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ABSTRACT The complexity of genome-wide gene expression has not yet been ade-
quately addressed due to a lack of comprehensive statistical analyses. In the present
study, we introduce degree of freedom (DOF) as a summary statistic for evaluating
gene expression complexity. Because DOF can be interpreted by a state-space represen-
tation, application of the DOF is highly useful for understanding gene activities. We
used over 11,000 gene expression data sets to reveal that the DOF of gene expression
in Saccharomyces cerevisiae is not greater than 450. We further demonstrated that vari-
ous degrees of freedom of gene expression can be interpreted by different sequence
motifs within promoter regions and Gene Ontology (GO) terms. The well-known TATA
box is the most significant one among the identified motifs, while the GO term “ribo-
some genesis” is an associated biological process. On the basis of transcriptional free-
dom, our findings suggest that the regulation of gene expression can be modeled
using only a few state variables.

IMPORTANCE Yeast works like a well-organized factory. Each of its components works
in its own way, while affecting the activities of others. The order of all activities is
largely governed by the regulation of gene expression. In recent decades, biologists
have recognized many regulations for yeast genes. However, it is not known how
closely the regulation links each gene together to make all components of the cell
work as a whole. In other words, biologists are very interested in how many inde-
pendent control factors are needed to operate an artificial “cell” that works the
same as a real one. In this work, we suggested that only 450 control factors were
sufficient to represent the regulation of all 5800 yeast genes.

KEYWORDS Saccharomyces cerevisiae, coordinate system, degree of freedom, gene
activity, gene expression

Inspired by Feynman’s famous lecture in 1959, titled “There’s plenty of room at the
bottom,” many scientists have considered life on the basis of a mechanical philoso-

phy in which the entire cell is viewed as a factory containing elaborate protein
machines with ordered movements (1). Remarkable advances in molecular biology
over the past few decades have revealed that cell functions are carried out by macro-
molecular complexes containing multiple units with specific roles (2). Starting from
molecular complexes or subsystems, biologists have provided new insights into cellu-
lar function. For example, in the early era of molecular biology, studies of the lac op-
eron from Escherichia coli clarified the organization, regulation, and engineering of bio-
logical subsystems (3). The rapidly growing field of structural biology has supported
the trend of conceptualizing proteins and other macromolecular complexes as
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molecular machines (4). Ambitious efforts have been made to understand and simulate
cell functions as a collection of mechanical components (5–8).

Dependency is a basic rule of life. In his book “What is Life?,” Erwin Schrödinger sug-
gests that life feeds on negative entropy, or free energy, to maintain dependency and
protect against thermodynamic damage (9). It is therefore important to consider the
dependency and regulation between and within different biological components. The
primary goal of systems biology is to quantitatively model the interdependency
among components of complex biological systems using a holistic approach (10, 11).
In state-space representation, gene expression levels can be interpreted as outputs of
a system and determined by several state variables of the system (12). The degree of
freedom (DOF) is the minimum number of state variables that can thoroughly repre-
sent the state of a system. Thus, clarifying the DOF of gene regulation and how it is
affected by biological factors is an important step toward developing a holistic under-
standing of a biological system (13).

Within a single cell, the interdependency of genetic regulation is linked with gene
expression. The interdependency effectively reduces the systematic DOF of gene
expression (14). On the other hand, while regulation redundancy is common in biologi-
cal pathways, redundancy increases the DOF of gene expression by weakening the link
between genetic regulation and gene expression (15, 16). Changes in gene transcrip-
tion are the interplay between the regulation interdependency and pathway redun-
dancy. To understand the interplay, changes in transcriptional states must be clearly
represented by state variables (17, 18). A coordinate system of state variables allows a
huge amount of transcriptional data to be represented and analyzed easily, even when
the data are collected from different studies.

Saccharomyces cerevisiae, with;5,800 genes, is a useful model for exploring biolog-
ical processes and molecular mechanisms (19). In the present study, we investigated
the DOF of gene expression in S. cerevisiae to analyze transcriptional regulation using
more than 11,000 data sets. Our findings indicated that the DOF of gene expression is
astonishingly limited and much smaller than the total number of genes. The limited
DOF indicates that gene expression in S. cerevisiae can be effectively represented by
no more than 450 specific state variables in a state-space representation. Further analy-
sis suggested that the representative variables can be interpreted by sequence motifs
within promoter regions and gene ontology (GO) terms. Because the state variables
serve as the bases for transcriptional states in linear space, we further developed a uni-
versal coordinate system to map the transcription states of S. cerevisiae and compare
them among different replications and experiments.

RESULTS
DOF of gene expression in S. cerevisiae. We determined the minimum number of

state variables in the state-space model of genetic regulation for yeast genes (see
Materials and Methods for details), i.e., the DOF of yeast gene expression, by applying
a search strategy with cross-validation (20). Our study included 11,483 gene expression
data sets and a total of 6,692 genes. After quality control procedures, 6,322 data sets
with 4,529 genes were used in the investigation of cross-validation. In each cross-vali-
dation, the full data set with 4,529 filtered genes was randomly divided into a training
set with 4,000 genes and a testing set with the remaining 529 genes. During the itera-
tions, the search range for the DOF was continuously narrowed until the fitting error
of the state-space model reached a minimum (Fig. 1A). DOFs of gene expression in the
15 cross-validations ranged from 368 to 418, with a mean of 392.4 and a standard devi-
ation of 16.29 (Fig. 1B). These findings indicate that the DOF of gene expression in
S. cerevisiae is much smaller than the total number of genes.

To investigate the robustness of the above-described analysis, we further estimated
the DOFs in different scenarios with multiple empirical data sets generated by resam-
pling. Using different data sets comprising 1,000 to 6,000 experiments, the estimated
DOF became larger as the number of experiments increased (Fig. 1C). When including
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only 1,000 experiments, the estimated DOFs from 15 different evaluations averaged
93.53 with a standard deviation of 8.49. When 6,000 experiments were included, the
mean estimated DOFs increased to 365.75 with a standard deviation of 8.49. The incre-
ments in the estimated DOFs were significantly reduced as the number of experiments
increased (Fig. 1D). Comparison between 1,000 and 2,000 experiments revealed an
increase of 72.07 in the mean estimated DOFs. When using the mean estimated DOFs
of 5,000 and 6,000 experiments, the increase was reduced to 35.53.

We then fitted a quadric curve to the above-mentioned estimations to investigate the
possible DOFs of gene expression over more experimental data. This type of extrapolation
is very helpful toward further exploring the impact of data size. The fitted curve

FIG 1 Determining the DOF of gene expression. (A) A diagram of the golden section search for determining
the DOF. The search trajectory is presented by the black curve and projected as a modified Fibonacci spiral on
an x-y plan (in blue), where x (DOF) is the input of loss function and y is shown as an imaginary axis for
convenience of visualization. When the output of loss function (fitting error) is given on the z axis, we present
the whole search procedure in a three-dimensional (3-D) diagram. This search starts with an initial value of 800
(black ball) and reaches a final value of 390 (red ball). (B) This figure presents all 15 results in a scatterplot with
polar coordinates. The radial coordinates indicate deviations of estimations to their average, and the angular
coordinates are given to the 15 scatter points by evenly partitioning the 2p radians in order of estimation
runs. (C) The number of estimated DOFs increases slowly with an increase in the amount of experimental data.
The x axis shows the size of experimental data. (D) The increment of the estimated DOFs decreases with an
increase in the amount of experimental data. The size of experimental data is presented in the x axis. (E) The
number of involved genes has little effect on the DOF estimation. (F) The increase in DOF is approximately
zero with different numbers of genes.
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approximated a maximum of approximately 443 for a data set of about 11,000 experi-
ments. This result was supported by the reduced increases in the estimated DOFs as the
number of experiments in the data set increased. A fitted linear model suggested that the
increasing amplitude would approximate zero as the data set increased to 10,000 experi-
ments or more. Surprisingly, changing the number of genes had little effect on estimation
of the DOF. In evaluations using all the experimental data but with different numbers of
genes (ranging from 1,500 to 4,000), the mean estimated DOF was approximately 390
(Fig. 1E). The mean DOF did not differ significantly among estimations with different num-
bers of genes when analysis of each gene size was applied to 15 randomly generated
data sets (Fig. 1F). This finding suggested that a small group of genes is capable of recapit-
ulating the global dynamics of the state variables of gene expression.

Biological features interpreting the state variables of transcriptional regulation.
To interpret the state variables corresponding to different DOFs in the state-space rep-
resentation of gene expression, we searched 8-mer sequence motifs within the 500-bp
regions upstream from each transcription start site in the yeast genome. The weights
(contributions) of each sequence motif on different state variables were obtained by
fitting the present motifs of each gene to the variables using the least-squares method
(see Materials and Methods). Our results revealed that different sequence motifs made
significantly different contributions to the various state variables. For the primary vari-
able, for example, 62 motifs had weights of less than 20.5 and 179 motifs had weights
larger than 0.5, while the total mean weight was approximately 0 (27.199 � 1024)
with a standard deviation of 0.121. Twenty motifs with the most extreme weights are
shown in Fig. 2A. The most well-known TATA box was found in 8 of 10 motifs with

FIG 2 Sequence motifs and ontology terms explain the state variables. (A) Sequence motifs with extreme
contributions to the primary state variable. Bell curve showing the distribution of weights for all the sequence
motifs. Weight is provided on the x axis, and density is presented on the y axis. The tables present the most
significant sequence motifs, and the typical TATA boxes are highlighted in red. (B and C) Two word clouds of
GO terms interpret the 1st (B) and 19th (C) state variables. The GO terms with significant positive weights are
highlighted in orange, while the terms with significant negative weights are highlighted in green.
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extreme negative weights. Approximately 20% of the yeast genes contained the TATA
box with the consensus sequence 59-TATA(A/T)A(A/T)-39 (21). The top 10 motifs with
extreme positive weights had a low sequence complexity with multiple A’s and T’s
(Fig. 2A). This finding suggests that A/T-rich motifs play important roles in regulating
gene transcription.

Gene ontology can also be used to interpret differences among state variables by fit-
ting GO terms to the variables (see Materials and Methods). For example, in Fig. 2B and C,
we present GO terms with significant contributions (weights) to the 1st and 19th state var-
iables (see the last paragraph of Results for details about further work regarding data visu-
alization of the 19th state variable). GO terms related to protein production, such as
“nucleolus,” “ribosome biogenesis,” “RNA binding,” and “rRNA processing,” made signifi-
cantly positive contributions to the 1st state variable. On the other hand, “membrane,”
“mitochondrion,” and “integral component of membrane” made significantly negative
contributions to the 1st state variable. Surprisingly, “mitochondrion” was a negative con-
tributor for the 19th state variable as well, but the other terms, “integral component of
membrane” and “membrane,” were the top positive factors (Fig. 2C). Other terms, such as
“structural constituent of ribosome” and “nucleus,” also had different effects on the 1st
and 19th state variables. Our findings suggest that the state variables are interpretable
with GO terms and other integrated biological information.

Information capacity of motifs restricting the gene expression complexity. The
limited size of state variables in gene expression suggests that the regulation network
may not be capable of simultaneously transmitting a great amount of regulatory infor-
mation. We therefore evaluated the information capacity of motifs critical for regula-
tion of the gene expression network. The information capacity is a good indicator for
the binding specificity of protein factors in the presence of diversifying sequence
motifs. We selected a set of 1,311 motifs for each state variable in which each of the
motifs was ranked in the top 1% of positive- or negative-weight motifs of the corre-
sponding state variable (see Materials and Methods for details). Our analysis revealed

FIG 3 Motif sharing among the 1st to 4th state variables (SVar). (A) The sharing of critical motifs among the 1st to 4th state variables. (B) This figure
presents the map of critical motifs in the promoter region of gene YAL067C.
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that the selected motifs of a total of 450 state variables had a Shannon information
capacity of 5.46 bits. The information capacity was much smaller than the theoretical
maximum (16 bits for 8-mer motifs). Shannon’s capacity theorem suggested that a lim-
ited information capacity makes it difficult to transmit abundant regulatory signals
without a loss of information (22). To further explore the selected motifs, we investi-
gated the overlaps of the 450 motif sets of different state variables. The overlaps of
motif sets for the 1st through 4th state variables are presented as an example in
Fig. 3A. Our analysis showed that nearly half of the selected motifs in each set were
shared with another motif set. Although the overlaps were significant, the majority of
the motifs (3,131 motifs in total) appeared in only 1 of the 4 sets. Besides 705 motifs in
at least 2 sets and 173 motifs in 3 sets, 46 selected motifs were found in all 4 motif
sets. To investigate the sharing of selected motifs over different state variables, we
mapped the selected motifs to the promoters of different genes (the 500-bp region
upstream from each transcription start site). The results demonstrated that the major-
ity of selected motifs in each promoter were shared by different state variables (see
Fig. 3B for an example). Our analysis of motif sharing supports the notion that the in-
formation capacity of sequence motifs in promoter regions is limited due to the shar-
ing among state variables.

To better understand the motifs, we calculated Shannon’s information capacity for
the presence of critical motifs of each promoter (see Materials and Methods for details).
Our results revealed that the information capacity varies according to their presence in
different promoters, with an average of 2.53 bits and a standard deviation of 0.26 bits.
We conducted an enrichment analysis of GO terms on the gene list that was ranked
based on the information capacities of the selected motifs in the gene promoters. The
analysis detected the clustering tendency of member genes of each GO term in the
ranked gene list (23, 24). Our results revealed significant enrichments in a total of 334 GO
terms of molecular function, cell components, or biological processes (Fig. 4A). For example,
285 promoters for genes that encode components of the nucleolus (GO:0005730) had signifi-
cantly low information capacities among promoters of the total of 4,529 genes, with the nor-
malized enrichment score being 23.29 (false discovery rate [FDR] q value of#0.001) (Fig. 4B,
left). In contrast, 170 gene promoters of the mitochondrial protein-containing complex
(GO:0098798) had a much larger information capacity than the other gene promoters, with a
normalized enrichment score of 2.81 (FDR q value of #0.009) (Fig. 4B, right). Besides the GO
term of mitochondrial protein-containing complex, multiple other GO terms related to mito-
chondrial components with highly informative promoters were identified (Fig. 4C). Our study
indicates that gene promoters have different information capacities for the presence of critical
motifs and that the differences are associated with their biological characteristics.

Universal coordinate system presenting the state of transcription. The state var-
iables in the gene expression model provide the opportunity to develop a coordinate
system for presenting the state of transcription (25). Because the analysis suggested
that the DOF of gene transcription was approximately 450 in yeast, we established a
universal coordinate system designated transcriptional coordinate system of yeast
(TCSY) with 450 dimensions. Each dimension presents a single state variable. The coor-
dinate system enables us to map any transcriptional state of cells to the high-dimen-
sional space of TCSY (see Materials and Methods). Our study of 6,322 experiments sug-
gests that TCSY explains 89.3% of the total variance and the 1st, 2nd, and 3rd state
variables explain 25.1%, 6.4%, and 3.4% of the total variance, respectively. The different
variables made various contributions to the expression of different genes (Fig. 5). With
the rapid increase in the accumulating variance explained by the top variables, the var-
iance explained by a single variable drops below 1.0% for the 11th variable and
thereafter.

We investigated the transcriptional states for 3 replications of 2 published experiments
(26). In Fig. 6, the parallel coordinate plot in a spiral form shows significant expression dif-
ferences using TCSY. In the 1st dimension, there was a significant difference between the
2 experiments. In addition to the difference between experiments, the plot shows small
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FIG 4 Significant enrichments of ranked genes in different GO terms. (A) The Manhattan plot from g:Profiler shows statistical significance of enrichment
analysis for GO terms. The numbers in parentheses present the sizes of significant enrichments in each GO category. (B) The figures from GSEA show

(Continued on next page)
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expression differences among different replications, while expression was highly similar
among the replications (Table 1). For example, replications of experiment 2 showed more
differences in the 19th dimension (Fig. 6). Our results suggest that TCSY can present differ-
ent transcriptional states and distinguish them from each other. To facilitate the applica-
tion of TCSY, we developed an R package to map any transcriptional state of genome-
wide expression data sets to the coordinate system (R package available at https://github
.com/zyangx/ori).

DISCUSSION

Alter et al. (27) developed the “eigengene” and “eigenarray” to extract critical infor-
mation from massive amounts of transcriptome data. Thereafter, investigators used
singular value decomposition (SVD) and similar approaches to define different eigen-
genes in many studies (28–31). The different eigengenes are not comparable between
different studies, however, because they are constructed separately using different ex-
perimental data. The lack of a universal underlying model is a significant limitation in
gene expression data analysis. In the present study, we constructed a universal model
using all of the published data available for S. cerevisiae and provide the model in an R
package. The model can be applied to represent different data in the universal system
TCSY (see Materials and Methods). In the coordinate system, transcriptional states can
be compared in multiple dimensions between different data sets to disclose significant
changes in gene expression. Each dimension of TCSY is associated with different GO
terms and sequence motifs of different weights.

There is a close relationship between classic principal component analysis (PCA)
and our approach using SVD to estimate the minimum size of state variables for the
state-space representation of transcriptional regulation. It should be noted, however,

FIG 4 Legend (Continued)
the results of the enrichment analysis for GO:0005730 (nucleolar components) and GO:0098798 (mitochondrial protein-containing complex). (C) An
enrichment map of some significant GO terms. Gene promoters of mitochondrial components (nodes in dark red) have higher information capacity
than the others, while those of the nucleolus, ribosomes, and metabolic processes (nodes in steel blue) have low information capacity. The areas of the
nodes are proportionate to the numbers of genes in the GO terms, and the links between nodes indicate similarity ($50%) of the gene contents
between corresponding GO terms.

FIG 5 The state variables of the transcriptional model contributed independently to the expression of
different genes. The scatterplots show the load of each gene in the 3 state variables, and the 3-D
histograms show the densities of the genes. The 1st, 2nd, and 3rd state variables explain 25.1%,
6.4%, and 3.4% of the total variance, respectively.
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that our results must be interpreted in a different manner than the classic PCA. The classic
PCA is a model-free approach, and therefore, residual variance is usually explained by
contributions of the rest of the principal components. Our study, however, is a model-
based analysis where residual variance is due to system noise. That is, the residual var-
iance of expression data in our model with 450 state variables cannot be explained by bi-
ological regulation. Therefore, our work should be interpreted cautiously according to the
theory of classic PCA.

In studies of transcriptional regulation, information capacity measured in Shannon
entropy is usually employed as a good measure of the diversity of gene expression. For
example, Schug et al. (32) distinguished tissue-specific expression from ubiquitous
genes in Shannon entropy. Furthermore, Martínez and Reyes-Valdés developed a
framework to define diversity, specialization, and gene specificity in transcriptomes
through information theory (33). More efforts were made to develop methods and
tools with information theory to analyze all kinds of expression data (34–37). Previous
studies, however supplied limited clues about the information capacity of sequence

FIG 6 Parallel coordinate plot presenting normalized differences in gene expression for 3 replications (R1 to R3) of 2 experiments
(Exp. 1 and 2) in a spiral form. Replications of experiment 1 are presented in yellow, while replications of experiment 2 are shown
in red. In the 1st state variable, there was a significant difference between the 2 experiments. Furthermore, replications of
experiment 2 showed more differences in the 19th state variable than those of experiment 1. The two small plots above show
more details of the differences of standard deviation (S.D.) for the 1st and 19th state variables.
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motifs. Our studies of the information capacity conceptualize the roles of the general
motifs in transcriptional regulation.

Although the estimated size of state variables is much less than that of total genes in
yeast, genetic regulation still properly responds to various environmental stimulations. Even
if each state variable makes only a binary response to external signals, there are more than
2.91 � 10125 (2450) possible configurations for the 450 state variables. The large size of the
configurations explains the limited information capacity of promoter motifs because gene
transcription does not need to respond to each shift in the configuration. Reducing the in-
formation capacity of promoters could be an optimized evolutionary strategy to overcome
the interference of regulatory noise. While multiple DNA binding factors play critical roles as
members of the transcriptional complex, the poor information capacity of the correspond-
ing motifs might not be a hindrance for proper regulation of mRNA transcription (38).

In this report, we show that the global gene expression in yeast can be effectively
represented by no more than 450 state variables. The ability to represent different
transcripts using the variables enables direct quantification of the differences between
various transcriptional states. In a linear system, changes in gene expression can easily
be normalized, scaled, and further compared with the state variables. Because the
gene expression diversity is represented with only a few hundred variables, it is easy to
visualize the differences between and within experiments in the universal system
TCSY.

MATERIALS ANDMETHODS
DOF as the minimum number of state variables. Gene expression changes over a discrete time pe-

riod can be modeled by a state-space representation using the equations xðt1 1Þ ¼ AxðtÞ1 BuðtÞ and
yðtÞ ¼ CxðtÞ1DuðtÞ, where t is a moment in time, y is the observed gene expression level in logarithmic
form, x is the vector of the state variables, and u is the inputs of control (experimental) parameters (39). A is
the state matrix that represents the interaction between state variables, while C is the output matrix that
determines the observed expression changes by the state variables. Both input matrix B and feedforward
matrix D model how the inputs affect the state variables and observations. The feedforward matrix D could
be 0 when feedforward is not present. Consequently, we can restate the state-space representation as
follows:

yðtÞ ¼ C
Xt21

i¼0

AiBuðt2 iÞ (1)

When an experimental sample is treated (marked by * below) at an early moment in time j in a well-
controlled study, the difference in the gene expression between experimental and control groups at
time t is as follows:

Dy ¼ y�ðtÞ2 yðtÞ ¼ LA;B;Cðu�2 uÞ (2)

where LA;B;Cð�Þ is a linear function with the combined information of matrices A, B, and C (equation 1).
Without detailed knowledge about matrices A, B, and C and vector x, we can determine the DOF for tran-
scriptional regulation, i.e., the minimum number of independent inputs m and state variables x in the
state-space representation. The DOF reflects the complexity of genetic regulation.

We transformed the differences in gene expression equation 2 to Dy ¼ URV by singular value decom-
position (SVD) (40). The vectors in U are called the left singular vectors, which represent the contribution of

TABLE 1 Pearson’s correlation coefficients for expression changes of 3 replications of 2 experiments

Experiment and replication

Pearson’s r for expression change in indicated
experiment and replicationa

Exp1.r1 Exp1.r2 Exp1.r3 Exp2.r1 Exp2.r2 Exp2.r3
Exp1.r1 1
Exp1.r2 0.981 1
Exp1.r3 0.974 0.981 1
Exp2.r1 20.682 20.707 20.702 1
Exp2.r2 20.683 20.704 20.694 0.919 1
Exp2.r3 20.663 20.666 20.661 0.857 0.905 1
aIn experiment 1, changes in expression were obtained for wild-type yeasts before and after 20 min of stress treatment (0.4 M KCl); in experiment 2, a yeast strain lacking
Hog1 was evaluated before and after the same stress treatment. Exp1 and -2, experiments 1 and 2; r1 to -3, replications 1 to 3. The boldface coefficients indicate the data
correlations between the replications of the same experiments.
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state variables (explanatory variables) in the linear function LA;B;Cð�Þ, and the vectors in V are the right singu-
lar vectors, which represent various inputs from different experiments. The plots in Fig. 1 show that the state
variables make different contributions to the expression of different genes. The diagonal entries of matrix R
are the singular values of Dy. The number of significant eigenvalues is the suggested number of state varia-
bles in the model of gene expression (equation 2), i.e., the DOF of gene expression.

Data. We initially collected 11,483 gene expression data sets for S. cerevisiae from the Saccharomyces
Genome Database (SGD) (41). A total of 6,692 genes were identified among all of the data sets, while some
genes were not found in particular data sets. We removed the genes with a high missing rate (missing in
more than 250 experiments) and experiments with insufficient gene data (,4,000 genes). To eliminate
potential bias regarding data normalization, we further removed experimental data with a mean absolute
logarithm expression difference larger than 0.5. As a result, 6,322 gene expression data sets with 4,529 genes
were included for further analysis.

Genome sequences of S. cerevisiae (S288C, version R64) were also downloaded from the SGD website.
The annotation for the SGD genes was obtained from the FTP site of GENOME golden path at the University
of California, Santa Cruz (42). The ontology of the SGD genes was obtained from Gene Ontology Consortium
(http://geneontology.org/docs/download-ontology/).

Estimating the DOF of gene expression. We determined the number of significant state variables
by applying a search strategy with cross-validations. The cross-validation method identifies the size of
state variables that best describe the systematic variations in data. It is commonly used in model-based
studies, while model-free studies usually employ a variance threshold approach to determine the size of
significant dimensions. A detailed introduction to the cross-validation method can be found in the work
of Bro et al. (20).

For expression data matrix X, we divided the full data set into a training data set and a testing data
set. The 2 data sets contained expression data of the same genes but from different experiments. The
following procedure was applied to centralized data sets: (i) obtain right singular vectors V of the train-
ing data by SVD (Dy ¼ URV); (ii) approximate the error E for a given number of components k in

Eapprox ¼
Xn

i¼1

k½I2PPT 1 diagðPPTÞ�Xtestingk2

where P is size k for the most significant vectors (20); (iii) apply a golden section search algorithm to
search for a proper k to minimize the errors (43); and (iv) repeat the above search process 15 times on
different training and testing data sets to evaluate the robustness of the model across data sets and con-
vergence of the search algorithm.

Mapping genetic features to the model inputs. The above-described linear model allowed us to
map gene expression or other genetic features (such as sequence motifs and ontological terms) to the
state variables of a model. When vector Dy is known to exist for each feature or genome-wide expres-
sion difference, vector V̂ , which presents independent state variables of the expression model, can be
obtained by least-squares approximation in V̂ ¼ ðXTXÞ21XTDy, where matrix X ¼ UðmÞRðmÞ is the basis of
a universal coordinate system with m dimensions defined by the model. Because the number of genes
involved in Dy is much higher than the number of significant state variables, the least-squares estima-
tion of V̂ is robust to missing elements in Dy.

Calculating the information capacity of motifs for transcriptional regulation. Each state variable
was represented by a vector having 65,536 elements, each of which corresponds to 1 of the 48 motifs.
Elements whose corresponding motifs were ranked in the top 1% of positive-weight motifs were selected
and given a value of 1, elements whose corresponding motifs were ranked in the top 1% of negative-weight
motifs were selected and given a value of 21, and all remaining elements were given a value of 0.
Consequently, we represented the 450 state variables as a 65,536-by-450 matrix. Rows of the matrix were
categorized into different groups in which each group member had the same configuration of element val-
ues. The information capacity H of the selected motifs in the regulation system was obtained in the follow-
ing equation:

H ¼ 2
X

i

pilog2ðpiÞ

where pi is the frequency of motif group i in the system. For the promoter of gene j with a total of k
selected motifs, the information capacity of the presence of motifs was defined as

HðjÞ ¼ 2
1
k

Xk

i¼1

qðjÞilog2½qðjÞi�

where qðjÞi is the probability that motif i of gene j appears in the selected motifs of the 450 state
variables.

Enrichment analysis of ranked gene list. All involved genes were ranked by the aforementioned
information capacities of their promoters. The enrichment analysis was applied to the ranked list using
both GSEA (version 4.1.0) and g:Profiler (23, 44). Visualization of the enrichment data was conducted in
Cytoscape (version 3.8.2) with the Enrichment Map plugin (24, 45).

Statistical analysis. The general statistical analysis and figure preparation for the manuscript were
conducted in the R (version 3.5.2) and MATLAB (version 2018a) programming environments.
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Data availability. Detailed information on the expression data used in this study is supplied in Table
S1 in the supplemental material. All the data files are publicly available in the Saccharomyces Genome
Database (https://www.yeastgenome.org/). All data and other material used in this study are publicly avail-
able upon request. The R package ORI is publicly available online at https://github.com/zyangx/ori. The
package supplies functions to represent yeast expression data in TCSY (transcriptional coordinate system of
yeast) as a parallel coordinate plot or to visualize the contribution of GO terms to each of the state variables
of TCSY in a word cloud. All codes and other material used in this study are publicly available upon request.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.

ACKNOWLEDGMENTS
This work was supported by grants from the National Natural Science Foundation of

China (grant numbers 91731310 and 31871255 to Y.H., grant number 91959106 to Z.Y.,
and grant number 31770094 to H.L.). Y.H. was also supported by Shanghai Municipal
Science and Technology (grant number 2017SHZDZX01).

We thank the innovative research team of the High-level Local University in
Shanghai for their support.

The authors declare that they have no competing interests.
Y.H. and H.L. conceptualized the study; Y.H. and Z.Y. developed the methodology;

Z.Y., F.X. and A.X. performed the investigation; Y.H. and H.L. supervised the project; and
Y.H. and Z.Y. prepared the manuscript.

REFERENCES
1. Feynman RP. 2011. There’s plenty of room at the bottom: an invitation to

enter a new field of physics. Resonance 16:890–905. https://doi.org/10
.1007/s12045-011-0109-x.

2. Alberts B. 1998. The cell as a collection of protein machines: preparing
the next generation of molecular biologists. Cell 92:291–294. https://doi
.org/10.1016/S0092-8674(00)80922-8.

3. Lewis M. 2013. Allostery and the lac operon. J Mol Biol 425:2309–2316.
https://doi.org/10.1016/j.jmb.2013.03.003.

4. Nogales E, Grigorieff N. 2001. Molecular machines: putting the pieces to-
gether. J Cell Biol 152:F1–F10. https://doi.org/10.1083/jcb.152.1.f1.

5. Lim B. 2018. Imaging transcriptional dynamics. Curr Opin Biotechnol 52:
49–55. https://doi.org/10.1016/j.copbio.2018.02.008.

6. Schier AC, Taatjes DJ. 2020. Structure and mechanism of the RNA poly-
merase II transcription machinery. Genes Dev 34:465–488. https://doi
.org/10.1101/gad.335679.119.

7. Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, Cramer P.
2018. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6.
Nature 560:607–612. https://doi.org/10.1038/s41586-018-0440-4.

8. Harper TM, Taatjes DJ. 2018. The complex structure and function of Media-
tor. J Biol Chem 293:13778–13785. https://doi.org/10.1074/jbc.R117.794438.

9. Schrödinger E, Penrose R. 1992. What is life? With mind and matter and
autobiographical. Cambridge University Press, Cambridge, UK.

10. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R,
Wang Y. 2009. Differential dependency network analysis to identify con-
dition-specific topological changes in biological networks. Bioinformatics
25:526–532. https://doi.org/10.1093/bioinformatics/btn660.

11. Chasman D, Fotuhi Siahpirani A, Roy S. 2016. Network-based approaches
for analysis of complex biological systems. Curr Opin Biotechnol 39:
157–166. https://doi.org/10.1016/j.copbio.2016.04.007.

12. Mar JC, Quackenbush J. 2009. Decomposition of gene expression state
space trajectories. PLoS Comput Biol 5:e1000626. https://doi.org/10.1371/
journal.pcbi.1000626.

13. Inoue M, Kaneko K. 2013. Cooperative adaptive responses in gene regula-
tory networks with many degrees of freedom. PLoS Comput Biol 9:
e1003001. https://doi.org/10.1371/journal.pcbi.1003001.

14. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. 2009. Gene regu-
latory network inference: data integration in dynamic models—a review.
Biosystems 96:86–103. https://doi.org/10.1016/j.biosystems.2008.12.004.

15. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li W-H. 2003. Role of dupli-
cate genes in genetic robustness against null mutations. Nature 421:
63–66. https://doi.org/10.1038/nature01198.

16. Nowak MA, Boerlijst MC, Cooke J, Smith JM. 1997. Evolution of genetic re-
dundancy. Nature 388:167–171. https://doi.org/10.1038/40618.

17. Wagner A, Regev A, Yosef N. 2016. Revealing the vectors of cellular iden-
tity with single-cell genomics. Nat Biotechnol 34:1145–1160. https://doi
.org/10.1038/nbt.3711.

18. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D,
Lara-Astiaso D, Gury M, Weiner A, David E, Cohen N, Lauridsen FKB, Haas S,
Schlitzer A, Mildner A, Ginhoux F, Jung S, Trumpp A, Porse BT, Tanay A, Amit
I. 2015. Transcriptional heterogeneity and lineage commitment in myeloid
progenitors. Cell 163:1663–1677. https://doi.org/10.1016/j.cell.2015.11.013.

19. Botstein D, Fink GR. 2011. Yeast: an experimental organism for 21st cen-
tury biology. Genetics 189:695–704. https://doi.org/10.1534/genetics.111
.130765.

20. Bro R, Kjeldahl K, Smilde AK, Kiers HAL. 2008. Cross-validation of compo-
nent models: a critical look at current methods. Anal Bioanal Chem 390:
1241–1251. https://doi.org/10.1007/s00216-007-1790-1.

21. Burley SK. 1996. The TATA box binding protein. Curr Opin Struct Biol 6:
69–75. https://doi.org/10.1016/s0959-440x(96)80097-2.

22. Kolmogorov A. 1956. On the Shannon theory of information transmission
in the case of continuous signals. IRE Trans Inf Theory 2:102–108. https://
doi.org/10.1109/TIT.1956.1056823.

23. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019.
g:Profiler: a web server for functional enrichment analysis and conver-
sions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198.
https://doi.org/10.1093/nar/gkz369.

24. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. 2010. Enrichment map: a
network-based method for gene-set enrichment visualization and interpre-
tation. PLoS One 5:e13984. https://doi.org/10.1371/journal.pone.0013984.

25. Maziarz M, Pfeiffer RM, Wan Y, Gail MH. 2018. Using standard micro-
biome reference groups to simplify beta-diversity analyses and facilitate
independent validation. Bioinformatics 34:3249–3257. https://doi.org/
10.1093/bioinformatics/bty297.

26. Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O’Shea EK.
2008. Structure and function of a transcriptional network activated by the
MAPK Hog1. Nat Genet 40:1300–1306. https://doi.org/10.1038/ng.235.

27. Alter O, Brown PO, Botstein D. 2000. Singular value decomposition for ge-
nome-wide expression data processing and modeling. Proc Natl Acad Sci
U S A 97:10101–10106. https://doi.org/10.1073/pnas.97.18.10101.

28. Mäkinen H, Sävilammi T, Papakostas S, Leder E, Vøllestad LA, Primmer CR.
2018. Modularity facilitates flexible tuning of plastic and evolutionary

A Systemic View of Gene Expression Regulation Microbiology Spectrum

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.00838-21 12

https://www.yeastgenome.org/
https://github.com/zyangx/ori
https://doi.org/10.1007/s12045-011-0109-x
https://doi.org/10.1007/s12045-011-0109-x
https://doi.org/10.1016/S0092-8674(00)80922-8
https://doi.org/10.1016/S0092-8674(00)80922-8
https://doi.org/10.1016/j.jmb.2013.03.003
https://doi.org/10.1083/jcb.152.1.f1
https://doi.org/10.1016/j.copbio.2018.02.008
https://doi.org/10.1101/gad.335679.119
https://doi.org/10.1101/gad.335679.119
https://doi.org/10.1038/s41586-018-0440-4
https://doi.org/10.1074/jbc.R117.794438
https://doi.org/10.1093/bioinformatics/btn660
https://doi.org/10.1016/j.copbio.2016.04.007
https://doi.org/10.1371/journal.pcbi.1000626
https://doi.org/10.1371/journal.pcbi.1000626
https://doi.org/10.1371/journal.pcbi.1003001
https://doi.org/10.1016/j.biosystems.2008.12.004
https://doi.org/10.1038/nature01198
https://doi.org/10.1038/40618
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1016/j.cell.2015.11.013
https://doi.org/10.1534/genetics.111.130765
https://doi.org/10.1534/genetics.111.130765
https://doi.org/10.1007/s00216-007-1790-1
https://doi.org/10.1016/s0959-440x(96)80097-2
https://doi.org/10.1109/TIT.1956.1056823
https://doi.org/10.1109/TIT.1956.1056823
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1371/journal.pone.0013984
https://doi.org/10.1093/bioinformatics/bty297
https://doi.org/10.1093/bioinformatics/bty297
https://doi.org/10.1038/ng.235
https://doi.org/10.1073/pnas.97.18.10101
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00838-21


gene expression responses during early divergence. Genome Biol Evol 10:
77–93. https://doi.org/10.1093/gbe/evx278.

29. Shen R, Ghosh D, Chinnaiyan A, Meng Z. 2006. Eigengene-based linear dis-
criminant model for tumor classification using gene expression microarray
data. Bioinformatics 22:2635–2642. https://doi.org/10.1093/bioinformatics/
btl442.

30. Langfelder P, Horvath S. 2007. Eigengene networks for studying the rela-
tionships between co-expression modules. BMC Syst Biol 1:54. https://doi
.org/10.1186/1752-0509-1-54.

31. Omberg L, Golub GH, Alter O. 2007. A tensor higher-order singular value
decomposition for integrative analysis of DNA microarray data from dif-
ferent studies. Proc Natl Acad Sci U S A 104:18371–18376. https://doi.org/
10.1073/pnas.0709146104.

32. Schug J, Schuller W-P, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ. 2005.
Promoter features related to tissue specificity as measured by Shannon en-
tropy. Genome Biol 6:R33. https://doi.org/10.1186/gb-2005-6-4-r33.

33. Martínez O, Reyes-Valdés MH. 2008. Defining diversity, specialization,
and gene specificity in transcriptomes through information theory.
Proc Natl Acad Sci U S A 105:9709–9714. https://doi.org/10.1073/pnas
.0803479105.

34. Chan TE, Stumpf MPH, Babtie AC. 2017. Gene regulatory network infer-
ence from single-cell data using multivariate information measures. Cell
Syst 5:251–267.e3. https://doi.org/10.1016/j.cels.2017.08.014.

35. Wang J, Chen B, Wang Y, Wang N, Garbey M, Tran-Son-Tay R, Berceli SA,
Wu R. 2013. Reconstructing regulatory networks from the dynamic plas-
ticity of gene expression by mutual information. Nucleic Acids Res 41:e97.
https://doi.org/10.1093/nar/gkt147.

36. Zambelli F, Mastropasqua F, Picardi E, D’Erchia AM, Pesole G, Pavesi G. 2018.
RNentropy: an entropy-based tool for the detection of significant variation
of gene expression across multiple RNA-Seq experiments. Nucleic Acids Res
46:e46. https://doi.org/10.1093/nar/gky055.

37. Zhang X, Zhao X-M, He K, Lu L, Cao Y, Liu J, Hao J-K, Liu Z-P, Chen L. 2012.
Inferring gene regulatory networks from gene expression data by path
consistency algorithm based on conditional mutual information. Bioinfor-
matics 28:98–104. https://doi.org/10.1093/bioinformatics/btr626.

38. Müller F, Zaucker A, Tora L. 2010. Developmental regulation of transcrip-
tion initiation: more than just changing the actors. Curr Opin Genet Dev
20:533–540. https://doi.org/10.1016/j.gde.2010.06.004.

39. Wu FX, ZhangWJ, Kusalik AJ. 2004. Modeling gene expression frommicroar-
ray expression data with state-space equations. Pac Symp Biocomput 2004:
581–592.

40. Kuttler K. 2013. Linear algebra. Methods Mol Biol 930:429–473. https://doi
.org/10.1007/978-1-62703-059-5_19.

41. Skrzypek MS, Nash RS. 2015. Biocuration at the Saccharomyces genome
database. Genesis 53:450–457. https://doi.org/10.1002/dvg.22862.

42. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee
CM, Lee BT, Hinrichs AS, Gonzalez JN, Gibson D, Diekhans M, Clawson H,
Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ. 2019. The UCSC Ge-
nome Browser database: 2019 update. Nucleic Acids Res 47:D853–D858.
https://doi.org/10.1093/nar/gky1095.

43. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 2007. Numerical rec-
ipes: the art of scientific computing, 3rd ed. Cambridge University Press,
Cambridge, UK.

44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://
doi.org/10.1073/pnas.0506580102.

45. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res 13:
2498–2504. https://doi.org/10.1101/gr.1239303.

A Systemic View of Gene Expression Regulation Microbiology Spectrum

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.00838-21 13

https://doi.org/10.1093/gbe/evx278
https://doi.org/10.1093/bioinformatics/btl442
https://doi.org/10.1093/bioinformatics/btl442
https://doi.org/10.1186/1752-0509-1-54
https://doi.org/10.1186/1752-0509-1-54
https://doi.org/10.1073/pnas.0709146104
https://doi.org/10.1073/pnas.0709146104
https://doi.org/10.1186/gb-2005-6-4-r33
https://doi.org/10.1073/pnas.0803479105
https://doi.org/10.1073/pnas.0803479105
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1093/nar/gkt147
https://doi.org/10.1093/nar/gky055
https://doi.org/10.1093/bioinformatics/btr626
https://doi.org/10.1016/j.gde.2010.06.004
https://doi.org/10.1007/978-1-62703-059-5_19
https://doi.org/10.1007/978-1-62703-059-5_19
https://doi.org/10.1002/dvg.22862
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1101/gr.1239303
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00838-21

	RESULTS
	DOF of gene expression in S. cerevisiae.
	Biological features interpreting the state variables of transcriptional regulation.
	Information capacity of motifs restricting the gene expression complexity.
	Universal coordinate system presenting the state of transcription.

	DISCUSSION
	MATERIALS AND METHODS
	DOF as the minimum number of state variables.
	Data.
	Estimating the DOF of gene expression.
	Mapping genetic features to the model inputs.
	Calculating the information capacity of motifs for transcriptional regulation.
	Enrichment analysis of ranked gene list.
	Statistical analysis.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

