, OR=1.36, 95% CI: 1.04-1.79, $P_{\text{het.}} = 0.715$; TT versus CT/CC: P = 0.029, OR = 1.36, 95% CI: 1.03–1.78, P_{het} = 0.729).

Heterogeneity and Sensitivity Analysis

For the overall comparisons, no significant heterogeneity among studies was observed (the four genetic model comparison all $P_{\rm het.} > 0.1$), which suggested that there was no substantial heterogeneity between studies, except significant heterogeneity in the stratified analysis according to ethnicity (CT versus CC: $P_{\rm het.} = 0.052$, $I^2 = 61.2\%$), for which the random-effect model was conducted in the pooled analysis. In the sensitivity analyses, the influence of each study on the pooled OR was checked by repeating the meta-analysis while omitting each study, one at a time. The corresponding pooled ORs were not materially altered, indicating that our results were statistically robust (**Table S1**).

Publication Bias

Begger's funnel plot and Egger's test were performed to assess the publication bias of articles. As it showed in **Figure 4 and 5**, the shapes of the funnel plots did not reveal any evidence of an obvious asymmetry in all comparison models. Moreover, Egger's test was used to provide statistical evidence of funnel plot symmetry. The results still did not show any evidence of publication bias (t=0.99, P=0.330 for TT versus CC; t=0.41, P=0.688 for CT versus CC; t=0.99, P=0.332 for dominant model; t=0.96, P=0.346 for recessive model).

Discussion

As detoxifying enzyme, glutathione S-transferase plays an important role in protecting cells from cytotoxic and carcinogenic agents in the defense system. The GSTP1 gene is located on chromosome 11q13, and previous studies have indicated that it was widely expressed but predominantly in normal epithelial cells, such as the respiratory tract system, digestive system, and urinary system [44]. Exon 5 (313A>G) and exon 6 polymorphisms (341C>T) were reported that they could result in decreased conjugating activity [8]. The GSTP1 313A>G polymorphism was shown to be a predisposing risk factor for a number of human malignancies. Accordingly, we speculated that GSTP1 341C>T polymorphism might also be a risk factor in the genesis and development of cancer. Previous conclusions of numerous studies on the association between the GSTP1 341C>T polymorphism and cancer risk remain conflicting and contradictory. The inconsistent results are possibly because of a slight effect of the polymorphism on cancer risk or the relatively low statistical power of published studies. Consequently, meta-analysis is needed to provide a quantitative approach for combining the different results

The present meta-analysis, which included 13249 cases and 16798 controls from 26 publications with 28 case-control studies, explored the relationship between the 341C>T polymorphism and cancer risk. For overall comparison of pooled ORs, significantly increased risk was observed in homozygote comparison (TT versus CC) and the recessive model (TT versus CT/CC), without significant between-study heterogeneity. These results indicated that GSTP1 341C>T polymorphism may increase cancer risk, especially in individuals with mutant allele homozygous TT genotype.

Previous studies have proved that GSTP1 was variably expressed in malignant tumor tissues with a low level in lymphoma and breast cancer, while over-expressed were found in lung cancer, head and neck tumors and colon cancer [45]. GSTP1 exert varying effects on different organs, and the carcinogenic mechanism difference may account for varied cancer risk. Our meta-analysis provide evidence that the variant GSTP1 341C>T may enhance individual susceptibility to lung cancer when special cancer was concerted. This result demonstrates the disparate distribution of GSTP1 in different sites, and the over-expressed GSTP1 may be a risk of cancer. Furthermore, genetic variability in the individual response to carcinogens might modify the susceptibility to cancer [46]. Van Emburgh et.al [36] found that the effect of the GSTP1 SNPs appeared to be modulated by smoking history in a case-control study, leading to a 2-fold increase in breast cancer risk, which was also observed in smokers with the 341T allele. Meanwhile, it's worth noting that statistically increased risk was observed in "other cancer", which was combined with a number of single studies with different cancer types, implying that significant association may really exist. But due to the low statistical power, further well-designed studies with

Study ID	OR (95% CI)	% Weight
Asian Al-Dayel (2008) Siraj (2008) Wang (2011) Ebrahimkhani (2012) Subtotal (I-squared = 0.0%, p = 0.997)	3.44 (1.26, 9.38) 3.24 (0.66, 15.95) 3.02 (0.31, 29.25) 4.68 (0.19, 117.07) 3.42 (1.56, 7.47)	3.67 1.18 1.04 0.41 6.30
Cauc asian Saarikoski (1998) Wadelius (1999) wang (2003) Bamette (2004) sorensen (2004) Landi (2005) García-Closas (2005) Marciniak (2006) Jiao (2007) Murphy (2007) Landi (2007) Kim (2008) Zienolddiny (2008) Küry (2008) Van Emburgh (2008) Canova (2009) The MARIE-GENICA (2010) Northwood (2010) Ibarrola-Villava (2012)	1.43 (0.09, 22.96) 5.88 (0.30, 114.93) 1.09 (0.22, 5.44) 0.56 (0.02, 13.95) 0.26 (0.03, 2.34) 0.18 (0.01, 3.75) 0.76 (0.20, 2.84) 3.63 (0.43, 30.49) 2.54 (0.26, 24.56) 1.68 (0.28, 10.15) 2.21 (0.20, 24.63) 1.44 (0.45, 4.57) 5.99 (1.28, 27.99) 0.49 (0.15, 1.59) 2.05 (0.19, 22.77) 0.87 (0.37, 2.07) 1.24 (0.77, 2.00) 0.31 (0.03, 2.96) 1.98 (0.08, 48.83)	0.86 0.56 3.00 1.17 4.09 2.76 5.37 1.30 1.13 1.96 0.77 5.13 1.77 8.98 1.03 11.70 31.06 3.27 0.63
Mixed Hamis (1998) Yang (2004) Moore (2005) Subtotal (I-squared = 0.0%, p = 0.826) Overall (I-squared = 0.0%, p = 0.575)	 4.51 (0.18, 111.60) 5.52 (0.26, 115.83) 2.46 (0.47, 12.84) 1.51 (0.42, 5.39) 2.24 (0.91, 5.51) 1.40 (1.08, 1.81) 	0.42 0.50 2.08 4.16 7.15 100.00
.00854 1	117	

Figure 2. Forest plot of cancer risk associates with GSTP1 341C>T polymorphism under homozygote comparison (TT versus CC) in different ethnicity. African ethnic is omitted due to the insufficient data. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the study specific weight. The diamond represents the pooled OR and 95% CI. doi:10.1371/journal.pone.0056722.g002

larger sample size based on specific cancer need to be carried out to re-examine this correlation.

In the stratified analysis based on ethnicity, no significant risk of cancer was found except for the Asian population. We simply presented the ORs of the one study of African population according to the original result and adjusted by some factor, such as the age, and smoking history [36]. A total of 19 studies(11391 cases and 13977 controls), which were determined to be adequate for supporting the observed result, investigated the relationship between this polymorphism and cancer risk among Caucasian, but no significant risk was found. The pooled analysis of the Asian population, including four single studies with 1966 subjects, reached a 78% statistical power when we assumed an allelic OR of 1.5. A significantly elevated risk of cancer was discovered in the homozygote comparison and recessive model of the Asian population; the pooled ORs are 3.42- and 3.49-fold of the referenced genotype. Our results demonstrated that there was a moderate association between the GSTP1 341C>T polymorphism and cancer risk in Asian population. Although the reason for these discrepancies is not positively known, some possibilities should be considered, such as the differences in the underlying environment-gene interaction and lifestyle. Nevertheless, additional larger sample size study or genome-wide association study is warranted for further validation of this finding.

~

ID	OR (95% CI)	% Weight
Breast Cancer Van Emburgh (2008) Kim (2008) Van Emburgh (2008) The MARIE-GENICA (2010) Subtotal (I-squared = 0.0%, p = 0.724)	1.79 (0.46, 6.99) 1.05 (0.76, 1.45) 1.24 (0.82, 1.87) 1.03 (0.92, 1.16) 1.05 (0.94, 1.17)	0.18 4.20 2.34 31.26 37.98
Coleractal Cancer Harris (1998) Landi (2005) Moore (2005) Küry (2008) Northwood (2010) Wang (2011) Ebrahim khani (2012) Subtotal (I-squared = 37.4%, p = 0.143)	0.93 (0.50, 1.76) 0.92 (0.56, 1.52) 0.93 (0.70, 1.24) 1.00 (0.78, 1.27) 0.79 (0.52, 1.18) 1.48 (0.89, 2.46) 2.61 (1.18, 5.78) 1.00 (0.87, 1.16)	1.14 1.85 5.66 7.32 3.04 1.41 0.43 20.85
Lung Cancer Saarikoski (1998) Harris (1998) wang (2003) sorensen (2004) Yang (2004) Zienolddiny (2008) Subtotal (I-squared = 43.8%, p = 0.114)	1.01 (0.64, 1.62) 1.14 (0.66, 1.99) 1.39 (1.02, 1.89) 0.91 (0.57, 1.48) 0.91 (0.56, 1.49) 1.91 (1.28, 2.87) 1.24 (1.05, 1.48)	2.02 1.34 3.97 2.01 1.92 1.97 13.22
UADT Cancer Murphy (2007) Jiao (2007) Canova (2009) Subtotal (I-squared = 21.0%, p = 0.282)	1.25 (0.75, 2.09) 0.74 (0.49, 1.13) 0.98 (0.79, 1.21) 0.96 (0.80, 1.14)	1.50 2.90 10.10 14.50
Thyroid Cancer Marciniak (2006) Siraj (2008) Subtotal (I-squared = 0.0%, p = 0.954)	1.04 (0.46, 2.34) 1.07 (0.51, 2.26) 1.06 (0.61, 1.83)	0.66 0.76 1.41
Other Cancer Wadelius (1999) Barnette (2004) García-Closas (2005) Landi (2007) Al-Dayel (2008) Ibarrola-Villava (2012) Subtotal (I-squared = 12.3%, p = 0.281)	0.84 (0.47, 1.49) 1.01 (0.59, 1.73) 1.23 (0.92, 1.65) 0.93 (0.42, 2.07) 0.91 (0.58, 1.42) 1.43 (0.81, 2.54) 1.09 (0.91, 1.32) 1.06 (0.99, 1.13)	1.44 1.53 4.77 0.73 2.40 1.17 12.03 100.00
.143 1	l 6.99	

Figure 3. Forest plot of cancer risk associate with GSTP1 341C>T polymorphism under dominant model (TT/CT versus CC) of different types of cancers. The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the study specific weight. The diamond represents the pooled OR and 95% CI. doi:10.1371/journal.pone.0056722.g003

When stratifying the source of controls, a weak strength was observed in population-based control studies (OR = 1.45, 95% CI: 1.05–1.99 for both homozygote comparison and recessive model), but not in the hospital-based control studies. After attentive observation of the strength of association, it was found that not only the ORs were closed to the overall comparison, but also in

the same genetic model. The hospital-based control studies may have an inherent selection bias since the controls may not be representative of the general population, particularly as the controls may be associated with the disease-related conditions, such as benign inflammatory lesions, which were the confounding factors for investigation. Analogously, evidently increased cancer

~ .

Table 3. Stratified analyses of the GSTP1 341C>T polymorphism on cancer risk.

Variables	z	TT versus CC			CT versus CC			TT/CT versus CC (D model)	ominant		TT versus CT/CC (R- model)	ecessive	
		OR (95% CI)	Phet.	12(%)	OR (95% CI)	Phet.	12(%)	OR (95% CI)	Phet.	12(%)	OR (95% CI)	Phet.	12(%)
Overall 2	28	1.40(1.08-1.81)	0.575	0.0	1.04(0.97–1.11)	0.305	10.6	1.06(0.99–1.13)	0.281	12.3	1.40(1.08–1.81)	0.562	0.0
Cancer types													
Colorectal cancer 7	7	0.91(0.48–1.71)	0.349	10.5	1.01(0.87–1.17)	0.220	27.3	1.00(0.87–1.16)	0.143	37.4	0.90(0.48-1.71)	0.375	7.0
Lung cancer 6	9	1.96(0.97–3.92)	0.274	21.2	1.21(1.02-1.45)	0.197	31.8	1.25(1.05–1.48)	0.114	43.8	1.90(0.95–3.82)	0.292	18.7
UDTC 3	m	1.11(0.54–2.28)	0.605	0.0	0.95(0.79–1.14)	0.245	28.8	0.96(0.80-1.14)	0.282	21.0	1.11(0.54–2.29)	0.593	0.0
Breast cancer 4	4	1.29(0.84–1.99)	0.902	0.0	1.04(0.93-1.16)	0.730	0.0	1.05(0.94-1.17)	0.724	0.0	1.28(0.83-1.98)	0.908	0.0
Thyroid cancer 2	2	3.45(0.89–13.29)	0.929	0.0	0.85(0.47-1.55)	0.786	0.0	1.06(0.61–1.83)	0.954	0.0	3.56(0.93–13.69)	0.913	0.0
Other cancer 6	9	1.94(0.98–3.83)	0.505	0.0	1.05(0.87-1.28)	0.306	16.7	1.10(0.91–1.32)	0.665	0.0	1.98(1.01–3.91)	0.447	0.0
Ethnicity													
African 1	-	NC			1.48 (0.33–6.65) ^a			1.48 (0.33–6.65) ^a			NC		
Asian 4	4	3.42(1.56–7.47)	0.997	0.0	1.19(0.72–1.98) ^b	0.052	61.2	1.24(0.94–1.64)	0.120	48.6	3.49(1.59–7.63)	0.998	0.0
Caucasian 1	19	1.18(0.88-1.58)	0.613	0.0	1.05(0.98-1.13)	0.349	8.7	1.06(0.99–1.14)	0.241	17.5	1.17(0.88–1.57)	0.631	0.0
Mixed 4	4	2.24(0.91-5.51)	0.826	0.0	0.91(0.74–1.13)	0.932	0.0	0.96(0.77–1.18)	0.926	0.0	2.28(0.93–5.60)	0.828	0.0
Source of controls													
Population-based 1-	14	1.45(1.05–1.99)	0.206	22.9	1.04(0.96–1.14)	0.203	23.1	1.06(0.98-1.16)	0.163	27.2	1.45(1.05–1.99)	0.196	23.8
Hospital-based	13	1.52(0.89–2.58)	0.882	0.0	1.06(0.93-1.20)	0.373	7.3	1.08(0.95–1.22)	0.422	2.5	1.52(0.89–2.57)	0.879	0.0
Matched control													
Yes 1	17	1.42(1.07–1.89)	0.468	0.0	1.06(0.98-1.14)	0.133	28.3	1.07(0.99–1.15)	0.137	27.9	1.42(1.07–1.89)	0.444	0.7
No 1	11	1.28(0.68–2.42)	0.510	0.0	0.97(0.82-1.14)	0.728	0.0	0.98(0.83-1.16)	0.669	0.0	1.29(0.68–2.44)	0.518	0.0
Quality score													
≥9	12	1.08(0.79–1.48)	0.700	0.0	1.03(0.95-1.11)	0.670	0.0	1.03(0.96–1.11)	0.699	0.0	1.078(0.79–1.48)	0.697	0.0
6-8 1	13	2.82(1.56–5.09)	0.982	0.0	1.14(0.93–1.39) ^b	0.093	37.3	1.21(0.99–1.47) ^b	0.080	39.1	2.78(1.54–5.03)	0.986	0.0
≤5	m	1.09(0.15–7.81) ^b	0.116	53.5	0.89(0.67–1.19)	0.588	0.0	0.94(0.71–1.25)	0.954	0.0	1.10(0.14–8.36) ^b	0.103	56.0
>5 2	25	1.36(1.04–1.79)	0.715	0.0	1.05(0.98-1.13)	0.257	14.5	1.07(0.99–1.14)	0.186	19.9	1.36(1.03-1.78)	0.729	0.0
UDTC, upper digestive tract ^a OR adjusted for age, family ^b Random-effect model was ¹ doi:10.1371/journal.pone.005	ct canc ily histc s used. 056722	er; Phet, <i>P</i> value of Q ory, smoking history, aç .:t003	test for her je of mena	terogeneity t irche, age of	est; NC, no insufficient d. first birth and body mas:	ata for calcul s index accor	lation; N, nu rding to the	Imber of studies for corr author.	nparison; The	e figures giv	/en in bold indicate stati	istically sign	ficant values.

Figure 4. Begg's funnel plot for publication bias test (TT versus CC). Each point represents a separate study for the indicated association. LogOR, natural logarithm of OR. Horizontal line, mean effect size. doi:10.1371/journal.pone.0056722.g004

risk was detected in matched control studies, but not in those studies without matched control. The matching criteria of these studies were mostly matched with age, sex and ethnic. In addition, some matched with region and lifestyle, for example, smoking or alcohol consumption. Apparently, matching criteria play an important role in genetic polymorphism and disease association studies, as it may avoid selection bias for control and reduce the impact of potential confounding factors on the investigation. All

Figure 5. Begg's funnel plot for publication bias test (TT/CT versus CC). Each point represents a separate study for the indicated association. LogOR, natural logarithm of OR. Horizontal line, mean effect size. doi:10.1371/journal.pone.0056722.g005

the studies were divided into three levels in accordance with the quality assessment scale. Significantly increased cancer risk was detected in the "moderate-quality" studies, but not the "highquality" studies. There were three Asian population studies in this "moderate-quality" level, which may account for this phenomenon. It was noteworthy that the pooled ORs were not materially changed from the result of overall comparison, when removed three "low-quality" studies. It's indicated that the overall comparison results were statistically robust when excluding the low-quality studies.

To the best of our knowledge, this is the first and the most comprehensive meta-analysis undertaken so far for quantitative analyses between GSTP1 341C>T polymorphism and the risk of cancer. However, in interpreting the outcome of this metaanalysis, some limitations need to be addressed. Firstly, there was insufficient data on the African population in this meta-analysis. Secondly, this meta-analysis was based on unadjusted evaluation, and original data shortage limited our further evaluation of potential gene-environment interactions. In order to provide a more precise estimation based on adjustment of confounding factors, well-designed studies are warranted by taking potential confounding factors such as smoking and alcohol consumed into account. In spite of these, our meta-analysis still has some advantages. On one hand, all the studies included in the current meta-analysis met our selection criteria, and all the pooled ORs based on no substantial heterogeneity between studies. On the other hand, there was not any publication bias detected, which indicates that the entire pooled result is robust and authentic. Besides, the subject number of more than 30 000 in the published

References

- Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
- Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78– 85.
- Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600.
- Medeiros R, Vasconcelos A, Costa S, Pinto D, Ferreira P, et al. (2004) Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate 58: 414–420.
- Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, et al. (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A 95: 5275–5280.
- Beckman G, Birgander R, Sjalander A, Saha N, Holmberg PA, et al. (1994) Is p53 polymorphism maintained by natural selection? Hum Hered 44: 266–270.
- Strange RC, Fryer AA (1999) The glutathione S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ: 231–249.
- Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272: 10004– 10012.
- Sergentanis TN, Economopoulos KP (2010) GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121: 195– 202.
- Bull LM, White DL, Bray M, Nurgalieva Z, El-Serag HB (2009) Phase I and II enzyme polymorphisms as risk factors for Barrett's esophagus and esophageal adenocarcinoma: a systematic review and meta-analysis. Dis Esophagus 22: 571–587.
- Kellen E, Hemelt M, Broberg K, Golka K, Kristensen VN, et al. (2007) Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol 165: 1221–1230.
- Das P, Shaik AP, Bammidi VK (2009) Meta-analysis study of glutathione-Stransferases (GSTM1, GSTP1, and GSTT1) gene polymorphisms and risk of acute myeloid leukemia. Leuk Lymphoma 50: 1345–1351.
- Liu GY, Jiang DK, Shen SQ, Yu L (2011) MDM2 SNP309T>G polymorphism with hepatocellular carcinoma risk: a meta-analysis. Arch Med Res 42: 149–155.

studies is sufficient for a comprehensive analysis, which dramatically increases the statistical power of the analysis.

In conclusion, our meta-analysis suggests that the GSTP1 341C>T polymorphism may implicate genetic susceptibility to cancer. Since only one study from the African population and four studies from the Asian population, it is critical that a larger sample size and well-designed multi-center studies based on these two ethnic groups should be performed to further re-evaluate the association. Furthermore, investigation of the impact of gene-gene and gene-environment interactions on the GSTP1 341C>T polymorphism and cancer risk is necessary for providing a better comprehensive understanding of the association.

Supporting Information

Figure S1 Genomic structure of human GSTP1 gene and location of the 341C>T polymorphism. (TIF)

Table S1 ORs (95% CI) of sensitivity analysis for the meta-analysis.

(DOC)

File S1 MOOSE Checklist for the meta-analysis.

Author Contributions

Conceived and designed the experiments: SXH FXW. Performed the experiments: SXH ML JL YNZ. Analyzed the data: SH KFG JL WJW. Contributed reagents/materials/analysis tools: LM WJW QY KL. Wrote the paper: SH FXW LL.

- Camargo MC, Mera R, Correa P, Peek RM, Jr., Fontham ET, et al. (2006) Interleukin-Ibeta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15: 1674– 1687.
- Gao LB, Pan XM, Li LJ, Liang WB, Zhu Y, et al. (2011) RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Res Treat 125: 827–835.
- Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
- Dupont WD, Plummer WD, Jr. (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19: 589–601.
- Al-Dayel F, Al-Rasheed M, Ibrahim M, Bu R, Bavi P, et al. (2008) Polymorphisms of drug-metabolizing enzymes CYP1A1, GSTT and GSTP contribute to the development of diffuse large B-cell lymphoma risk in the Saudi Arabian population. Leuk Lymphoma 49: 122–129.
- Barnette P, Scholl R, Blandford M, Ballard L, Tsodikov A, et al. (2004) Highthroughput detection of glutathione s-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol Biomarkers Prev 13: 304–313.
- Canova C, Hashibe M, Simonato L, Nelis M, Metspalu A, et al. (2009) Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project. Cancer Res 69: 2956– 2965.
- Ebrahimkhani S, Asgharian AM, Nourinaier B, Ebrahimkhani K, Vali N, et al. (2012) Association of GSTM1, GSTT1, GSTP1 and CYP2E1 Single Nucleotide Polymorphisms with Colorectal Cancer in Iran. Pathol Oncol Res 18: 651–656.
- Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, et al. (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366: 649–659.
- Harris MJ, Coggan M, Langton L, Wilson SR, Board PG (1998) Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics 8: 27–31.
- Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P, Pizarro A, Lluch A, et al. (2012) Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br J Dermatol.
- Jiao L, Bondy ML, Hassan MM, Chang DZ, Abbruzzese JL, et al. (2007) Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer 109: 840–848.
- Kim JY, Kim ST, Jeon SH, Lee WY (2007) Midbrain transcranial sonography in Korean patients with Parkinson's disease. Mov Disord 22: 1922–1926.

- Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, et al. (2008) Lowpenetrance alleles predisposing to sporadic colorectal cancers: a French casecontrolled genetic association study. BMC Cancer 8: 326.
- Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, et al. (2005) A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics 15: 535–546.
- Landi S, Gemignani F, Neri M, Barale R, Bonassi S, et al. (2007) Polymorphisms of glutathione-S-transferase M1 and manganese superoxide dismutase are associated with the risk of malignant pleural mesothelioma. Int J Cancer 120: 2739–2743.
- Moore LE, Huang WY, Chatterjee N, Gunter M, Chanock S, et al. (2005) GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev 14: 1823–1827.
- Murphy SJ, Hughes AE, Patterson CC, Anderson LA, Watson RG, et al. (2007) A population-based association study of SNPs of GSTP1, MnSOD, GPX2 and Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis 28: 1323– 1328.
- Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, et al. (2010) Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics 20: 315–326.
- Saarikoski ST, Voho A, Reinikainen M, Anttila S, Karjalainen A, et al. (1998) Combined effect of polymorphic GST genes on individual susceptibility to lung cancer. Int J Cancer 77: 516–521.
- 34. Siraj AK, Ibrahim M, Al-Rasheed M, Abubaker J, Bu R, et al. (2008) Polymorphisms of selected xenobiotic genes contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. BMC Med Genet 9: 61.
- Sorensen M, Autrup H, Tjonneland A, Overvad K, Raaschou-Nielsen O (2004) Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer. Int J Cancer 110: 219–224.
- Van Emburgh BO, Hu JJ, Levine EA, Mosley LJ, Perrier ND, et al. (2008) Polymorphisms in CYP1B1, GSTM1, GSTT1 and GSTP1, and susceptibility to breast cancer. Oncol Rep 19: 1311–1321.

- Wadelius M, Autrup JL, Stubbins MJ, Andersson SO, Johansson JE, et al. (1999) Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics 9: 333–340.
- Wang J, Jiang J, Zhao Y, Gajalakshmi V, Kuriki K, et al. (2011) Genetic polymorphisms of glutathione S-transferase genes and susceptibility to colorectal cancer: a case-control study in an Indian population. Cancer Epidemiol 35: 66– 72.
- Wang Y, Spitz MR, Schabath MB, Ali-Osman F, Mata H, et al. (2003) Association between glutathione S-transferase p1 polymorphisms and lung cancer risk in Caucasians: a case-control study. Lung Cancer 40: 25–32.
- Yang P, Bamlet WR, Ebbert JO, Taylor WR, de Andrade M (2004) Glutathione pathway genes and lung cancer risk in young and old populations. Carcinogenesis 25: 1935–1944.
- Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, et al. (2008) A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis 29: 1164– 1169.
- Marciniak P, Drobnik K, Ziemnicka K, Gut P, Slomski R, et al. (2006) [Transferase S-glutathione class pi gene (GSTP1) polymorphism in thyroid cancer patients]. Endokrynol Pol 57: 509–515.
- 43. (2010) Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res Treat 119: 463–474.
- Terrier P, Townsend AJ, Coindre JM, Triche TJ, Cowan KH (1990) An immunohistochemical study of pi class glutathione S-transferase expression in normal human tissue. Am J Pathol 137: 845–853.
- Moscow JA, Fairchild CR, Madden MJ, Ransom DT, Wieand HS, et al. (1989) Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 49: 1422–1428.
- 46. Chan EC, Lam SY, Fu KH, Kwong YL (2005) Polymorphisms of the GSTM1, GSTP1, MPO, XRCC1, and NQO1 genes in Chinese patients with non-small cell lung cancers: relationship with aberrant promoter methylation of the CDKN2A and RARB genes. Cancer Genet Cytogenet 162: 10–20.