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Abstract

Small integral membrane protein of the lysosome/late endosome (SIMPLE) is a 161-amino

acid cellular protein that contains a characteristic C-terminal domain known as the SIMPLE-

like domain (SLD), which is well conserved among species. Several studies have demon-

strated that SIMPLE localizes to the trans-Golgi network (TGN), early endosomes, lyso-

somes, multivesicular bodies, aggresomes and the plasma membrane. However, the amino

acid regions responsible for its subcellular localization have not yet been identified. The SLD

resembles the FYVE domain, which binds phosphatidylinositol (3)-phosphate (PI3P) and

determines the subcellular localization of FYVE domain-containing proteins. In the present

study, we have found that SIMPLE binds specifically to PI4P through its SLD. SIMPLE co-

localized with PI4P and Rab11, a marker for recycling endosomes (REs, organelles

enriched in PI4P) in both the IMS32 mouse Schwann cell line and Hela cells. Sucrose den-

sity-gradient centrifugation revealed that SIMPLE co-fractionated with syntaxin-6 (a TGN

marker) and Rab11. We have also found that SIMPLE knockdown impeded recycling of

transferrin and of transferrin receptor. Our overall results indicate that SIMPLE may regulate

protein trafficking physiologically by localizing to the TGN and/or REs by binding PI4P.

Introduction

Vesicular trafficking, essential for delivering proteins and lipids to their correct destination,

affects diverse signal transduction pathways [1–3]. Cells internalize extracellular cargo such as

ligands, plasma membrane proteins and lipids through endocytosis (endocytic pathway).

Then, within the endocytic pathway, these internalized molecules first enter early endosomes

(EEs) and are either returned to the cell surface (recycling pathway) in recycling endosomes
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(REs), or are transported to late endosomes (LE) and lysosomes for degradation (degradation

pathway). It is well known that intracellular organelles, such as EEs and REs, contain specific

phosphoinositide species that are essential for the localization and function of their binding

partner proteins [2, 4]. For example, phosphatidylinositol (3)-phosphate (PI3P) localizes spe-

cifically in EEs and defines the localization of PI3P-binding proteins containing a FYVE

domain. FYVE domain-containing proteins regulate the transition of cargos between EEs and

LEs [5, 6]. PI4P localizes specifically within the TGN and/or REs and defines the localization

of EHD family proteins. EHD1 proteins regulate the recycling of PI4P-binding proteins and

lipids from REs to the plasma membrane [7].

Small integral membrane protein of the lysosome/late endosome (SIMPLE), also known as

lipopolysaccharide-induced TNF-α factor (LITAF) and p53-inducible gene-7 (PIG-7) is a

161-amino acid (aa) cellular protein that includes a characteristic C-terminal domain termed

the SIMPLE-like domain (SLD) [8–10]. The SLD is rich in cysteines and resembles the RING

domain, which is thought to mediate E3 ubiquitin ligase activity [11], as well as the FYVE

domain, except that SLD is interrupted by a hydrophobic transmembrane (TM) domain [8].

SLD is found in a wide variety of species, including plants, insects, and mammals, and defines

a new family of proteins with unknown function [8]. Ho et al. recently reported that the 114–

139 aa hydrophobic helical region within the SLD is responsible for membrane tethering [12].

Moreover, they and others have revealed that SIMPLE is a monotopic zinc-binding protein,

and that the function of the cysteine residues outside the 114–139 aa hydrophobic helical

region is to mediate zinc binding for stabilization of the protein structure [12, 13]. However,

given the evidence collected by Lee and colleagues that SIMPLE does not have E3 ubiquitin

ligase activity [14], the exact role of the SLD remains to be elucidated.

Previous reports showed that SIMPLE localizes in EEs and regulates endosomal sorting

complexes required for transport (ESCRT)-dependent multivesicular body (MVB) sorting of

activated epidermal growth factor receptor [15]. On the other hand, another group reported

that SIMPLE localizes in MVBs and is involved in the regulation of exosome production [16].

Aside from EEs and MVBs, SIMPLE has also been detected within the trans-Golgi network

(TGN) [17, 18], lysosomes [8, 12, 13, 16, 19–21], aggresomes [22], and the plasma membrane

[18], though the function of SIMPLE within organelles other than EEs and MVBs remains

unclear.

In the present study, we show that SIMPLE binds PI4P through the SLD domain and local-

izes in TGN and/or REs, which are enriched in PI4P, in both IMS32 and Hela cells. Moreover,

SIMPLE regulates protein trafficking, as demonstrated by a transferrin trafficking assay. Thus,

SIMPLE could contribute to the protein recycling pathway.

Materials and methods

Purification of recombinant human SIMPLE and several truncation

mutants

The cDNA encoding human SIMPLE was reverse transcribed using standard RT-PCR cloning

procedures. Several SIMPLE truncation mutants were generated using PCR-based mutagene-

sis strategies and were confirmed by dsDNA sequencing. An anagram of SIMPLE (115–141)

was synthesized by Geneart Gene Synthesis (Thermo Fisher Scientific, Inc., Rockford, IL,

USA). The full-length, truncated, and anagram SIMPLE sequences were subcloned into the

EcoRI and NdeI sites of a pMAL-c5x vector (New England BioLabs, Beverly, MA) in frame

with the N-terminal MBP tag, and then used to transform competent E. coli BL21(DE2) con-

taining pGKJE8 (TaKaRa Bio Inc., Shiga, Japan). Recombinant fusion proteins were purified

from bacterial lysates using column chromatography with amylose resin, applying the method
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advocated by the supplier (New England BioLabs). The column buffer contained 20 mM Tris-

HCl [pH 7.4], 200 mM NaCl, 1 mM sodium azide, 10 mM 2-mercaptoethanol and Complete

Protease Inhibitors (Roche Diagnostics, Mannheim, Germany). The eluted fraction containing

10 mM maltose was dialyzed against Tris-buffered saline (TBS). The purified proteins were

subjected to SDS-PAGE and stained with Coomassie Brilliant Blue (CBB).

Antibody preparation

Mouse SIMPLE cDNA without the C-terminal hydrophobic TM region (mSIMPLEΔTM) was

subcloned into the BamHI and XhoI sites of a pGEX6p-1 vector (GE Healthcare, Madison,

WI, USA) in frame with an N-terminal glutathione-S-transferase (GST) tag and used to

transform BL21(DE3)pLysS competent E. coli (Promega, Madison, WI, USA). GST-tagged

mSIMPLEΔTM was then purified from bacterial lysate using glutathione Sepharose 4B (GE

Healthcare) chromatography according to the manufacturer’s instructions.

Polyclonal antibody (pAb) against mouse SIMPLE was generated by immunizing a rabbit

with GST-tagged mSIMPLEΔTM following standard methods. A monoclonal antibody (mAb)

against human SIMPLE was generated through immunization with MBP-tagged human SIM-

PLE in combination with an Addavax adjuvant (Invivogen, San Diego, CA, USA) and hybrid-

oma fusion, as described previously [38].

Phospholipid binding using PIP strips

PIP strips (Echelon Biosciences Inc., Salt Lake City, UT) were blocked in 3% fatty acid-free

bovine serum albumin (BSA, Sigma-Aldrich, St Louis, MO, USA) in TBST (TBS containing

0.05% Tween 20) for 1 h at room temperature. The membrane was then incubated for 18 h at

4˚C with 5 nM MBP or MBP fusion proteins in TBST containing 3% fatty acid-free BSA,

washed, and immunoblotted with anti-MBP mAb (1:4000 dilution; New England BioLabs).

Immunopositive proteins were detected using ECL Plus Western Blotting Detection Reagent

(GE Healthcare).

Cell culture and transfection

IMS32 immortalized adult mouse Schwann cells (Gifted from Dr. Watabe, 33) and Hela cells

(RIKEN Cell Bank, Tsukuba, Japan) were cultured at 37˚C in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 5% fetal bovine serum (FBS), 100 U/mL of penicillin

and 100 μg/mL of streptomycin. To knock down SIMPLE, cells were transfected with 25 nM

siRNA using Lipofectamine 2000 (Thermo Fisher Scientific, Inc.) according to the manufac-

turer’s instructions, and then cultured for 48 h. siRNAs against murine SIMPLE (sense, 5'-
CACAUACAGAUAAGGUCACAAGU-3', antisense, 5'-ACUUGUGACCUUAUCUGUAUGUG-3')

and human SIMPLE (sense, 5'-GCAUGAAUCCUCCUUCGUAUU-3', antisense, 5'-UACGAA
GGAGGAUUCAUGCCC-3'), and negative control siRNA (SIC-001) were purchased from

Sigma-Aldrich. To express EGFP-human Rab11a and EGFP-human SIMPLE, pEGFP-C1 vec-

tors encoding human Rab11a cDNA and human SIMPLE cDNA were transfected using Lipo-

fectamine 2000 according to the manufacturer’s instructions.

Western blotting and antibodies

Western blot analysis was performed using standard techniques described previously [39].

Briefly, cells were lysed in RIPA buffer (1% Triton X-100, 0.5% sodium deoxycholate, 0.1%

SDS, 0.15M NaCl, 1 mM EDTA, 20 mM HEPES [pH 7.4]) supplemented with Complete Pro-

tease Inhibitors (Roche Diagnostics), after which equal amounts of protein (30 μg each) from
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the lysate were subjected to SDS-PAGE. The separated proteins were then transferred to poly-

vinylidene difluoride membranes (Immobilon-P; Merck Millipore, Billerica, MA, USA) and

were probed with specific primary antibodies along with appropriate HRP-conjugated second-

ary antibodies (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Immunopositive proteins

were detected using ECL Plus Western Blotting Detection Reagent (GE Healthcare). As a load-

ing control, membranes were probed using a mAb against β-actin (MAB1501, 1:1000 dilution;

Merck Millipore). The antibodies used in this study were as follows: anti-Rab11 mAb (47,

1:500 dilution; BD Biosciences, Franklin Lakes, NJ, USA), anti-Syntaxin-6 mAb (1:500 dilu-

tion; Cell Signaling Technology, Inc., Danvers, MA, USA), anti-EEA1 pAb (1:500 dilution;

Cell Signaling Technology, Inc.), anti-TSG101 mAb (4A10, 1:500 dilution; Genetex, San Anto-

nio, TX, USA), anti-NEDD4 pAb (1:500 dilution; Cell Signaling Technology, Inc.), anti-TfnR

mAb (H68.4, 1:1000 dilution; Thermo Fisher Scientific, Inc.). Anti-human SIMPLE mAb

(1:1000 dilution) and rabbit anti-mouse SIMPLE pAb (1:500 dilution) were made in our

laboratories.

Immunocytochemistry

Immunofluorescence analyses of PI4P and Rab11 were performed as described previously,

with minor modifications [25, 40]. To stain PI4P, cells grown on coverslips were first fixed for

15 min with 2% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) at pH 7.4. They were

then washed three times with phosphate buffered saline (PBS) containing 50 mM NH4Cl and

permeabilized for 5 min with 20 μM digitonin in buffer A (20 mM PIPES [pH 6.8] containing

137 mM NaCl and 2.7 mM KCl) and blocked for 1 h with a blocking buffer (5% normal goat

serum in PBS containing 50 mM NH4Cl). Primary antibodies (anti-PI4P mAb, 1:60 dilution,

Echelon Biosciences Inc.; anti-mouse SIMPLE pAb, 1:100 dilution; anti-human SIMPLE mAb,

1:100 dilution) were applied for 1 h in the blocking buffer. After two washes in buffer A, sec-

ondary antibodies were added for 45 min in the blocking buffer. The cells were then incubated

with 4’,6’-diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich) to visualize

nuclei, washed again and post-fixed for 10 min with 2% PFA in 0.1 M PB. PFA was removed

by washing three times with PBS containing 50 mM NH4Cl, after which the coverslips were

mounted using Fluoremount-G (SouthernBiotech, Birmingham, AL, USA) and examined

using an Olympus FV-1000 confocal system (Tokyo, Japan) equipped with a 60x objective lens

(N.A. = 1.35).

To stain Rab11, cells were fixed for 10 min with 4% PFA in 0.1 M PBS, quenched with 50

mM NH4Cl for 20 min, and fixed again for 15 min with 10% tri-chloroacetic acid on ice. Fixed

cells were permeabilized for 5 min with 0.1% Triton X-100 (PBS-T) in PBS and blocked for 1 h

with 3% normal goat serum, 2% bovine serum albumin and 1% skim milk in PBS-T. Fixed/

permeabilized cells were then stained with anti-Rab11 mAb (47, 1:100 dilution; BD Biosci-

ences) diluted in Can Get Signal immunostain (TOYOBO, Osaka, Japan).

Subcellular fractionation analyses

Subcellular fractionation analyses were performed as described previously [24]. Cell pellets

were resuspended in 750 μl of ice-cold TEE buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA

and 1 mM EGTA) and then incubated for 1 min on ice to osmotically swell the cells. Thereaf-

ter, 250 μl of ice-cold homogenization buffer (1 M sucrose in TEE buffer) and 10 μl of 100x

Complete Protease Inhibitors (Roche Diagnostics) were added, and the cell suspension was

homogenized by 50 strokes using a 2-ml loose-fitting Dounce homogenizer on ice. The dis-

rupted cells were transferred to 1.5-ml microcentrifuge tubes, and post-nuclear supernatant

was obtained by centrifugation of the cell homogenate for 10 min at 1,000 × g, followed by
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centrifugation for 20 min at 8,000 × g. The resultant supernatant was equilibrated in 100 mM

sodium carbonate [pH 11.0] for 5 min and sonicated with 3 × 5-s bursts in a UP 200 H sonica-

tor (Dr. Hielscher GmbH, Teltow, Germany) at amplitude setting 50. Sonication rounds were

intercalated by 1-min intervals to avoid heating the sample. The sonicated sample (2 ml) was

transferred to a 12 ml polycarbonate ultracentrifuge tube and adjusted to 40% (w/v) sucrose by

adding an equal volume of 80% (w/v) sucrose in TEE buffer to give a final volume of 4 ml. The

sample was overlaid with 4 ml of 35% (w/v) sucrose, followed by 4 ml of 5% (w/v) sucrose, and

subjected to discontinuous equilibrium sucrose density-gradient centrifugation for 4 h at

180,000 × g using a RPS40T swing rotor (Hitachi Koki, Tokyo, Japan). After centrifugation, 1

ml gradient fractions were harvested beginning from the top of the tube. These 12 1-ml frac-

tions were dialyzed against PBS overnight at 4˚C. Dialyzed fractions were concentrated using

an Amicon Ultra Centrifugal Filter 3K (Merck Millipore).

Internalization assay using cleavable sulfo-NHS-SS-biotin

Cell surface proteins on IMS32 cells were biotinylated using 1 mg/mL EZ-Link™ sulfo-

NHS-SS-biotin (Thermo Fisher Scientific, Inc., Rockford, IL, USA) in HBSS (138 mM NaCl,

5.3 mM KCl, 1.3 mM CaCl2, 0.5 mM MgCl2, 0.4 mM MgSO4, 0.3 mM Na2HPO4, 0.4 mM

KH2HPO4, 10 mM HEPES [pH 7.4], 5.5 mM Glucose) for 1 h at 4˚C, after which excess biotin

was quenched with HBSS containing 20 mM glycine. Thereafter, the cells were incubated at

37˚C in DMEM supplemented with 5% FBS for various time periods. Remaining cell surface

biotin was stripped twice using reducing buffer (50 mM GSH, 70 mM NaCl, 80 mM NaOH,

0.2% BSA) for 20 min at 4˚C, then quenched with HBSS containing 50 mM iodoacetamide.

Cells were then lysed in 0.2 mL RIPA buffer supplemented with Complete Protease Inhibitors

(Roche Diagnostics). Biotinylated proteins (100 μg) were precipitated using Neutr-Avidin-aga-

rose beads (Thermo Fisher Scientific, Inc.), eluted with SDS-PAGE sample buffer containing

dithiothreitol, and used for western blot analysis.

Biotinylation recycling assay using cleavable sulfo-NHS- SS-biotin

Cell surface proteins on IMS32 cells were biotinylated using 1 mg/mL EZ-Link™ sulfo-NHS-

SS-biotin as described above, after which they were incubated in DMEM supplemented with

5% FBS for 15 min at 37˚C to induce TfnR internalization. Remaining cell surface biotin was

stripped twice with the reducing buffer for 20 min at 4˚C, then quenched with HBSS contain-

ing 50 mM iodoacetamide. Cells were then subjected to a second round of incubation for 0–30

min at 37˚C to allow internalized proteins to recycle back to the cell surface. Biotinylated pro-

teins recycled to the cell surface were again stripped of biotin using the reducing buffer and

quenched with HBSS containing 50 mM iodoacetamide. Cells were then lysed in 0.2 mL RIPA

buffer with Complete Protease Inhibitors (Roche Diagnostics), and 100 μg of biotinylated pro-

teins were precipitated using Neutr-Avidin-agarose beads (Thermo Fisher Scientific, Inc.).

The precipitates were analyzed by western blotting.

Fluorescent transferrin recycling assay

Hela cells were serum starved for 3 h in DMEM containing 0.2% BSA and then incubated with

5 ng/ml Alexa Fluor 594-conjugated Transferrin (Alexa-594-Tfn, Thermo Fisher Scientific,

Inc.) for 20 min at 37˚C. After first washing out the unbound Alexa-594-Tfn using an acid

solution (0.2 M acetic acid, 0.5 M NaCl in PBS), cells were washed three times with PBS and

incubated for various periods of time at 37˚C in DMEM containing 25 mM HEPES [pH 7.4],

20 mM glucose, 1% BSA and 50 ng/ml of Holo-Tfn (Sigma–Aldrich). After washing with PBS,
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cells were fixed for 10 min with 4% PFA and processed for immunocytochemistry. The signal

intensity of Alexa-594-Tfn per 20 μm2 in at least 20 cells was measured using FV10-ASW 3.0

software (Olympus) in 3 independent experiments.

Results

SIMPLE binds to PI4P through the SIMPLE-like domain

We investigated the lipid-binding ability of maltose binding protein-fused SIMPLE

(MBP-SIMPLE) using an overlay assay in which various lipid molecules were immobilized

(Phosphatidyl inositol phosphate (PIP) Strip; Fig 1A). As shown in Fig 1B, MBP-SIMPLE

clearly bound to PI4P, but not to any other lipids. No lipid binding was detected with MBP

alone. Even when exposure time of the blot was increased, we could not detect binding of SIM-

PLE to any lipid besides PI4P (data not shown).

To determine the region responsible for binding PI4P, we constructed several truncated

forms of MBP-SIMPLE (Fig 1C), which were purified on amylose resin (Fig 1D). In a PIP strip

assay, MBP-SIMPLE (115–141) bound to PI4P (Fig 1F). To test whether PI4P-binding by

MBP-SIMPLE (115–141) was specific, we tested an anagram of MBP-SIMPLE (115–141) in

which the amino acid residues were shuffled randomly (Fig 1E). As shown in Fig 1F, this ana-

gram did not bind to lipid molecules. These results indicate that SIMPLE (115–141) contains

the region responsible for binding PI4P. Given that FYVE domains bind PI3P in a cysteine-

dependent manner [23], we tested whether a conserved cysteine was analogously necessary for

binding PI4P. Using a mutant in which serine was substituted for cysteine within SIMPLE

(115–141) (CS mutant), we found that the CS mutant bound to PI4P as well as native

MBP-SIMPLE (Fig 1G). Thus, SIMPLE appears to bind specifically to PI4P through the SLD

but in a cysteine-independent manner.

SIMPLE co-localizes with PI4P in cells

PI4P is the most abundant phosphoinositide in the membranes of the TGN and REs [7, 24].

Because SIMPLE binds PI4P, we investigated whether SIMPLE colocalizes in organelles

enriched in PI4P. First, discontinuous sucrose density-gradient fractionation, which specifi-

cally enriches proteins from the TGN and REs, was employed to reveal the localization of

SIMPLE in the IMS32 mouse-derived Schwann cell line [24]. As shown in Fig 2A, a portion

of SIMPLE co-fractionated with syntaxin-6 (a TGN-resident protein) and Rab11 (a RE-resi-

dent, PI4P-binding protein) in fraction 5. This fraction (#5), contained TGN and RE, but did

not include NEDD4 or TSG101, which also reportedly interact with SIMPLE [14, 15, 17, 18].

In contrast with previous reports that SIMPLE localizes in EEs [14, 15], SIMPLE in this frac-

tion (#5) did not co-migrate with EEA1 (an EE-resident protein) in IMS32 cells. These results

suggest that, in IMS32 cells, SIMPLE localized in part to the TGN and REs, and not only to

EEs.

To further investigate the localization of SIMPLE within organelles enriched in PI4P, fixed

and permeabilized IMS32 cells were immunohistochemically analyzed using anti-SIMPLE and

anti-PI4P antibodies. The distribution of SIMPLE mostly overlapped that of PI4P in the peri-

nuclear region (Fig 2B, upper panels). In EGFP-tagged Rab11-expressing cells, the PI4P signal

overlapped that of EGFP-Rab11 (Fig 2B, middle panels), and SIMPLE also mostly colocalized

with Rab11 in the perinuclear region (Fig 2B, lower panels). These results suggest that SIMPLE

localizes with Rab11 within organelles enriched in PI4P, especially REs.

To address the importance of the SLD for localization of SIMPLE in organelles enriched in

PI4P, EGFP-tagged SIMPLE and EGFP-tagged SIMPLE (1–90) were transfected into IMS32

cells, and immunostained with anti-PI4P antibody. Although the full-length SIMPLE
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colocalized with PI4P in the perinuclear region, SIMPLE (1–90), which lacks SLD completely,

lost its colocalization with PI4P and distributed throughout the cytoplasm and nucleus (Fig

2C). These results further support the necessity of the SIMPLE SLD for its localization in

organelles enriched in PI4P.

Fig 1. SIMPLE binds specifically to PI4P through the SIMPLE-like domain. (A) Schematic representation of the

indicated membrane lipids on a PIP strip. (B) MBP-SIMPLE and MBP alone, as a negative control, were incubated

with a PIP strip and detected as described in the Materials and Methods. (C) Schematic representation of SIMPLE

deletion constructs. Numbers indicate SIMPLE amino acid residues. SLD is the SIMPLE-like domain. (D) CBB-stained

bands of purified MBP or MBP-tagged human-SIMPLE. (E) Alignment of 115–141 and the 115–141 anagram.

Conserved cysteine residues are indicated in green. (F) Binding of MBP-fusion proteins (see D) to PIP strips: each

protein (5 nM) was added to a PIP strip. (G) Binding of MBP-SIMPLE with cysteine-to-serine (CS) mutantion to PIP

strips.

https://doi.org/10.1371/journal.pone.0199829.g001
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Fig 2. Localization of endogenous SIMPLE to organelles enriched in PI4P and recycling endosomes in IMS32

cells. (A) Subcellular fractionation of IMS32 cell lysates was conducted by discontinuous sucrose density-gradient

centrifugation and collected into 12 fractions. Equal volumes from each fraction were subjected to SDS-PAGE

followed by immunoblot analysis. Previous studies suggested fraction 5 (Red) was rich in PI4P [24]. (B) Co-

localization of immunofluorescence within IMS32 cells imaged using confocal microscopy. Left-side panels show

endogenous SIMPLE or transiently expressed EGFP-Rab11 (Green). Middle panels show endogenous Rab11 or PI4P

in the same cells labeled with specific antibodies (Purple). Merged images are shown on the right with DAPI-stained

The SIMPLE-like domain is a novel type of PI4P binding domain
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SIMPLE regulates exocytosis of recycled vesicles

Rab11 is known to be involved in regulating exocytosis of recycled vesicles [25]. Because SIM-

PLE co-localized with Rab11, we assessed the possible contribution of SIMPLE to protein sort-

ing in REs by monitoring Transferrin Receptor (TfnR), one of the most extensively studied

recycled proteins [26, 27]. We evaluated the effect of a SIMPLE knockdown on the internaliza-

tion of TfnR as follows. Cell surface proteins were labeled with a cleavable biotinylation

reagent (sulfo-NHS-SS-biotin), after which the treated cells were incubated for various

amounts of time to allow internalization of the biotinylated proteins. Any biotin still attached

to the cell surface was eliminated using glutathione (GSH), a reducing agent. As shown in Fig

3A, when the cells were incubated for 10–30 min, biotin-TfnRs in cells transfected with SIM-

PLE siRNA were internalized as well as in cells transfected with control siRNA. Apparently,

SIMPLE does not affect TfnR internalization. On the other hand, the biotin-TfnR signal in the

control siRNA-treated cells was decreased by elimination from the surface after 30 min of re-

culture following the first reducing treatment, while the signal in SIMPLE siRNA-treated cells

remained (Fig 3B). After assigning a value of 100% to the biotin-TfnR signal intensity at time

zero in the control and SIMPLE knockdown cells, we plotted the relative biotin-TfnR signal

intensities at the indicated times (Fig 3C). Although the biotin-TfnR signal decreased over

time in both treatment groups, this decline was delayed in SIMPLE knockdown cells (Fig 3C).

These observations suggest SIMPLE contributes to regulating exocytosis of recycled vesicles.

As SIMPLE is also expressed in various tissues other than Schwann cells [8, 14], we also

examined the effect of SIMPLE on Transferrin (Tfn) recycling in Hela cells. First, to confirm

the localization of SIMPLE and PI4P, Hela cells were immunostained with anti-SIMPLE and

anti-PI4P antibodies. As in IMS32 cells, the distribution of SIMPLE overlapped with that of

PI4P in the perinuclear region in Hela cells (Fig 4A). Moreover, subcellular fractionation

showed that SIMPLE co-fractionated with Rab11 (Fig 4B).

To assess the effect of a SIMPLE knockdown on Tfn recycling, Hela cells transfected with

control or SIMPLE siRNA were incubated with fluorescently labeled transferrin (Alexa-

594-Tfn) for 20 min at 37˚C. After washing out unbound Alexa-594-Tfn, cells were incubated

at 37˚C for various amounts of time to monitor the recycling of Alexa-594-Tfn, and processed

for immunostaining with anti-TfnR antibody. SIMPLE siRNA effectively suppressed endoge-

nous SIMPLE expression at the indicated incubation times (Fig 4C). In addition, it can be seen

in Fig 4D that yellow signal, which corresponds to merged Alexa-594-Tfn (red fluorescence)

and TfnR (green fluorescence) signal, was present in the control siRNA-treated cells but was

completely absent after 20 min of re-culture. By contrast, in SIMPLE siRNA-treated cells, the

merged signal persisted after 30 min. To evaluate the difference between control and SIMPLE

knockdown cells, Alexa-594-Tfn signal intensity at time zero in control and SIMPLE knock-

down cells was individually set to 100%, and the relative Alexa-594-Tfn signal intensities at the

indicated times were plotted (Fig 4E). Although the Alexa-594-Tfn signal decreased over time

in both treatment groups, the decline in Alexa-594-Tfn signal was delayed in SIMPLE knock-

down cells (Fig 4E). These observations further suggest that SIMPLE regulates exocytosis of

recycled vesicles.

nuclei (blue). Scale bar, 20 μm. (C) IMS32 cells were transiently transfected with EGFP-tagged full length SIMPLE or

SIMPLE (1–90). Twenty-four hours post-transfection the cells were immunostained with anti-PI4P antibody. Left-side

panels show EGFP-tagged full length SIMPLE or SIMMPLE (1–90) (Green). Middle panels show PI4P in the same

cells labeled with specific antibodies (Red). Merged images are shown on the right with DAPI-stained nuclei (blue).

Scale bar, 20 μm.

https://doi.org/10.1371/journal.pone.0199829.g002

The SIMPLE-like domain is a novel type of PI4P binding domain

PLOS ONE | https://doi.org/10.1371/journal.pone.0199829 June 28, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0199829.g002
https://doi.org/10.1371/journal.pone.0199829


Fig 3. SIMPLE knockdown affects recycling of TfnR, but not its internalization. (A) IMS32 cells transfected with

control or SIMPLE siRNA were treated with sulfo-NHS-SS-biotin at 4˚C, after which the cells were incubated at 37˚C

for the indicated amount of time. Cells were then treated with reducing buffer containing GSH to remove remaining

biotin from the plasma membrane, and cell lysates were precipitated with neutravidin-agarose beads. Precipitates were

analyzed using Western blot with an anti-TfnR mAb (biotinylated TfnR), and cell lysates used for precipitation (10%

input) were probed with anti-TfnR mAb (TfnR), anti-β-actin mAb and anti-SIMPLE pAb. (B) After cell-surface

biotinylation using sulfo-NHS-SS-biotin, IMS32 cells transfected with control or SIMPLE siRNA were incubated for 15

min. Remaining surface biotin was stripped using reducing buffer, and cells were incubated for the indicated periods

of time. Biotinylated proteins that recycled back to the cell surface were again treated with reducing buffer, and cell

lysates were precipitated with neutravidin-agarose beads. Precipitates were analyzed by Western blot with an anti-TfnR

antibody, and cell lysates (10% input) were probed with the indicated antibodies. (C) The amount of biotinylated TfnR

in (B) was quantified using Image J software. The results shown are means ± S.D. of the ratio between biotinylated

TfnR at each time point and biotinylated TfnR at time zero from three independent experiments. Values at time zero

are set to 100%. P-values (control cells vs. SIMPLE knockdown cells at 10, 20, 30 min) are determined using a t-test.
�P<0.05, ��P<0.001.

https://doi.org/10.1371/journal.pone.0199829.g003
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Fig 4. SIMPLE knockdown impedes Tfn recycling in Hela cells. (A) Co-localization of immunofluorescence within Hela cells imaged

using confocal microscopy. Left-side panels show endogenous SIMPLE (Green). Middle panels show PI4P in the same cells labeled with

specific antibodies (Red). Merged images are shown on the right panels with DAPI-stained nuclei (blue). Scale bar, 20 μm. (B)

Subcellular fractionation of Hela cell lysates separated into 12 fractions through discontinuous sucrose density-gradient centrifugation.

Equal volumes of each fraction were subjected to SDS-PAGE followed by immunoblot analysis. Previous studies suggested fraction 5

(Red) is enriched in PI4P [24]. (C) Hela cells were transfected with control or SIMPLE siRNA and cultured for 48 h. After serum

starvation, Alexa-594-Tfn treatment and incubation for the indicated periods of time, cell lysates were prepared and subjected to

SDS-PAGE (30 μg of total protein/lane). Immunoblots were probed with anti-SIMPLE mAb or anti-β-actin mAb. (D) Hela cells

transfected with control or SIMPLE siRNA were serum starved for 3 h and then incubated with Alexa-594-Tfn at 37˚C for 1 h. After

washing out unbound Alexa-594-Tfn, cells were incubated at 37˚C for the indicated amount of time and processed for immunostaining

with anti-TfnR mAb. Fluorescent images of Alexa-594-Tfn (red) and TfnR (green) are shown along with merged images. Scale bar,

20 μm. (E) The intensity of Alexa-594-Tfn signal in Hela cells was expressed as signal intensity per unit area. At each time point, the

signal intensity of at least 20 cells was measured in three independent experiments. The results shown are means ± S.D. of Alexa-594-Tfn

signal at each time normalized to signal at time zero, which are assigned a value of 100% (n = 3). P-values (control cells vs. SIMPLE

knockdown cells at 10, 20, 30 min) are determined using a t-test. �P<0.05.

https://doi.org/10.1371/journal.pone.0199829.g004
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Discussion

In this study, we demonstrated that SIMPLE binds specifically to PI4P through the 115–141

region within the SLD, and that this binding was cysteine-independent. Recently, two groups

independently revealed that SIMPLE is a monotopic zinc-binding protein, and that the func-

tion of cysteine residues outside the 114–139 hydrophobic helical region is to mediate zinc

binding for stabilization of the protein structure [12, 13]. On the other hand, the FYVE

domain, which binds PI3P in a cysteine-dependent manner, requires two zinc ions for proper

structure [23]. Our finding that the CS mutant of SIMPLE also binds PI4P indicates that the

115–141 region of the SLD represents a novel PI4P binding domain that differs from the

FYVE domain.

Ho et al. also reported that the 114–139 hydrophobic helical region interacts with phospha-

tidylethanolamine (PE) [12]. Using liposome sedimentation assays, we tested the ability of

SIMPLE to bind PI4P. However, we were unable to analyze PI4P binding activity of SIMPLE

in this assay because SIMPLE has a hydrophobic region and easily integrates into liposomes

constructed with PE and phosphatidylcholine (PC) (data not shown). Our PIP-strip assay did

not reveal binding of SIMPLE to PE or PC (Fig 1B and 1F). Further investigation is needed to

determine whether SIMPLE can bind PE.

Previous studies have shown that SIMPLE interacts with WWOX, Itch, Hrs and STAM1, as

well as NEDD4 and TSG101 [12, 15, 17, 18, 20]. Although these proteins reportedly relate to

ESCRT and regulate trafficking of ubiquitinated proteins to MVBs [28, 29], Hrs also appears

to regulate recycling back to the plasma membrane of calcitonin receptor-like receptor [30].

Because our subcellular fractionation assays, which revealed that SIMPLE co-fractionated with

syntaxin-6 and Rab11 (fraction 5), did not include NEDD4 or TSG101, another SIMPLE bind-

ing protein, possibly Hrs, may contribute to the recycling function of SIMPLE. Further investi-

gation is warranted to clarify how SIMPLE contributes to recycling in the TGN and/or REs.

Several mutations in the SIMPLE gene have been identified as a cause for one of the sub-

types of Charcot-Marie-Tooth disease (CMT) [31, 32]. These mutations damage myelin

sheaths composed of several myelin-related proteins, including PMP22 and peripheral myelin

protein zero (P0). Because these proteins were produced by Schwann cells, we investigated

SIMPLE localization and function using the IMS32 mouse-derived Schwann cell line [33].

Additionally, since SIMPLE is expressed in several tissues other than Schwann cells, we also

examined SIMPLE localization and function in Hela cells. We found that the localization of

SIMPLE overlapped that of PI4P and Rab11, two RE markers, in the perinuclear region of

both IMS32 and Hela cells (Figs 2B and 4A). Our subcellular fractionation assay revealed that

SIMPLE co-fractionated with syntaxin-6 (a TGN-resident protein) and Rab11. Furthermore,

we observed that SIMPLE knockdown affected Tfn and TfnR recycling in both IMS32 and

Hela cells (Figs 3B and 3C, 4D and 4F). Although SIMPLE has been reported to contribute to

endosomal sorting and/or exosome production [15, 16], our results suggest that some SIMPLE

within cells localizes in the TGN and/or REs, and contributes to recycling not only in Schwann

cells but also in other cell types.

It was recently reported that SH3TC2 and NDRG1, which lead to CMT4C and CMT4D

upon mutation, are localized in REs and are involved in regulating membrane protein recy-

cling [34–36]. In addition, aberrant myelination was observed when a dominant negative

Rab11 mutant was expressed in Schwann cells [35]. Moreover, REs are known to be involved

in PMP22 trafficking, which is one of the components of compact peripheral nerve myelin

[37]. These observations, coupled with our findings that SIMPLE contributes to protein recy-

cling, suggest that SIMPLE may affect peripheral nerve myelination by regulating the recycling

of membrane proteins, such as PMP22.
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In summary, our results indicate that SIMPLE localizes to the TGN and/or REs through

binding to PI4P by the SLD, through which it regulates protein trafficking. The SLD is a novel

type of PI4P binding domain, and other SLD containing proteins may localize at the TGN

and/or REs and might regulate protein trafficking.
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