
Food Sci Nutr. 2021;9:943–951.	﻿�    |  943www.foodscience-nutrition.com

INTRODUC TION

Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, 
is the dried ripe pericarp of Citrus reticulata Blanco (Rutaceae). Citri 

Reticulatae Pericarpium is rich in essential oils, flavonoids, and al-
kaloids, and can be used to treat indigestion and cardiovascular dis-
eases (Yi et al., 2007). Studies have shown that the quality of CRP 
is closely correlated with the aging time (Shi et al., 2018). However, 
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Abstract
The quality of Citri Reticulatae Pericarpium (CRP) is closely correlated with the aging 
time. However, CRPs in different storage ages are similar in appearance, and the 
young CRP may be labeled as the aged one to obtain the excess profit by some un-
scrupulous traders. Most traditional analysis methods are laborious and time-con-
suming, and they can hardly realize the nondestructive classification. In this paper, 
a novel method based on near-infrared diffuse reflectance spectroscopy (NIRDRS) 
and data combination technique for the nondestructive classification of different-age 
CRPs was proposed. The CRPs in different storage ages (5, 10, 15, 20, and 25 years) 
were measured. The near-infrared spectra of outer skin and inner capsule were 
obtained. Principal component analysis (PCA), soft independent modeling of class 
analogy (SIMCA), and Fisher's linear discriminant analysis (FLD), with different data 
pretreatment methods, were used for the classification analysis. Data combination 
of the outer skin and inner capsule spectra was discussed for further improving the 
classification results. The results show that multiple sensors provide more useful and 
complementary information than a single sensor does for improving the prediction 
accuracy. With the help of data combination strategy, 100% prediction accuracy can 
be obtained with both second-order derivative–FLD and continuous wavelet trans-
form–multiplicative scatter correction–FLD methods.
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CRPs in different storage ages are similar in appearance, and it is 
difficult to distinguish them for the layman. The young CRP may be 
labeled as the aged one to obtain the excess profit by some unscru-
pulous traders. Therefore, it is very important to develop a simple, 
rapid, and accurate way for the classification of CRPs in different 
storage ages.

The thickness of peel, the size of secretory cavity, smell, and 
taste are used as the indicators to distinguish the CRPs in differ-
ent storage ages. However, it is difficult for consumers and food 
inspectors due to the similar physical appearance, smell, and taste 
of CRPs in different storage ages. Instrument analysis is an effec-
tive method for the identification analysis, by analyzing the volatile 
compounds, flavonoids, alkaloids, and phenolic acids in CRPs. Gas 
chromatography–mass spectrometry (GC-MS) has been reported 
to compare comprehensively the volatile constituents in Citri 
Reticulatae Blanco Pericarpium (CRBP) and Citri Reticulatae Chachi 
Pericarpium (CRCP), with the help of principal component analysis 
(PCA) and orthogonal partial least squares discrimination analysis 
(Duan et al., 2016). The volatile oils and five bioactive flavonoids in 
CRP collected from different regions were analyzed by GC-MS and 
high-performance liquid chromatography (HPLC) (Luo et al., 2018). 
Headspace–gas chromatography–ion mobility spectrometry (HS-
GC-IMS) with PCA method was established to discriminate CRCP 
and CPBP by their volatile organic compounds (Lv et  al.,  2020). 
Ultra-high-performance liquid chromatography quadrupole/time-of-
flight mass spectrometry (UHPLC-TOF/MS) is an effective method 
for the differentiation of CRCP and CPBP, and CRCP with differ-
ent storage ages. 31 metabolites, such as aloesone, roseoside, and 
7-hydroxy-5,3′,4′-trimethoxyflavone, were identified to distinguish 
CRCP in different storage ages (Luo et al., 2019). The results show 
an upward trend in 3–15 years and a downward trend to a stable 
state in 15–30 years, indicating that CRCP has the characteristics 
of “the longer it is stored, the better the quality is.” However, the 
chromatographic methods usually require expensive equipment and 
tedious operation. Besides, samples need to be pretreated in these 
methods and nondestructive testing cannot be realized. Low-cost, 
nondestructive, and accurate methods for the classification of CRPs 
in different storage ages are still demanded.

Near-infrared diffuse reflectance spectroscopy (NIRDRS) has 
been widely used in the nondestructive analysis of complex sam-
ples in food (Chen et  al.,  2017; Yu et  al.,  2009), agriculture (Liu 
et al., 2016; Purcell et al., 2009; Tardaguila et al., 2017), and medicine 
industries (Li et al., 2012; Liu et al., 2018; Xu et al., 2015). The infor-
mation of hydrogen-containing functional groups such as C-H, N-H, 
S-H, and O-H' stretching vibration can be obtained with NIRDRS. 
However, the useful information of analytes is always embedded in 
the interference of overlapping and background. A large number of 
chemometric methods have been developed to solve the problems. 
Spectral pretreatment methods have been used for the baseline 
correction and background removal, with different advantages and 
disadvantages (Bian et al., 2016; Han et al., 2017; Li et al., 2020; Ma, 
Liu, et al., 2020; Ma, Pang, et al., 2020; Shao et al., 2010). De-bias 
correction and detrend (DT) methods can be used to eliminate the 

interference of baseline drift (Li et al., 2020). Standard normal vari-
ate (SNV) transformation and multiplicative scatter correction (MSC) 
methods are used to eliminate the scattering effect caused by un-
even particle distribution and particle size. Maximum and minimum 
normalization (MinMax) method is a scaling technique that normal-
izes all the variables into a certain range (Bian et  al.,  2020). First-
order derivative (1st Der), second-order derivative (2nd Der), and 
continuous wavelet transform (CWT) can subtract the influence of 
instrument background or drift on signal (Bian et al., 2020). However, 
in the results of higher order derivative, the noise level increases sig-
nificantly (Li et  al., 2019). In addition, single pretreatment method 
can only suppress one certain interference in the spectra, and the 
optimal pretreatment method is usually different for different data-
set. To solve the problem, the combination pretreatment methods 
are often used to eliminate various interferences in the spectra (Bian 
et  al.,  2020). PCA (Li et  al.,  2012), soft independent modeling of 
class analogy (SIMCA) (Szabó et  al.,  2018), and Fisher's linear dis-
criminant analysis (FLD) (Witjes et al., 2003; Yan et al., 2018) have 
been applied for the classification, while partial least squares (PLS), 
boosting partial least squares (Shao et al., 2010), and related robust 
techniques (Li et al., 2018; Li et al., 2020; Ma, Liu, et al., 2020; Ma, 
Pang, et al., 2020; Melssen et al., 2007) were used for the quantita-
tive analysis. Multiple sets of data provide more useful and comple-
mentary information than a single set. More and more attention was 
paid to the data combination of near- and mid-infrared spectroscopy, 
Raman spectroscopy, electronic nose, and electronic tongue. For ex-
ample, the NIRDRS and HPLC data of lotus seed were combined into 
a new one to extract more information and submitted for building 
reliable model (Guo et al., 2017). With the help of data combination 
method, the quantitative predicting analysis of liensinine, rutin, total 
sugar, and total polysaccharide in Lotus seed samples can simultane-
ously and successfully be performed.

Though research about the analysis of complex food samples with 
the NIRDRS with chemometric methods has been widely reported, 
the research of identification of CRPs in different storage ages is 
rare, due to the complexity of the composition of CRP and little dif-
ferences in the compositions of storage ages (Zhou et al., 2015). The 
aim of this study was to use NIRDRS instrument and data combina-
tion technique to obtain reliable and accurate identification results 
of CRPs in storage ages. The near-infrared spectra of outer skin and 
inner capsule were obtained directly by NIRDRS instrument. PCA, 
SIMCA, and FLD, with different data pretreatment methods, were 
used for the classification analysis of CRPs in different storage ages. 
Data combination of the outer skin and inner capsule spectra was 
discussed for improving the classification results.

MATERIAL S AND METHODS

CRP sample

In this study, CRPs in different storage ages (5, 10, 15, 20, and 
25 years) were collected from Guangdong Fu Dong Hai Co., Ltd, and 
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40 samples were taken from each age-group. Therefore, 200 CPR 
samples were analyzed.

Instrumentation and measurements

All spectra were obtained by a MPA spectrometer (Bruker Optics 
Inc.) in diffuse reflectance mode with integrating sphere diffuse 
reflection accessory (Bruker Optics Inc.). Each CRP is composed of 
three petals of pericarp (~50 mm diameter), and a petal for each CRP 
without destroying was placed directly in the light spot center with-
out the container. Each spectrum is composed of 2,204 data points 
recorded from 12,000 to 3,500 cm−1. The measurements were re-
peated three times and averaged.

Data analysis

The Kennard–Stone (KS) method was applied for the partition of the 
calibration and test set according the 2:1 proportion. 200 samples 
were divided into a calibration dataset with 133 samples and a test 
dataset with 67 samples. Besides, to eliminate noise and background 
interference, the spectra were treated by different pretreatment 
techniques, such as de-bias correction, DT, SNV transformation, 
MinMax, MSC, 1st Der and 2nd Der, CWT, 1st DT, 1st SNV, 1st MSC, 
and CWT-SNV and CWT-MSC to improve the accuracy of classifi-
cation results. PCA, SIMCA, and FLD methods were used for the 
classification analysis. The spectra were mean-centered prior to the 

F I G U R E  1   Original spectra of outer skin (a) and inner capsule (b)

F I G U R E  2   PCA results with different 
data: raw data (a) and data with MSC 
pretreatment (b) for the outer skin, 
and raw data (c) and data with MSC 
pretreatment (d) for the inner capsule
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creation of the models. For FLD method, the total number of ob-
jects should be equal to at least three to five times the number of 
variables. Therefore, for classification by FLD modeling, PCA was 
applied to reduce the multidimensionality into fewer principal com-
ponents (PCs). A maximum of 30 PCs were selected and most varia-
tions (~99%) were explained (Wang et al., 2013).

Multiple sets of data may provide more useful and complemen-
tary information than a single set. More and more attention was paid 
to the data combination. Many literatures indicate that better clas-
sification results can be obtained when the measured data obtained 
from different analytical techniques such as near- and mid-infrared 
spectroscopy, Raman spectroscopy, electronic nose, and electronic 
tongue were combined (Guo et al., 2017; Zhuang et al., 2014). The 
appearances and compositions of outer skin and inner capsule are 
different. Therefore, in this paper, the method of data combination 
was used to improve the accuracy of classification results in both 
SIMCA and FLD methods. In the SIMCA method, the matrix of the 
outer skin (n × m) and inner capsule spectra (n × m) were combined 
into a new matrix (n × 2m), and the combination data were obtained. 

In the FLD method, PCA was applied to the processing of spectral 
data, which reduced the multidimensionality into fewer PCs. For 
both outer skin and inner capsule data, most variations (~99%) can 
be explained with the PC number 30. Therefore, 30 PCs were se-
lected. Scores of these PCs of outer skin and inner capsule were 
combined as the combination data.

The programs were performed using MATLAB 8.3 ( MathWorks, 
USA) and run on a personal computer.

RESULTS AND DISCUSSION

NIRDRS spectra of CRP samples in different storage 
ages

Figure 1 shows the original spectra of outer skin and inner capsule. 
There is very serious background interference in the spectra of both 
outer skin and inner capsule. The drifting baselines affect the accu-
racy of the result, due to the unsmooth and rough surface of the CPR 

TA B L E  1   Classification accuracies obtained by SIMCA and different pretreatment methods

Dataset Pretreatment method 5 years (%) 10 years (%) 15 years (%) 20 years (%) 25 years (%) Whole data (%)

Outer skin data Original 61.54 85.71 30.77 100.00 78.57 71.64

De-bias 76.92 92.86 46.15 84.62 92.86 79.10

DT 69.23 85.71 46.15 84.62 78.57 73.13

SNV 84.62 85.71 38.46 76.92 100.00 77.61

MinMax 76.92 92.86 30.77 100.00 92.86 79.10

MSC 76.92 71.43 38.46 84.62 100.00 74.63

1st 38.46 71.43 15.38 69.23 92.86 58.21

2nd 7.69 0.00 0.00 53.85 92.86 31.34

1st DT 30.77 42.86 15.38 61.54 85.71 47.76

1st SNV 46.15 71.43 7.69 84.62 92.86 61.19

1st MSC 46.15 71.43 7.69 84.62 92.86 61.19

CWT 38.46 71.43 7.69 84.62 78.57 56.72

CWT-MSC 38.46 71.43 7.69 92.31 78.57 58.21

CWT-SNV 38.46 71.43 7.69 92.31 71.43 56.72

Inner capsule data Original 46.15 92.86 38.46 46.15 85.71 62.69

De-bias 30.77 85.71 30.77 53.85 92.86 59.70

DT 46.15 85.71 38.46 53.85 85.71 62.69

SNV 38.46 78.57 46.15 69.23 100.00 67.16

MinMax 61.54 85.71 38.46 69.23 92.86 70.15

MSC 38.46 78.57 38.46 61.54 100.00 64.18

1st 23.08 78.57 53.85 53.85 85.71 59.70

2nd 7.69 64.29 15.38 69.23 71.43 46.27

1st DT 15.38 71.43 46.15 46.15 100.00 56.72

1st SNV 38.46 71.43 46.15 69.23 100.00 65.67

1st MSC 38.46 71.43 46.15 69.23 100.00 65.67

CWT 53.85 85.71 61.54 76.92 92.86 74.63

CWT-MSC 46.15 92.86 46.15 76.92 92.86 71.64

CWT-SNV 46.15 92.86 46.15 84.62 92.86 73.13
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sample. Each spectrum has six groups of peaks in the wavenumber 
range of 9000–8000, 7300–6000, 6000–5500, 5400–4980, 4980–
4500, and 4500–4150 cm−1, which of peaks belong to the second 
overtone bands of C-H, first overtone bands of O-H, first over-
tone bands of C-H, combination bands of O-H, combination bands 
of N-H and O-H, and combination bands of C-H, respectively (Guo 
et al., 2017; Zhou et al., 2015). As shown in the figure, the difference 
between the inner capsule and outer skin original spectra is very 
small. Besides, there is almost no difference in the original spectra of 
CRPs in different storage ages.

Classification of single spectral data with PCA, 
SIMCA, and different pretreatment techniques

PCA method was used in the classification analysis. In the calcula-
tion, PCA model was established with calibration data, and external 
verification is carried out with test set. Figure 2a,c shows the PCA 
results of the outer skin and inner capsule data, respectively. In the 

figures, the validation sample is marked as void patterns. The first 
two scores (PC1 and PC2) were used for the classification analysis 
based on the explanted variances noted in the axis. However, all the 
groups are merged together. Due to the serious background inter-
ference, it may not be feasible to use the raw spectra for the clas-
sification analysis. Therefore, different pretreatment techniques 
were used to eliminate background interference. Figure 2b,d shows 
the PCA results of the outer skin and inner capsule data with MSC 
pretreatment, respectively. However, all groups are merged together 
by MSC method and other pretreatment methods. The results show 
that it is difficult to get the difference information of CPRs in differ-
ent storage ages with PCA method.

In order to eliminate background interference and obtain reliable 
classification models, the classification models were established by 
SIMCA algorithm with different pretreatment techniques. Table  1 
shows the classification accuracies obtained by SIMCA and differ-
ent pretreatment methods. It is obvious that the classification ac-
curacies with the outer skin spectra are higher than that with the 
inner capsule spectra. The classification accuracies were improved 

TA B L E  2   Classification accuracies obtained by FLD and different pretreatment methods

Dataset Pretreatment method 5 years (%) 10 years (%) 15 years (%) 20 years (%) 25 years (%) Whole data (%)

Outer skin data Original 92.31 92.86 76.92 92.31 100 91.04

De-bias 92.31 92.86 84.62 100 100 94.03

DT 92.31 92.86 76.92 92.31 100 91.04

SNV 92.31 92.86 76.92 92.31 100 91.04

MinMax 100 92.86 76.92 100 100 94.03

MSC 92.31 92.86 76.92 100 100 92.54

1st 92.31 92.86 69.23 92.31 100 89.55

2nd 92.31 92.86 76.92 76.92 92.86 86.57

1st DT 92.31 92.86 69.23 84.62 100 88.06

1st SNV 92.31 92.86 69.23 84.62 100 88.06

1st MSC 92.31 92.86 69.23 76.92 100 86.57

CWT 92.31 92.86 69.23 92.31 100 89.55

CWT-MSC 92.31 92.86 69.23 84.62 100 88.06

CWT-SNV 92.31 92.86 69.23 84.62 100 88.06

Inner capsule data Original 92.31 100 84.62 84.62 92.86 91.04

De-bias 100 100 84.62 76.92 92.86 91.04

DT 92.31 100 84.62 84.62 100 92.54

SNV 92.31 100 84.62 92.31 92.86 92.54

MinMax 100 100 84.62 84.62 92.86 92.54

MSC 92.31 100 84.62 84.62 92.86 91.04

1st 92.31 100 92.31 92.31 92.86 94.03

2nd 92.31 100 76.92 92.31 100 92.54

1st DT 100 100 92.31 100 100 98.51

1st SNV 84.62 100 92.31 100 92.86 94.03

1st MSC 92.31 100 92.31 100 100 97.01

CWT 92.31 100 92.31 92.31 100 95.52

CWT-MSC 84.62 100 92.31 100 100 95.52

CWT-SNV 92.31 100 92.31 100 100 97.01
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by using the single pretreatment methods, compared with the re-
sults with the raw data. For the analysis of outer skin data, de-bias 
and MinMax methods are the best pretreatment methods, and the 
classification accuracies of whole data are both 79.10%. However, 
due to the increase of noise level in higher order derivative calcula-
tion, the result with 2nd method is not satisfactory. The classifica-
tion accuracies of 10 and 15 years are 0% with 2nd method. For the 
analysis of inner capsule data, CWT method is the best pretreatment 
method, and the classification accuracy of whole data is 74.63%. The 
classification accuracies of 15  years are the worse for both outer 
skin and inner capsule data. This is consistent with the change of me-
tabolites in CPRs in different storage ages (Luo et al., 2019). Besides, 
compared with the results of single pretreatment methods, the 
classification accuracies were not improved by using the combined 
pretreatment methods. The useful information is lost with too many 
pretreatment methods. It seems difficult to perform the classifica-
tion using SIMCA methods, even when the different pretreatment 
methods are adopted.

Classification of single spectral data with FLD and 
different pretreatment techniques

FLD method is a powerful supervised classification method, which is 
used to find the optimal boundary between object classes. Therefore, 
in the study, FLD method was used for the classification analysis of 
CRP samples. The results of inner capsule and outer skin data were 
compared. Different pretreatment techniques were applied to further 
optimize the classification model. Table 2 shows the classification ac-
curacies with FLD and different pretreatment methods. It is obvious 
that the classification accuracies of FLD method are higher than that of 
SIMCA method. For FLD method, the accuracies of the outer skin spec-
tra with different pretreatment methods are more than 88.06%, while 
the accuracies of the inner capsule spectra are more than 91.04%. For 
the analysis of outer skin data, de-bias is the best pretreatment method 
and the classification accuracies of the whole data are 94.03%. For the 
analysis of inner capsule data, CWT method is the best pretreatment 
method and the classification accuracy of the whole data is 98.51%.

TA B L E  3   Classification accuracies obtained by the combination data with SIMCA and FLD methods

Method Pretreatment method 5 years (%) 10 years (%) 15 years (%) 20 years (%) 25 years (%) Whole data (%)

SIMCA Original 53.85 71.43 38.46 100.00 78.57 68.66

De-bias 92.31 85.71 69.23 100.00 78.57 85.07

DT 69.23 78.57 38.46 92.31 78.57 71.64

SNV 100.00 78.57 53.85 92.31 92.86 83.58

MinMax 84.62 78.57 53.85 100.00 92.86 82.09

MSC 61.54 71.43 46.15 100.00 92.86 74.63

1st 38.46 78.57 15.38 100.00 92.86 65.67

2nd 0.00 7.14 0.00 61.54 78.57 29.85

1st DT 23.08 57.14 15.38 84.62 85.71 53.73

1st SNV 46.15 71.43 15.38 100.00 85.71 64.18

1st MSC 46.15 85.71 15.38 92.31 85.71 65.67

CWT 53.85 71.43 15.38 100.00 85.71 65.67

CWT-MSC 53.85 64.29 15.38 92.31 85.71 62.69

CWT-SNV 53.85 64.29 15.38 92.31 78.57 61.19

FLD Original 100 92.86 92.31 84.62 100 94.03

De-bias 100 100 92.31 92.31 100 97.01

DT 100 100 84.62 92.31 100 95.52

SNV 100 100 92.31 84.62 100 95.52

MinMax 100 100 92.31 92.31 100 97.01

MSC 100 100 92.31 84.62 100 95.52

1st 100 92.86 92.31 100 100 97.01

2nd 100 100 100 100 100 100

1st DT 100 100 92.31 92.31 92.86 95.52

1st SNV 100 100 92.31 100 100 98.51

1st MSC 100 100 84.62 100 100 97.01

CWT 100 92.86 92.31 100 100 97.01

CWT-MSC 100 100 100 100 100 100

CWT-SNV 100 100 84.62 100 100 97.01
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Classification of the combination data with 
SIMCA and different pretreatment techniques

Multiple sensors may provide more useful and complementary infor-
mation than a single sensor does for improving the prediction results 
(Guo et al., 2017; Zhuang et al., 2014). Therefore, data combination 
method was developed to improve the accuracy of classification 

results in SIMCA method. Different pretreatment techniques were 
used to optimize the classification model. Table  3 shows the clas-
sification accuracies of the combination data with SIMCA and dif-
ferent pretreatment methods. Compared with the results of single 
outer skin and inner capsule spectra, the classification accuracies 
with SIMCA method have been further improved. The accuracies of 
identification are more than 80% with de-bias, SNV, and MinMax 

F I G U R E  3   FLD score plot for 
discrimination of CRPs in different storage 
ages with second-order derivative–FLD (a) 
and CWT-MSC-FLD methods (b)
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methods. De-bias is the best pretreatment method, and the classifi-
cation accuracy for the whole data is 85.07%. However, the results 
are still unsatisfactory, especially for the identification of 15-year 
CRP.

Classification of the combination data with FLD and 
different pretreatment techniques

Data combination with FLD and different pretreatment techniques 
were used to get accurate classification results. Table 3 shows the 
classification accuracies of the combination data obtained by FLD 
and different pretreatment methods. The classification accuracies 
with FLD method are further improved with the combination data, 
compared with the results of outer skin and inner capsule spectra. 
The identification accuracy of combination data is more than 94.03% 
even without spectral pretreatment, while the accuracy of identifi-
cation is 91.04% with the single spectral data. Spectral pretreatment 
methods can further optimize the classification model. Data com-
bination models based on second-order derivative–FLD and con-
tinuous wavelet transform–multiplicative scatter correction–FLD 
obtained best results with 100% prediction accuracy. Furthermore, 
Figure 3 is the FLD score plot for discrimination of CRPs in different 
storage ages with second-order derivative–FLD and CWT-MSC-FLD 
methods, and all the five groups were visually separated. The results 
demonstrate that the classification of CRP in different storage ages 
can be achieved by data combination and appropriate chemometric 
methods.

CONCLUSION

A simple and nondestructive method for the classification of CRPs 
in different storage ages was established by using NIRDRS com-
bined with appropriate chemometric methods. Data pretreatment 
methods can eliminate the background interference, and data 
combination method can significantly improve the accuracy of 
classification. Data combination models based on second-order 
derivative–FLD and CWT-MSC-FLD obtained best results with 
100% prediction accuracy. The developed technology based on 
data combination and appropriate chemometric methods can be 
regarded as a fast, nondestructive, and accurate way for the clas-
sification of CRPs in different storage ages and has vast applica-
tion prospect.
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