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Abstract
Although genome-wide association studies (GWAS) have identified thousands of loci in the human genome that are associ-
ated with different traits, understanding the biological mechanisms underlying the association signals identified in GWAS 
remains challenging. Statistical fine-mapping is a method aiming to refine GWAS signals by evaluating which variant(s) are 
truly causal to the phenotype. Here, we review the types of statistical fine-mapping methods that have been widely used to 
date, with a focus on recently developed functionally informed fine-mapping (FIFM) methods that utilize functional annota-
tions. We then systematically review the applications of statistical fine-mapping in autoimmune disease studies to highlight 
the value of statistical fine-mapping in biological contexts.

Keywords Statistical fine-mapping · Functionally informed fine-mapping · Bayesian · Autoimmune disorders · 
Inflammatory bowel diseases · IBD genetics

Introduction

Genome-wide association studies (GWAS) have identified 
thousands of loci in the human genome that are associ-
ated with different traits such as height, body mass index 
(BMI), or susceptibility to different diseases [1–3]. In typical 

GWAS, for phenotype and genotype of interest, their rela-
tionship is modeled in a generalized linear model such 
that the phenotype (either quantitative or logit of binary 
outcome) is the sum of the genotype times its effect size 
(slope), the effects of covariates such as sex, age, and prin-
cipal components accounting for the population structure, 
intercept, and error term [4, 5] (Box. 1). The null hypoth-
esis that the slope is zero (i.e., the genotype of interest is 
not associated with the phenotype of interest) is tested 
for each variant where the genotype is available. In other 
words, each variant will have a p-value that characterizes 
the evidence that the variant is associated with the pheno-
type in a frequentist approach. With proper quality control 
and rigorous correction for multiple test, the variants pass-
ing significance threshold [6] (typically 5 ×  10−8, so called 
“genome-wide significance”) is considered to be associated 
with the phenotype of interest. However, there is a clear 
difference between association and causation. This is true 
in GWAS as well: studies [7, 8] suggest that the majority 
of variants with significant p-value (i.e., “associated” with 
phenotypes) will have no detectable effect on the phenotype 
when perturbed (i.e., “causal” to phenotype). Such observa-
tions motivate us to differentiate between “association” and 
“causality,” to pinpoint the causal variant(s) in a locus. Fine-
mapping [9, 10] is such an effort to pinpoint causal variants 
(either experimentally or computationally), and statistical 
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fine-mapping [9, 11] is a subset of fine-mapping studies that 
utilizes statistical framework. In this review, we will discuss 

the nature of statistical fine-mapping with four focuses. First, 
we will briefly review the challenges of GWAS as well as 
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experimental perturbation approaches to further clarify 
the motivation of statistical fine-mapping. Second, we will 
review the types of statistical fine-mapping methods that 
have been widely used to date (Fig. 1). Since high-quality 
reviews that achieve the same purpose already exist [9, 11, 
12], we will make this second section brief without deep-
diving into individual methods. On the other hand, a number 
of large-scale statistical fine-mapping studies [13, 14] have 
emerged recently. Since a large majority of such studies uti-
lize functional annotations to perform functionally informed 
fine-mapping (FIFM), our third focus will be on the appli-
cation of FIFM on large-scale studies. Finally, to highlight 
the value of statistical fine-mapping in biological contexts, 
we will systematically review the applications of statistical 
fine-mapping in autoimmune disease studies.

GWAS is not designed for causal variant 
identification

GWAS is not designed for identifying causal variants at 
single-variant resolution — instead, GWAS is designed to 
identify regions in the genome that are associated with the 
trait of interest [15, 16]. The main factor that makes asso-
ciation and causality different in GWAS is the existence of 
linkage disequilibrium (LD). LD is a term that describes the 
non-random association between nearby genomic variants 
[17, 18] — variants that are nearby tend to appear together 
more (or less) often than by chance, because the probabil-
ity that a recombination event occurs at a position between 
two variants are typically smaller when they are nearby, 
compared to when they are far away. The strength of LD 
between two variants is typically denoted by the Pearson 
correlation coefficient (r) [18]. Because of LD, even if there 
is only one causal variant in a locus, hundreds or thousands 
of non-causal variants can be associated with the phenotype 
in GWAS, just because they are associated with the causal 
variant [19, 20] (i.e., “tagged”). In fact, the set of variants 

tested for association in GWAS, either directly measured in 
a genotyping array [21, 22] or imputed from a population 
reference panel [15, 23], are typically common variants that 
are designed to hopefully “tag” the causal variant. They are, 
most of the time, no more than “markers” that are in LD 
with causal variant(s), and the causal variant(s) themselves 
can even be missing from the set of variants tested. In addi-
tion, due to the limited sample size and stochastic noises, the 
variant with the strongest association (i.e., “lead variant,” 
the variant with lowest p-value) is not always the causal 
variant. Understanding which variant(s) are truly causal (in 
other words, identifying the true causal configuration) can 
be even more complicated since there are often more than 
one causal variant in a locus (a locus is typically defined as a 
set of variants with (r2 against the lead variant) > threshold, 
or simply within a certain distance window [24]). In such 
cases, the effect size and direction we observe for a variant 
can largely vary from the true causal effect (Fig. 2). Statisti-
cal fine-mapping, in a way, can be thought of as an exercise 
to disentangle the effect of LD from the GWAS data.

These factors remind us of the fact that even with orders 
of magnitude larger sample sizes, GWAS alone is, by nature, 
still not suited for causal variant identification, and highlight 
the value of statistical fine-mapping methods.

Experimental approaches are valuable 
but limited

Since one of the goals of GWAS is to nominate a set of 
regions for downstream biological experiments, one natural 
suggestion would be to directly move to experimental valida-
tions after GWAS, without performing statistical fine-map-
ping. One caveat of such approaches is that it often ambigu-
ates the biological mechanisms underlying the GWAS 
signal. As a toy example, if a locus of gene X is associated 
with phenotype Y, we can validate that X is causal for Y by 
knocking out the entire gene X. However, if we can statisti-
cally fine-map the causal variant V on gene X and validate 
it by introducing variant V at single base-pair resolution 
followed by different biological assays, we can highlight dif-
ferent scenarios such as V introducing a stop codon, V being 
a missense variant that changes the protein 3D conformation, 
and V introducing aberrant splicing (Fig. 1a,b).

Recent developments in such genome perturbation at 
single-variant resolution have been remarkable. (1) Massive 
parallel reporter assay [7, 8, 25, 26] enables us to test the 
effect of mutations on gene expression in vitro with high 
throughput. (2) Genome engineering tools such as base edi-
tors enable introduction of single base-pair mutations in vivo 
[27–29]. However, they are still limited in that (1) is not a 
perfect proxy of human physiology and (2) is limited in its 
throughput, such that saturation mutagenesis at genome-wide 

Fig. 1  Schematic overview of the statistical fine-mapping methods 
with uniform or functionally informed prior, in comparison with 
direct experimental approaches. a Downstream experiments follow-
ing GWAS without statistical fine-mapping often assume the variant 
with the most significant p-value (“lead” variant) as the causal variant 
and proceed to perturbation of the lead variant and/or nearby gene(s). 
b Statistical fine-mapping is utilized to prioritize a small num-
ber of variants for downstream perturbation, which can be different 
from what p-value in GWAS suggests. This facilitates variant-level 
interpretation of GWAS results. c In a functionally informed fine-
mapping (FIFM) framework, functional annotations are used (often 
together with the GWAS data) to form a prior. FIFM often results in 
an increase of power in prioritizing putative causal variants, which is 
typically characterized by higher maximum posterior inclusion prob-
ability (PIP) and/or lower credible set  size14. The functional annota-
tions used to form the prior are often directly used to interpret the 
biological mechanisms of causal variant(s)

◂
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scale is still far away. Performing statistical fine-mapping 
before such experimental validation is thus a natural way to 
maximize the value of downstream experimental approaches. 
Developments in the methods so called co-localization 
[30–34] further enhanced the value of statistical fine-map-
ping, by analyzing the results of statistical fine-mapping on 
complex traits and gene expression regulation (expression 
quantitative loci, or eQTL) studies simultaneously to eluci-
date the mechanisms from variant to gene to complex trait in 
a streamlined manner, making the downstream experimental 
validation easily designable and interpretable.

From p‑value to Bayes factor and Posterior 
inclusion probability

Although p-value characterizes the evidence of a variant 
being associated with the phenotype, it does not allow us to 
compare one model likelihood (e.g., a model that variant V1 
is causal) to another (e.g., a model that variant V2 is causal) 
in a direct and quantitative way. Bayes factor (BF) is a notion 
that quantifies the relative likelihood of one model over 
another [35] (Box. 2). Early studies [23, 36] included such a 
Bayesian approach and reported BF in addition to canonical 
p-value, with a hint to use it as a means to directly quantify 
the “probability of being a causal variant.” Wakefield (2007, 
2009) [37, 38] later showed that BF can be approximated 
from summary statistics (such as p-value, point estimation, 
and standard error of the effect size of each variant from 
GWAS) without individual-level genotype data (“Approxi-
mate Bayes Factor,” or “ABF”). With these developments in 
Bayesian approaches to GWAS, Maller et al. [39] showed 
that, under a simplified scenario that there is exactly one 
causal variant in a locus of interest, we can directly compute 
the probability of a variant V being causal (nowadays called 
posterior inclusion probability, or PIP), as the BF of the 
model that V is causal (compared to the model that no vari-
ant is causal; they showed that this BF can be calculated by 
the genotype of variant V alone), divided by the sum of BF 
that each of the other variants is causal. They also introduced 
the term credible set, defined as the smallest set of variants 
that the PIPs sum up to a certain threshold value.

Statistical fine-mapping assuming a single causal variant in 
a locus has been valuable in its simplicity and interpretability, 
but it relies on a very strong assumption that does not 
necessarily hold true. Maller et al. [39], fully aware of the 
fact, also suggested that jointly modeling multiple causal 
variants is theoretically possible, but the implementation 
is challenging (when there are n variants, there would be  2n 
causal configurations). One of the main focuses in the later 
development of statistical fine-mapping methods lays on 
modeling multiple causal variants. We also note that, although 
Bayesian approaches force us to specify the prior by nature 
(which could introduce biases) and non-Bayesian statistical 
fine-mapping approaches exist [40], our methods review will be 
focused on Bayesian approaches that are most commonly used.

Multiple causal variants

One possible approach for dealing with locus that may harbor 
more than one causal variant is to divide up the set of variants 
into independent signals, such that each set of variants would 
contain exactly one causal variant. Although this intuitively 
could be achieved by a series of conditional analysis (i.e., 
condition on the lead variant by including it as a covariate, do 
GWAS again to find remaining signal, add the lead variant in 
that conditioned GWAS, do the GWAS again, … until we see 
no more signal), it introduces practical challenges; setting the 
p-value threshold to determine that there is no more signal is 
non-trivial, and running GWAS iteratively is computationally 
expensive [11]. An early study [41] avoided such challenges 
and practiced a simple approach to define a locus simply based 
on the r2 against the lead variant (i.e., clumping and merging) 
and to assume that each locus contains exactly one causal 
variant. Yang et al. [42] showed that without such extreme 
model simplification, conditioning can be achieved with 
summary statistics and LD matrix without requiring individual 
genotype data in a scalable manner. Once a set of variants likely 
containing exactly one causal variant is defined, ABF can be 
applied also from summary statistics. Such a COJO + ABF 
approach allows the whole process of identifying multiple causal 
variants tractable, by dividing up the problem into two steps: (1) 
identify a set of variants harboring exactly one causal variant, 
and (2) perform ABF for each variant set. The COJO + ABF 
approach has been widely used since then [43, 44].

However, over the time, there has been increasing 
amounts of evidence that conditional analysis often results 
in sub-optimal solutions, in simulations [11, 45–47] and real 
data [48, 49]. The simplest intuition [45] is that a non-causal 
variant that is in strong LD with two causal variants can 
have the most significant p-value and thus be mistakenly 
prioritized as the causal variant (Fig. 2a). One of the major 
methods that overcomes this limitation was presented in 
Hormozdiari et al. [45] (CAVIAR). In CAVIAR, they took 

Fig. 2  Two simplified examples where marginal p-value fails to pri-
oritize the true causal variants. a The non-causal variant (center), fre-
quently tagging one of the two true causal variants, has the most sig-
nificant association p-value (in F-test) as well as the highest marginal 
effect size � (7.8 vs 5.8 and 5.3). b Two nearby causal variants in LD 
harboring high true effect sizes to the opposite direction, both have 
limited marginal association p-values that do not reach the statistical 
significance under multiple test correction (p = 0.06 and 0.007). Syn-
thetic samples of n = 300 for a and n = 200 for b were generated, with 
true |�| = 10 and � drawn from a normal distribution with SD = 5 for 
simplicity (therefore, y axis has no unit). r = 0.317, 0.317, and 0.0353 
for a and 0.734 for b The code is  available at http:// github. com/ 
Qingb oWang/ fm- toy

◂
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the approach of jointly modeling multiple causal variants 
rather than sequentially, and allowed directly calculating the 
BF for the case of > 1 causal variant. They dealt with the 
computational complexity by limiting the maximum number 
of causal variants as well as the number of variants in the 
locus. Other approaches that are distinct from naive con-
ditional approach includes [BIMBAM [50]] (requires indi-
vidual genotype data), [pi-MASS [51]] (utilizes MCMC), 
[JAM [47]] (utilizes matrix decomposition), the extensions 
of CAVIAR that is more scalable and widely applicable 
[CAVIARBF [52], eCAVIAR [31]], and those used in auto-
immune disease studies that are discussed later [53].

Scalable methods

Although methods such as CAVIAR allowed a joint model of 
multiple causal variants, scaling such methods to a genome-
wide level remained challenging. To implement a scalable 
fine-mapping method, Benner et al. [54] applied a shotgun 
stochastic search of the possible causal configurations instead 
of exhaustively enumerating the BFs for  2n causal configura-
tions. Their method, FINEMAP, either adds, exchanges, or 
deletes one putative causal variant in the locus in each itera-
tion to generate a new causal configuration to evaluate. The 
method further utilizes a hash table to avoid re-computation 
of the same causal configuration and terminates the iteration 
once nearly all the causal configurations with non-negligi-
ble probability are searched. Wen et al. [55] (DAP-G) used 
a similar idea of avoiding the enumeration of all  2n causal 
configurations by focusing only on non-negligible ones but 
used a deterministic method instead; their Deterministic 
Approximation of Posterior (DAP) algorithm restricts the 
search space based on two assumptions: (1) The true causal 
variants should have medium to highly significant associa-
tion p-value. (2) The fraction of causal variants in a locus 
should be small (sparsity assumption) and allows tractable 
computation. Another widely used method developed by 
Wang et al. [56] (Sum of Single Effects = SuSiE) takes an 
iterative approach; analogous to conditional analysis, SuSiE 
takes single effect regression (a regression model where there 
is exactly one causal variant in a locus) as a building block 
to perform iterative Bayesian stepwise selection (IBSS). The 
algorithm (1) explicitly specifies L single effect vectors (ini-
tialized with uniform probability of being causal for each 
variant in each single effect vector, when the prior is uniform) 
to begin with, updates the 1st single effect vector based on the 
data, and (2) repeats the process of updating the 2nd, 3rd, …, 
L-th, 1st, 2nd, … single effect vector based on the data plus 
all the other single effect vectors until convergence.

Each of these methods is highly scalable and has been 
applicable to different large-scale studies (e.g., DAP-G in 

GTEx v8 study [57] and FINEMAP for UKBB biomark-
ers study in Sinnott-Armstrong et al. [58]) to elucidate the 
detailed biological mechanisms of GWAS signals, highlight-
ing the value of scalable methods.

Functionally informed fine‑mapping

A variant falling in a histone mark peak is more (or less) 
likely to be causal to a phenotype compared to another vari-
ant. A missense variant is more likely to be causal than an 
intron variant. Such additional biological information about 
the variants (e.g., epigenetic information, conservation, or 
other scores, which are called “functional annotations”) are 
informative to identify causal variants, even before inves-
tigating specific GWAS data. In other words, we have a 
“prior” knowledge about the variants. As one strength of 
Bayesian methods is that it can flexibly incorporate different 
priors, a number of methods including those highlighted in 
the previous section  [55, 59–63] allow incorporating such 
biological functional annotations as priors to increase the 
power of statistical fine-mapping. For example, distance to 
transcription starting site (dTSS) was incorporated as a prior 
in DAP-G to perform cis-eQTL fine-mapping in GTEx v8 
[57]. We call such a series of methods that use functional 
annotations to form a prior (rather than using functional 
annotations post-statistical fine-mapping only to interpret 
the results; Fig. 1c) as functionally informed (statistical) 
fine-mapping (FIFM). Among various FIFM methods, this 
review focuses on two recent large-scale FIFM methods: (1) 
Polyfun [13] that was applied to UKBB phenotypes and (2) 
EMS [14] that was applied to GTEx v8 eQTLs. These two 
methods, rather than performing expectation–maximization 
(EM) iteration in the fine-mapping process as in PAINTOR 
[59], take a two-step approach of first calibrating the func-
tional prior and then using the functional prior to perform 
FIFM using scalable methods [FINEMAP [54], SuSiE [56]].

The first method, Polyfun, allows the incorporation of 
functional features by stratified ld-score regression (S-LDSC 
[20]). First, it uses S-LDSC to estimate the heritability 
enrichment of each of the functional annotations for a pheno-
type of interest (with proper regularization and training-test 
split to avoid overfitting). Second, it estimates the per-SNP 
heritability (heritability explained by a single nucleotide 
polymorphism = SNP) by adding up the heritability enrich-
ment of the functional annotations that the variant (SNP) of 
interest belongs to. Following the calibration step (binning 
the SNPs and re-calculating the per-SNP heritability for 
each bin), the functional prior is defined to be proportional 
to the per-SNP heritability. Then they use the functional 
prior for downstream statistical fine-mapping using SuSiE 
or FINEMAP. By applying the method to 49 UKBB traits, 
the authors validated the power gain of FIFM compared to 
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canonical methods and also discussed the polygenic localiza-
tion of common trait heritability (i.e., how many variants are 
needed to explain a certain percentage of trait heritability).

The second method, Expression Modifier Score (EMS), 
first trains a random forest (RF)-based predictor that 
uses > 6,000 functional annotations, to prioritize putative 
causal eQTLs that are nominated with high confidence in 
uniform prior fine-mapping. The method also includes deep-
neural network-based variant activity prediction scores [64, 
65] as a set of features and shows that those features collec-
tively present high feature importance in addition to dTSS. 
In the subsequent step, the output scores (EMS) from the 
RF model are scaled and used to re-weight the single effect 
vectors in SuSiE. Functionally informed PIP and credible 
sets are then quantified from the weighted vectors for 49 
GTEx tissues individually. The method was also applied 
for a large-scale co-localization analysis to elucidate > 300 
additional candidate genes for UKBB phenotypes.

These results both showed an improvement compared to the 
canonical methods in terms of the number of putative causal 
variants discovered, without loss of accuracy, and thus together 
highlighted the value of performing FIFM on a large scale.

Further extension of statistical fine‑mapping 
methods

Although not deeply covered in this review, a more diverse 
set of applications exist in recent development of statistical 
fine-mapping methods [66–75]. First is the cross-population 
fine-mapping (xpop-FM) approach that utilizes different LD 
structures between populations. Such approaches [71, 72] rely 
on an assumption (supported by biological observations) that 
the true causal variant is, most of the time, shared between 
different populations [76, 77]. By simple intuition, when 
variant V0 and V1 each has PIP = 0.5 in population 1, variant 
V0 and V2 has PIP = 0.5 in population 2 and variant V0 and 
V3 has PIP = 0.5 in population 3, one would gain confidence 
that variant V0 is the true causal variant. One challenge in 
such xpop methods is the model misspecification, i.e., a 
causal variant may not be shared or has very different effects 
across populations for some loci (e.g., the TNFSF15 locus, 
with Crohn’s disease OR of 1.15 and 1.75 for Europeans and 
East Asians respectively [78]). While such heterogeneity 
across populations can be properly modeled for GWAS using 
methods such as MANTRA [79], MR-MEGA [80], MAMA 
[81], or random effect models [82], the ability of xpop fine-
mapping methods to model such heterogeneity has not 
been fully evaluated in real data. With further methodology 
developments as well as the increase in population diversity 
of the available genome, we envision the value of such xpop 
methods will increase. Similarly, harmonizing heterogeneous 
datasets with different underlying technologies (such as 

different arrays, whole exome, or genome sequencing) and 
including low-frequency variants is thought to be fruitful 
for further discovery of putative causal variants underlying 
human complex disorders by increasing the statistical power 
and the coverage of the genome. Another direction is the 
optimization of the prior distribution of the causal effect 
sizes [83, 84] (not the causal configuration); for example, 
Walters et al. [83] suggested Laplace prior could increase 
the statistical power compared to the commonly used normal 
distribution. As optimizing the prior is a non-trivial problem 
in Bayesian analysis in general, it could be also valuable to 
discuss the possibility of moving outside of the Bayesian 
world to practice statistical fine-mapping in a frequentist 
approach. As a general note, no single method for statistical 
fine-mapping today serves as a “gold standard,” and different 
methods rely on different assumptions. Interpreting the 
results from multiple different aspects, as will be discussed 
in the next sections, is of high importance.

Application of statistical fine‑mapping 
in autoimmune diseases

Many autoimmune disorders are highly heritable [85]. 
GWAS and statistical fine-mapping have thus been very 
effective in finding genetic variants underlying these disor-
ders. Here, we review methods and findings for ten major 
autoimmune disorders including rheumatoid arthritis (RA), 
type 1 diabetes (T1D), the inflammatory bowel diseases 
(IBD) including Crohn’s disease (CD) and ulcerative coli-
tis (UC), systemic lupus erythematosus (SLE), ankylosing 
spondylitis (AS), psoriasis (PSOR), autoimmune thyroid 
disease (THY), celiac disease (CeD), and multiple sclerosis 
(MS). We chose these disorders because they are sufficiently 
powered with at least 10,000 cases. The number of genetic 
loci associated with these disorders ranges from 40 (CeD) 
to 240 (IBD) and is influenced by the sample size, the herit-
ability, and the genetic architecture of the disorder (Table 1).

Farh et al. [53] performed the first genome-wide statis-
tical fine-mapping on several autoimmune disorders using 
Probabilistic Identification of Causal SNPs (PICS), an algo-
rithm estimating the probability that an individual variant 
is causal considering the haplotype structure and observed 
pattern of association at the genetic locus. This fine-mapping 
analysis was performed on data available prior to July 2013. 
For some disorders (AS, PSOR, THY, CeD, and MS), this 
study remains the best available fine-mapping study. For 
other disorders (RA, T1D, CD, UC, and SLE), subsequent 
fine-mapping studies have been performed on data with 
larger sample size and higher quality (e.g., higher imputa-
tion quality and higher genomic coverage). These studies 
also used more sophisticated fine-mapping methods. RA 
and T1D used conditional analysis for multiple independent 
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associations, and ABF to compute the credible sets. IBD 
used three fine-mapping methods specifically designed in 
order to capture the disease subtypes (CD and UC). Both the 
stepwise conditional analysis and MCMC were used to infer 
the independent associations for IBD. Results from the three 
methods were then harmonized which served as a quality 
control filter. SLE used conditional analysis for loci hosting 
multiple independent associations and PAINTOR [59] to 
compute the credible sets combining subjects of both Euro-
pean and East Asian ancestries. All fine-mapping studies 
for these disorders were performed without the functional 
priors.
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orders. See Table 1 for trait abbreviations

Trait Variant Gene Function PIP

CD rs2066844 NOD2 R702W 99.9%
CD rs2066845 NOD2 G908R 99.9%
CD rs5743293 NOD2 Fs1007insC 99.9%
CD rs61839660 IL2RA Intronic 99.9%
CD rs7307562 LRRK2 Intronic 99.9%
CD rs5743271 NOD2 N289S 99.3%
CD rs72796367 NOD2 Intronic 98.3%
CD rs41313262 IL23R V362I 97.3%
CD rs28701841 PRDM1 Intergenic 97.1%
UC rs6017342 HNF4A Intergenic 99.9%
UC rs35667974 IFIH1 I923V 99.4%
UC rs4676408 GPR35 Intergenic 99.4%
IBD rs6062496 RTEL1-TNFRSF6B Intronic 99.6%
IBD rs141992399 CARD9 1434 + 1G > C 99.5%
IBD rs74465132 IKZF1 Intergenic 99.4%
IBD rs10748781 NKX2-3 Intergenic 99.0%
IBD rs35874463 SMAD3 I170V 98.9%
IBD rs1887428 JAK2 Intergenic 97.4%
SLE rs2736100 TERT Intronic 100.0%
SLE rs2431697 PTTG1-MIR146A Intergenic 99.9%
SLE rs2297550 IKBKE TF binding site 99.7%
SLE rs7097397 WDFY4 Arg1816Gln 99.3%
SLE rs2205960 TNFSF4 Intergenic 95.7%
T1D rs34536443 TYK2 P1104A 100.0%
MS rs533259 RNASEL Intronic 100.0%
MS rs733724 HACE1 Intronic 98.0%
PSOR rs17716942 KCNH7 Intronic 100.0%
PSOR rs12188300 IL12B Intergenic 100.0%
PSOR rs33980500 TRAF3IP2-AS1 D10N 100.0%
PSOR rs11795343 DDX58 Intronic 99.7%
PSOR rs8016947 NFKBIA Intergenic 100.0%
PSOR rs28998802 NOS2 Intronic 100.0%
PSOR rs34536443 TYK2 P1104A 99.6%%
CeD rs1893592 UBASH3A Intronic 98.0%
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Outcome of fine-mapping studies is dependent on the 
disease heritability, the sample size, and the disease genetic 
architecture (Tables 1 and 2). THY, MS, T1D, RA, and 
PSOR only mapped a subset of the genome-wide significant 
loci using a subset of subjects because the largest GWASs 
were published after the fine-mapping studies. None of the 
THY loci was mapped to a small credible set, likely because 
only less than 3,000 cases were used in fine-mapping. MS 
had two loci mapped to single-variant resolution, located 
in the introns of RNASEL and HACE1. T1D had one locus 
mapped to a single-variant credible set (TYK2 P1104A) and 
nine more to credible sets with five or fewer variants. Fine-
mapping for RA and PSOR was more productive: RA had 
five loci mapped to credible sets with five or fewer variants, 
and PSOR had seven loci mapped to a single causal variant, 
including the TYK2 P1104A (also the T1D putative causal 
variant), a missense variant for TRAF3IP2-AS1 (D10N), 
and variants in the introns of KCNH7, DDX58, and NOS2. 
AS, CeD, and SLE used all available GWAS samples. None 
of the AS loci was mapped to a small credible set likely 
because the effect sizes for AS loci are small thus are less 
powered for fine-mapping. One locus for CeD was mapped 
to a single variant (in the intron of UBASH3A), and 17 SLE 
loci were mapped to credible sets with five or fewer variants, 
among which five loci were mapped to a single causal vari-
ant, including a variant upstream of TNFSF4 and a WDFY4 
missense variant (R1816Q). Driven by the sample size and 
the heritability, IBD fine-mapping is the most productive 
among the ten autoimmune disorders: 42 associations were 
mapped to credible sets with five or fewer variants, and 18 to 
a single causal variant, including multiple missense variants 
(fs1007insC, R702W, G908R, N289S) in NOD2, a CARD9 
essential splicing variant (1434 + 1G > C) and so on.

Coding variants play a critical role in autoimmune disor-
ders. We have observed a clear enrichment of coding causal 
variants for IBD compared with synonymous variants. This 
observation is consistent with the allelic series observed 
in earlier IBD genetics studies, for example in NOD2 and 
CARD9. Coding variants in general have larger effect sizes 
on diseases (e.g., fs1007insC has OR close to 3 for CD) and 
are particularly valuable in connecting genetic findings to 
their biological mechanisms [86]. Coding variants have also 
been fine-mapped for other autoimmune disorders reveal-
ing key mechanistic insights. For example, the IFIH1 I923V 
variant was mapped as the putative causal variant for T1D 
and UC (though only to the single-variant resolution in UC), 
suggesting the antiviral response pathway could be relevant 
to onset of these disorders. Genes with fine-mapped cod-
ing variants, such as NOD2 and TYK2, are also historically 
known to be responsible for Blau syndrome [87] (dominant) 
and immunodeficiency [88] (recessive) respectively, sug-
gesting converging biological mechanisms between poly-
genic and Mendelian immune disorders.

The majority of autoimmune GWAS loci implicate the 
noncoding genome. Farh et al. [53] first connected these 
noncoding genetic variations to immune-cell enhancers 
and found many of them gain histone acetylation or tran-
scribe enhancer-associated RNA upon immune stimulation. 
Huang et al. [89] further investigated the noncoding IBD 
putative causal variants and found them disrupt transcrip-
tion factor binding sites, implicating epigenetic marks in 
specific immune cells in CD patients and in gut mucosa in 
UC patients. The IBD noncoding variants were also found 
to regulate gene expressions but only in cell types or tissues 
relevant to the disease, not in whole blood. Despite these 
initial insights, the biological and molecular mechanism for 
most fine-mapped causal variants is still unclear, reflecting 
our limited knowledge in the noncoding genome.

We note that several IBD genes have multiple independ-
ent variants associated with the disease [89]. The most nota-
ble one is NOD2, the first reported IBD genetic association, 
which hosts more than ten variants contributing to the IBD 
risk (mostly CD). The other notable gene is IL23R, host-
ing five independent causal variants (three coding and two 
noncoding) that confer protection to IBD. Such a spectrum 
of disease-associated alleles, or allele series, can be used 
to establish the function-phenotype dose–response relation-
ship, which has been shown to be important in revealing the 
disease genetic mechanism and facilitates the discovery and 
validation of therapeutic targets [86, 90, 91].

We also note that many autoimmune disease causal variants 
are highly pleiotropic [89]. For example, the TYK2 P1104A 
variant confers protection to CD, MS, PSOR, RA, and T1D 
(though only mapped to single-variant resolution for T1D 
and PSOR). Interestingly, one causal variant can sometimes 
confer different directions of effects for different autoimmune 
or infectious disorders. For example, the IFIH1 I923V variant 
increases an individual’s risk for UC but decreases the risk for 
T1D; an IL2RA intronic variant, rs61839660, increases the 
disease risk for CD and SLE but confers protection to T1D; 
the TYK2 P1104A variant, despite being protective for several 
autoimmune disorders, increases homozygous carriers’ risk to 
tuberculosis across diverse ancestral populations [92, 93]. These 
observations reflect the shared biological pathways underlying 
autoimmune disorders and the delicate balance between 
tolerance and autoimmunity in the human immune system.

Future perspectives

We have reviewed the basis of statistical fine-mapping meth-
ods, key fine-mapping studies in autoimmune disorders, 
and their important findings. These studies have revealed 
important causal variants underlying the human autoimmune 
disorders, and the mechanisms through which they modify 
individual’s risk to the diseases. Despite these successes, we 
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note that not every autoimmune disease genetic loci have 
been fine-mapped and not all resources available have been 
leveraged in fine-mapping. This is partially because a high-
quality fine-mapping typically requires a sample size larger 
than that of GWAS, and genetic data of higher quality to 
allow every variant to be assessed for their causality (while 
GWAS is typically tolerant to missing a few variants). Future 
investigations into how to properly perform fine-mapping 
across studies with different design factors (e.g., xpop) 
or genomic technology (various arrays, whole exome, or 
genome sequencing), as discussed in the “Further extension 
of statistical fine-mapping methods,” is key for fine-mapping 
studies to be more inclusive and powerful.

We noted that although the causal variant can be iden-
tified without ambiguity from statistical fine-mapping, 
they often have no clearly known functional implications 
if located in the noncoding genome, especially when func-
tional priors are not incorporated. Expanding regulatory 
genome resources across diverse human cell types [94, 95] 
to advance our knowledge in the noncoding genome and 
incorporating those into fine-mapping frameworks are nec-
essary to translate the putative causal variants from fine-
mapping into mechanistic insights.

Lastly, MHC is a locus of paramount importance to auto-
immune disorders [96, 97] but often excluded in recent statis-
tical fine-mapping studies. This is because the MHC locus is 
very complex: with linkage-disequilibrium over megabses of 
genomes, and with complicated structural and copy number 
variations not often observed in other parts of the genome 
[98]. Thus, fine-mapping using arrays or shotgun sequencing 
technologies tends to be less productive. A strategy imputing 
the HLA alleles using data from the high density genotyping 
array and a set of reference individuals with HLA alleles has 
been shown to be productive for RA [99] and IBD [100].

Overall, fine-mapping studies for autoimmune disorders 
have been very productive. They have pinpointed disease 
causal variants and revealed key insights into the disorders. 
Building on this success, developments in fine-mapping 
methods to incorporate studies with various design factors, 
and resources to interpret the functional impact of causal 
variants on the molecular and physiological levels, will 
likely further advance fine-mapping studies and facilitate 
the therapeutics translation of their findings.

Appendix

Box. 1 Overview of GWAS and statistical fine-mapping 
models.

(We are not including intercept and covariates term in the 
below equations, for simplicity).

In GWAS, we test one variant at a time for its association 
with the phenotype of interest:

where y = is the n × 1 phenotype vector corresponding to 
n individuals, x is the n × 1 vector denoting the genotype dos-
ages of n individuals at a specific variant position (for each 
individual, 1 if the individual carries the alternate allele of the 
variant in heterozygote, 2 if homozygote, and 0 otherwise), � 
is the effect size of the variant (scalar), and � is a noise term 
vector (typically normally distributed) of size n × 1.

In contrast, when we perform statistical fine-mapping, we 
consider a set of m variants in a locus at a time:

y = X ⋅ � + �

where X is a matrix of size n × m , and � is now a vector of 
size m × 1.

Not all the variants in a locus are likely causal. We typically 
assume sparse causal configuration, which means most of the 
elements of � are zero:

� = � ⋅ b

where � is the causal indicator vector (1 if a variant is 
causal, 0 otherwise) with most of the elements being 0, and b 
is the (true) effect sizes vector when the variant is causal for 
the phenotype.

In a typical Bayesian statistical fine-mapping, we set a 
prior distribution for the parameters � and b such that all the 
elements of � have an equal probability of being non-zero, 
and each element of b follows a normal distribution with pre-
specified mean (= 0) and variance, to evaluate different sparse 
causal configurations ( � s). In contrast, functionally informed 
fine-mapping corresponds to letting the prior distribution of � 
to be non-uniform depending on the variant annotations.

Box. 2 Bayesian method overview.
(In this box, we are assuming uniform prior).
Let X be the genotypes in a locus of interest (and the phe-

notypes), and Xi be the genotype of the variant i in a locus, 
Maller et al. [39] showed that, the Bayes factor corresponding 
to a model that variant i is the only causal variant in the locus 
of interest ( Mi ) over the model that no variant in the locus is 
causal ( M0 ) depends only on the genotype data of the variant i:

and if we assume there is exactly one causal variant in a 
locus of interest (i.e., the model M = M1 ∪M2 ∪ ... ∪Mi ∪ ... ), 
the posterior probability of that variant being causal is simply 
proportional to the Bayes factor:

Wakefield (2007,2009)37,38 showed that the Bayes factor 
can be approximated using summary statistics of the variant 
i alone as:

y = � ⋅ x + �

BFi =
P(X|Mi)

P(X|M0)
=

P(Xi|Mi)

P(Xi|M0)

P(Mi|X,M) ∝ BFi
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where �̂i is the marginal effect size, Zi is the z-score, and 
ri is the ratio of the prior variance ( W  ) to the total variance 
of the effect size of variant i ( W + Vi ) in GWAS (we have 
flipped the denominator and the numerator compared to the 
original notation of ABF in Wakefield (2007,2009), for con-
venience). Then the posterior inclusion probability (PIP) can 
be simply given as:

for a locus harboring k variants.
For > 1 causal variants, we cannot use such simple 

approximations. Let Γ be all possible causal configurations, 
and Γi be a subset that includes variant i in the causal vari-
ant set,

PIPi =

∑
C∈Γi

BFC ⋅P(C)
∑

C∈Γ
BFC ⋅P(C)

 . Calculating the Bayes factor for a 

causal configuration C
BFC =

P(X|MC)

P(X|M0)
 over all the 2k possible causal configura-

tions as required in the calculation of denominator could be 
computationally expensive, and different fine-mapping 
methods have been developed to overcome the computa-
tional challenge (e.g., many methods restrict the number of 
causal variants in the model.  FINEMAP54 performs stochas-
tic search to avoid considering all the possible causal 
configurations).
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