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Background: Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high
mortality. Anoikis resistance is an important mechanism of tumor cell proliferation and migration. Our
research is devoted to exploring the role of anoikis in the diagnosis, classification, and prognosis of LUAD.
Methods: We downloaded the expression profile, mutation, and clinical data of LUAD from The Cancer
Genome Atlas (TCGA) database. The “ConsensusClusterPlus” package was then used for the cluster
analysis, and least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression
analyses were used to establish the prognostic model. We verified the reliability of the model using a Gene
Expression Omnibus (GEO) data set. A gene set variation analysis (GSVA) was conducted to investigate the
functional enrichment differences in the different clusters and risk groups. The CIBERSORT algorithm and
a single-sample gene set enrichment analysis (ssGSEA) were used to analyze immune cell infiltration. The
tumor mutation burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) scores were used to
evaluate the patients’ sensitivity to immunotherapy. Immunohistochemical staining of tissue microarrays was
used to verify the correlation between ANGPTL4 expression and the clinicopathological characteristics and
prognosis of LUAD patients.

Results: First, we screened 135 differentially expressed anoikis-related genes (ARGs) and 23 prognosis-
related ARGs from TCGA-LUAD data set. Next, 494 LUAD samples were allocated to cluster A and cluster
B based on the 23 prognosis-related ARGs. The Kaplan-Meier (K-M) analysis showed the overall survival
(OS) of cluster B was better than that of cluster A. The clinicopathological characteristics and functional
enrichment analyses revealed significant differences between clusters A and B. The tumor microenvironment
(TME) analysis showed that cluster B had more immune cell infiltration and a higher TME score than
cluster A. Subsequently, a LASSO Cox regression model of LUAD was constructed with ten ARGs. The K-M
analysis showed that the low-risk patients had longer OS than the high-risk patients. The receiver operating
characteristic curve, nomogram, and GEO data set verification results showed that the model had high
accuracy and reliability. The level of immune cell infiltration and TME score were higher in the low-risk
group than the high-risk group. The high-risk group had stronger sensitivity to immune checkpoint block
therapy and weaker sensitivity to chemotherapy drugs than the low-risk group. ANGPTL4 expression was
correlated with stage, tumor differentiation, tumor size, lymph node metastasis, and OS.

Conclusions: We discovered novel molecular subtypes and constructed a novel prognostic model of

LUAD. Our findings provide important insights into subtype classification and the accurate survival
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prediction of LUAD. We also identified ANGPTL4 as a prognostic indicator of LUAD.
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Introduction

Lung cancer (LC) is one of the most aggressive and
lethal malignancies. In 2020, there were approximately
2.2 million new LC cases and 1.8 million LC-related deaths
worldwide, accounting for about 11.4% of new cancers and
18% of cancer-related death cases, respectively (1). Lung
adenocarcinoma (LUAD) is the most important pathological
histological type of LC, accounting for 40% of all LCs (2,3).
In recent years, with the rapid development of molecular
biology and tumor genetics, numerous new therapeutic
methods have emerged. For example, inhibitors of the
targets of immunotherapy [e.g., cytotoxic T lymphocyte
associated protein 4, programmed cell death protein 1, and
programmed death-ligand 1 (PD-L1)] and targeted therapy
(e.g., anaplastic lymphoma kinase, ROS proto-oncogene 1

Highlight box

Key findings

*  We discovered novel molecular subtypes and constructed a novel
prognostic model of Lung adenocarcinoma (LUAD). We also
identified ANGPTL4 as a prognostic indicator of LUAD.

What is known and what is new?

* Anoikis is a form of programmed cell death, and Anoikis resistance
promotes tumorigenesis and metastasis. The role of anoikis-related
genes (ARGs) in molecular typing and prognosis assessment of
LUAD remain unclear.

* ARGs could be used to divide LUADs into two novel molecular
subtypes and predict the prognosis. Cluster B and low-risk
group had longer overall survival (OS), more immune cells
infiltration and higher tumor microenvironment scores. Tumor
mutation burden and Tumor Immune Dysfunction and Exclusion
analyses showed better immunotherapy response in high-risk
group. ANGPTL4 expression was correlated with stage, tumor
differentiation, T classification, N classification, and OS.

What is the implication, and what should change now?
®  Our study shows the molecular typing and prognosis assessment of
LUAD based on ARGs are of great significance.
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and neurotrophic tropomyosin receptor kinase) have been
shown to effectively prolong the survival of LUAD patients
(4-6). However, LUAD is a highly heterogeneous cancer
with significant individual differences, and some patients
do not respond well to existing treatments (7). Thus,
conducting further research to identify new molecular
subtypes is of great significance to the accurate diagnosis
and prognostic evaluation of LUAD.

Anoikis is a form of programmed death that prevents
cells from growing, attaching to inappropriate stroma,
and colonizing distant organs when they detach from
the primary extracellular matrix (8). The overactivation
of carcinogenic signaling pathways, mutations of growth
factor receptors and enhancements of oxidative stresses
promote cancer cells to develop anoikis resistance (8). For
instance, the transforming growth factor B1/SH2B adaptor
protein 3 axis promotes the anoikis resistance of LC
through the Janus kinase 2/signal transducer and activator
of transcription 3 signaling pathway (9). The overexpression
of epidermal growth factor Cripto-1 has been shown to
enhance the anoikis resistance and aggressiveness of breast
cancer cells (10). Meanwhile, a LC study has also found that
anoikis inhibits the escape of tumor cells from the natural
extracellular matrix to other organs, and is associated
with tumor progression and treatment failure (11). In
vivo and in vitro studies of LC have shown that several
natural and synthetic products (such as artonin E, oroxylin
A, sulforaphane, and carbenoxolone) can inhibit tumor
progression by activating anoikis (11). Given the important
roles of anoikis in cancer progression, numerous research
studies have sought to explore the relationship between
anoikis and tumor molecular typing and prognosis.

A classification and prognostic risk model based on five
anoikis-related genes (ARGs) in hepatocellular carcinoma
provided novel insights into tumor subtype and survival
analyses (12). In an ovarian cancer study, the ARG signature
could be used to evaluate the prognosis, immune cell
infiltration, mutation, and therapeutic response (13). In
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pancreatic cancer and pancreatic neuroendocrine tumors,
the ARGs also revealed the molecular, prognostic and
microenvironmental characteristics of tumors (14). A recent
study also revealed the relationship between ARGs and the
prediction of prognosis, immune infiltration and treatment
outcome of LUAD (15), but numerous bioanalyses and
experiments are still needed for further confirmation.

In our research, we first identified 135 differentially
expressed and 23 prognosis-related ARGs of LUAD in The
Cancer Genome Atlas (TCGA) program. Subsequently, we
performed an unsupervised consensus clustering analysis
of the 23 prognosis-related ARGs, and divided the 494
LUAD samples into cluster A and cluster B. There were
significant differences in the prognosis, clinicopathological
characteristics, gene set variation analysis (GSVA) results,
and immune cell infileration between cluster A and cluster
B. Next, we constructed a prognostic model using least
absolute shrinkage and selection operator (LASSO) and Cox
regression analyses based on 10 ARGs. We then validated
the model with a Gene Expression Omnibus (GEO) data
set and further investigated the differences between the risk
groups in terms of the clinicopathologic characteristics,
immune cell infiltration, mutation, and drug sensitivity.
Finally, we conducted experiments to verify the relationship
between ANGPTL4 expression and the clinicopathological
characteristics and prognosis of LUAD patients. Our
research provides novel insights into molecular subtype
classification and the prognosis prediction of LUAD.
We present this article in accordance with the TRIPOD
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-1123/rc).

Methods

Acquire and process LUAD data from TCGA and the
GEO

We downloaded the gene expression matrix and
clinicopathologic data of 535 LUAD and 59 matched normal
lung samples from T'CGA (https://portal.gdc.cancer.gov/) (16),
and 226 LUAD samples from the GSE31210 GEO (https://
www.ncbi.nlm.nih.gov/gds) data set (17). After removing the
samples with incomplete clinical data, 494 TCGA and 226
GEO LUAD samples remained for the analysis. R software
(version 4.1.3) and Perl (Strawberry version) software were
applied to process and analyze the data.
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Identification of differentially expressed and prognosis-
related ARGs

Initially, we obtained 640 ARGs from the GeneCards
(https://www.genecards.org/) (18) and Harmonizome
(https://maayanlab.cloud/Harmonizome/) portals (19).
Subsequently, we used the “limma” R package to analyze
the differentially expressed genes between the LUAD and
normal lung tissues based on the following criteria: |log
fold changel >1 and false discovery rate <0.05. A univariate
Cox analysis was then conducted to identify the prognosis-
related ARGs based on the following criterion: P<0.01.

Consensus clustering analysis based on ARGs

“ConsensusClusterPlus” R package (20) was used for
the unsupervised clustering of the 494 TCGA-LUAD
samples. The following criteria were set: a gradual and
steady growth in the cumulative distribution function
(CDF) curve, an increase in the intra-group correlation,
and a decrease in the inter-group correlation. The clusters
were verified by a principal component analysis (PCA) and
t-distributed stochastic neighborhood embedding (t-SNE)
using the “ggplot2” and “Rtsne” packages respectively. The
“pheatmap” package was used to visualize the differences
in the gene expression profiles and clinicopathological
characteristics of the different clusters. A Kaplan-Meier (K-
M) analysis was used to examine differences in OS between
the different clusters.

Construction and validation of anoikis-related risk model

First, we used LASSO regression to reduce overfitting and
screen out the best value for lambda (1) (21). Subsequently,
we constructed a Cox regression risk model comprising
ten prognosis-related ARGs. We calculated the risk score
of each patient using the following formula: risk score
- esum(each gene expression x corresponding regression c()cfficient). The LUAD
patients were segmented into low- and high-risk groups
based on the median score. The K-M curve was used to
analyze the differences in OS between the risk groups.
Receiver operating characteristic (ROC) curves were used
to validate the 1-, 3- and 5-year prognostic efficacy of
the model and to compare the accuracy of the risk score
with the clinicopathological characteristics. In addition,
we analyzed the relationship between the risk score and
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clinicopathological characteristics, and further validated the
model efficacy with the GSE31210external data set.

Functional enrichment analysis

The “GSVA” package was used to examine the differences
in the enrichment pathways between the different clusters
and risk groups (22). The hallmark gene sets “c2.cp.kegg.
v7.2.symbols.gmt” from the MsigDB database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp) were
employed. In addition, a gene set enrichment analysis (GSEA)
annotated by the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was used to further examine the differences
in biological function between the two clusters (23).

Immune cell infiltration and immune microenvironment
analyses

The CIBERSORT algorithm was used to estimate the
infiltration abundance of 28 types of immune cells in
the different clusters and risk groups (24). The single-
sample GSEA (ssGSEA) algorithm was used to evaluate
the proportion of 23 immune cells in the different clusters
and risk groups (25). The results were visualized using
the “ggplot2” package. The ESTIMATE algorithm
was used to assess the ImmuneScore, MatrixScore, and
ESTIMATEScore of each patient (26).

Mutation, immunotherapy, and drug sensitivity analyses

The “maftools” package was used to analyze the somatic
mutation data of the different risk groups, which were
visualized in waterfall plots. We also calculated and
compared the tumor mutation burden (TMB) scores of the
different risk groups. The Tumor Immune Dysfunction
and Exclusion (TIDE) score of each patient was calculated
to evaluate the efficacy of immune checkpoint blocking
(ICB) therapy (27). The “pRRophetic” package was used
to calculate the half-maximal inhibitory concentration of
common chemotherapy drugs based on the Genomics of
Drug Sensitivity in Cancer database (28).

Immunobistochemical staining analysis of tissue

MICroarrays

We collected 150 LUAD samples and 35 matched normal
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lung tissue paraffin blocks from the People’s Hospital
of Rugao from 2015 to 2017, and fabricated them into
tissue microarrays. The clinical data, including age, sex,
stage, tumor differentiation, tumor size, lymph node
status, and survival time, of all the patients were collected.
The microarrays were dewaxed with xylene and gradient
ethanol, and then repaired with ethylenediaminetetraacetic
acid antigen repair buffer (pH 9.0) under high pressure for
20 minutes. The microarrays were then incubated with
3% hydrogen peroxide and 10% goat serum solutions,
respectively, for 20 minutes to block endogenous peroxidase
and non-specific antibody binding sites. ANGPTL4
polyclonal antibody (Proteintech, Wuhan, China) was
diluted at 1:100 and incubated on the microarrays overnight
at 4 °C. Next, we successively covered the microarrays with
horseradish peroxidase-conjugated secondary antibody
and 3,3’-diaminobenzidine. The staining intensities of no,
weak, medium, and strong staining were allocated 0, 1, 2,
and 3 scores, respectively. The staining range percentages
of 0-10%, 11-30%, 31-50%, and >50% were evaluated
as 1, 2, 3, and 4 scores respectively. The immunostaining
score was equal to the staining intensity score multiplied
by the range percentage score. Immunostaining scores >6
or <6 were considered positively or negatively expressed,
respectively (29). Two pathologists independently scored the
microarrays. The study was conducted in accordance with
the Declaration of Helsinki (as revised in 2013). The study
was approved by institutional ethics board of The People’s
Hospital of Rugao (No. KY202308002) and informed
consent was taken from all the patients.

Statistical analysis

The statistical analyses of TCGA and GEO data were
conducted using Rsoftware (version 4.1.3). Kruskal and
Wilcoxon tests were used to analyze the differences in the
clinicopathological characteristics between the risk groups.
A Spearman test was used to evaluate the correlation
between the ARGs and the abundance of immune cell
infileration. The Chi-squared test was used to confirm
the relationship between ANGPTL4 expression and the
clinicopathological characteristics using SPSS software
(version 20.0). The correlation between ANGPTL4
and OS was examined by a K-M analysis in GraphPad
Prism 5. A P value <0.05 was considered statistically
significant.
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Figure 1 Identification of differentially expressed and prognosis-related ARGs. (A) Identification of differentially expressed ARGs in

LUAD and normal lung tissues. Red, highly expressed ARGs in LUAD; green, highly expressed ARGs in normal lung tissues; black, no

differentially expressed ARGs. (B) Prognosis-related ARGs identified by the univariate Cox analysis. (C) Expression of 23 prognosis-related
ARGs in normal lung and LUAD tissues. (D) The expression correlations among the 23 prognosis-related ARGs. ***, P<0.001. FDR, false

discovery rate; FC, fold change; N, normal; T, tumor; ARGs, anoikis-related genes; LUAD, lung adenocarcinoma.

Results

Identification of the differentially expressed and
prognosis-related ARGs

First, we obtained 640 ARGs from the GeneCards website
and Harmonizome portal (Table S1). We then screened
135 differentially expressed genes between the LUAD and
normal lung tissues and presented them in a Venn diagram
(Table S2) (Figure 1A). The univariate Cox analysis identified
23 prognosis-related ARGs (Figure 1B). Compared with the
normal lung tissues, DAPK2 (P<0.001) and KL (P<0.001)
were underexpressed in the LUAD tissues, while CDX2
(P<0.001), KIF184 (P<0.001), PBK (P<0.001), CDC25C
(P<0.001), BIRCS (P<0.001), CDKN3 (P<0.001), MAD2L1
(P<0.001), BUBI (P<0.001), CDK1 (P<0.001), CENPF
(P<0.001), PLKI (P<0.001), UBE2C (P<0.001), HMGAI
(P<0.001), SLC2A1 (P<0.001), SLCO1B3 (P<0.001),
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ANGPTL4 (P<0.001), LDHA (P<0.001), CDCPI (P<0.001),
ITGB4 (P<0.001), KRT14 (P<0.001), and SERPINBS (P<0.001)
were overexpressed in the LUAD tissues (Figure 1C). The
correlation among the expression of the 23 ARGs was also
examined (Figure 1D).

Consensus clustering of LUAD based on the ARGs

We performed an unsupervised consensus clustering
analysis to explore the possible subtype clustering of LUAD
based on the 23 ARGs. As Figure 24-2C shows, when
k=2, the data set could be well clustered into two groups.
The PCA and t-SNE analyses revealed a clear boundary
between cluster A and cluster B (Figure 2D,2E). The K-M
curve showed that cluster B had better OS than cluster A
(Figure 2F). The clinicopathological characteristics analysis
revealed significant differences in N classification (P<0.01),
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Figure 2 Consensus clustering of LUAD based on ARGs. (A) Consensus clustering for k=2. (B) Consensus clustering CDF for k=2-9. (C)
CDF curve of consensus clustering analysis. (D) PCA analysis of the clusters. (E) t-SNE analysis of the clusters. (F) Kaplan-Meier analysis

of the clusters. (G) Correlation analysis of the clusters and clinicopathological characteristics. (H) Differential expression analysis of the
23 ARGs between cluster A and B. **, P<0.01; ***, P<0.001. CDE, cumulative distribution function; PC, principal component; t-SNE,
t-distributed stochastic neighborhood embedding; ns, not significant; LUAD, lung adenocarcinoma; ARGs, anoikis-related genes; PCA,

principal component analysis.

T classification (P<0.01), stage (P<0.001), gender (P<0.01),
age (P<0.01), and survival status (P<0.01) between cluster
A and cluster B (Figure 2G). Further the boxplot analysis
showed that the expression of the 23 ARGs differed
significantly between clusters A and B, which also indicated
the ARG clusters performed well (Figure 2H).

Functional envichment and immune cell infiltration

analyses of the clusters

To explore the differences in biological function between
cluster A and cluster B, we conducted a GSVA. Cluster

A was significantly more enriched in the p53 signaling
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Figure 3 Functional enrichment and immune cell infiltration analyses of the clusters. (A) Differential GSVA between the clusters. (B,C)
GSEA of the clusters. (D) CIBERSORT was used to analyze the abundance of 28 tumor-infiltrating immune cells in the two clusters. (E)
A ssGSEA was conducted to analyze the abundance of 23 tumor-infiltrating immune cells in the two clusters. (F) The ESTIMATE analysis

showed the TME scores of the clusters.

*, P<0.05; **, P<0.01; ***, P<0.001. TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia

of Genes and Genomes; ns, not significant; MDSC, myeloid-derived suppressor cells; GSVA, gene set variation analysis; ssGSEA, single-

sample GSVA; TME, tumor microenvironment.

pathway, cell cycle, one carbon pool by folate, glyoxylate
and dicarboxylate metabolism, and other pathways. While
cluster B was significantly more enriched in arachidonic
acid metabolism, alpha linolenic acid metabolism, primary
bile acid biosynthesis, and the taurine and hypotaurine
metabolism pathways (Figure 34). The GSEA showed

© Journal of Thoracic Disease. All rights reserved.

that the cell cycle, DNA replication, and oocyte meiosis
pathways were more active in cluster A, while the asthma
and systemic lupus erythematosus pathways were more
active in cluster B (Figure 3B,3C). In view of the significant
differences in the metabolism-related pathways between the
clusters, and the correlation between metabolism and the
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operating characteristic.

tumor immune microenvironment (30), we further analyzed
the difference in immune cell infiltration between cluster
A and cluster B. The CIBERSORT analysis revealed that
activated B cells, activated dendritic cells, central memory
CD4 T cells, effector memory CD8 T cells, eosinophils,
immature B cells, immature dendritic cells, macrophages,
mast cells, myeloid-derived suppressor cells, memory B
cells, monocytes, natural killer cells, T follicular helper
cells, and type 17 T helper cells were more infiltrated
in cluster B. While activated CD4 T cells, natural killer
T cells, and type 2 T helper cells were more infiltrated
in cluster B (Figure 3D). The results of the ssGSEA also
showed that the activated B cells, activated dendritic cells,
eosinophils, immature B cells, immature dendritic cells,
macrophages, mast cells, natural killer cells, T follicular
helper cells, and type 17 T helper cells were more abundant
in cluster B than cluster A. While the activated CD4 T cells,
CD56 dim natural killer cells, natural killer T cells, and
type 2 T helper cells were more abundant in cluster A than

© Journal of Thoracic Disease. All rights reserved.

cluster B (Figure 3E). The tumor microenvironment (TME)
analysis revealed that the StromalScore, ImmuneScore, and
ESTIMATEScore were all higher in cluster B than cluster
A (Figure 3F).

Construction of the anoikis-related prognostic model

To further examine the effect of anoikis on the LUAD
prognosis, we performed a LASSO Cox regression analysis
of the 23 prognosis-related ARGs from TCGA. We
ultimately constructed a risk model comprising ten ARGs
(ie., ANGPTL4, CDCP1, ITGB4, KL, SLC2A1, CDC25C,
SLCOI1B3, LDHA, CDX2, and KIF18A) (Figure 44,4B).
The median value of the risk score was used to divide the
patients into low- and high-risk groups. Compared to the
high-risk group, the low-risk group had a better OS rate
and a better survival status (P<0.001) (Figure 4C,4D). The
expression profiles of the risk genes are shown in Figure 4E.
The ROC analysis clarified the values of the areas under the
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Figure 5 Evaluation and validation of the anoikis-related prognostic model. (A) ROC analysis of multiple indicators. (B) Univariate Cox
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curve (AUCs) of the model at 1, 3, and 5 years were 0.716,

0.715, and 0.624, respectively (Figure 4F).

Evaluation and validation of the anoikis-related prognostic

model

The multivariate ROC curve showed that the 1-year AUC
value of the model was higher than that of age (0.550),
gender (0.593), stage (0.711), T classification (0.648), and
N classification (0.625) (Figure 5A). The univariate Cox and

© Journal of Thoracic Disease. All rights reserved.

multivariate Cox analyses revealed that the risk score could

be considered an independent survival prognostic indicator
of LUAD (hazard ratio: 1.065, P<0.001) (Figure 5B,5C). To

better predict patient survival, we constructed a nomogram
incorporating the risk score and other clinicopathological

characteristics, and visualized the performance of the

nomogram with calibration plots at 1, 3, and 5 years
(Figure 5D,SE). We used the GSE31210 data set to verify
the accuracy of the model. Similarly, we calculated the risk
score of each sample separately using the above-mentioned

7 Thorac Dis 2024;16(8):5361-5378 | https://dx.doi.org/10.21037/jtd-24-1123



5370

model formula and divided the samples into low- and high-
risk groups. Consistent with TCGA analysis, the patients
in the high-risk group had higher risk scores, worse OS,
and a higher mortality rate than those in the low-risk group
(Figure 5F,5G). The expression of the modeling genes in the
risk groups were similar to that in TCGA (Figure SH). The
alluvial diagram showed the change in patient distribution
between the clusters and risk groups (Figure 5I).

Clinicopatbological characteristics and functional
enrvichment analyses of the risk groups

The PCA and t-SNE analyses showed that the risk groups
were well distinguished in the model (Figure 64,6B). The
Kruskal test indicated the risk scores of T2 (P<0.001),
T3 (P<0.001), and T4 (P=0.04) were higher than that of
T1 (Figure 6C), and the risk scores of N1 (P=0.004) and
N2 (P<0.001) were significantly higher than that of NO
(Figure 6D). Similarly, patients in stage II (P=0.002), stage
III (P<0.001), and stage IV (P=0.009) all had higher risk
scores than those in stage I (Figure 6E). The Wilcox test
revealed that the dead patients had higher risk scores than
the alive patients (P<0.001) (Figure 6F). In addition, the
Chi-squared test revealed that the risk score was correlated
with N classification (P<0.01), T classification (P<0.01),
stage (P<0.001), gender (P<0.05), age (P<0.05), and survival
status (P<0.001) (Figure 6G). Subsequently, to understand
the differences in the biological function enrichment of
the risk groups, we performed a differential GSVA. The
results showed that the low-risk group was more enriched
in taurine and hypotaurine metabolism, alpha linolenic acid
metabolism, and arachidonic acid metabolism, while the
high-risk group was more enriched in pentose phosphate
pathway, glycolysis gluconeogenesis, cell cycle, oocyte

meiosis, and the p53 signaling pathway (Figure 6H).

Immune cell infiltration and TME analyses of the risk
groups
The CIBERSORT analysis showed that the activated B

cells, eosinophils, immature B cells, immature dendritic
cells, mast cells, T follicular helper cells, and type 17 T
helper cells were more infiltrated in the low-risk group,
and activated CD4 T cells, gamma delta T cells, memory
B cells, natural killer T cells, regulatory T cells, and type 2
T helper cells were more infiltrated in the high-risk group
(Figure 7A4). The ssGSEA analysis showed that the activated
B cells, eosinophils, immature B cells, immature dendritic

© Journal of Thoracic Disease. All rights reserved.
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cells, mast cells, monocytes, and type 17 T helper cells were
more infiltrated in the low-risk group, and activated CD4
T cells, CD56 bright natural killer cells, gamma delta T
cells, natural killer T cells, regulatory T cells, and type 2
T helper cells were more infiltrated in the high-risk group
(Figure 7B). In addition, the immune checkpoint gene PD-
L1 was overexpressed in the high-risk group (Figure 7C).
The StromalScore, ImmuneScore, and ESTIMATEScore
were all higher in the low-risk group than the high-risk
group (P<0.05) (Figure 7D).

Mutation, immunotherapy, and chemotherapy sensitivity
analyses

The rate of somatic mutation is closely related to the
TME (31). The “maftools” package was used to analyze the
difference in the somatic mutation rates between the two
risk groups. The five genes with the highest mutation rates
were TP53, TTN, MUC16, CSMD3, and RYR2, and their
mutation rates were significantly higher in the high-risk
group than the low-risk group (Figure 84,8B). In addition,
we discovered that the TMB score was higher in the high-
risk group than the low-risk group (P<0.001) (Figure 8C), and
the TMB score was positively associated with OS both in
the entire cohort and the risk groups (P=0.01 and P<0.001,
respectively) (Figure §D,8E). The high-risk group had a
lower TIDE score than the low-risk group, which indicated
that ICB therapy was more effective in the high-risk group
than the low-risk group (Figure 8F). The chemotherapy
drug sensitivity analysis showed that the high-risk group
had lower sensitivity to bleomycin (P<0.001), camptothecin
(P<0.001), cisplatin (P<0.001), cytarabine (P<0.001),
gemcitabine (P<0.001), methotrexate (P<0.001), paclitaxel
(P<0.001), and vinorelbine (P<0.001) than the low-risk
group (Figure §G-8N).

Verification of the expression and prognostic significance of
ANGPTL4 in LUAD

ANGPTL4 was a key gene in our prognostic model, and
previous studies have shown it plays important roles in
regulating apoptosis, amino acid and fatty acid metabolism,
and drug sensitivity in LUAD cells (32,33). And the
significance of ANGPTL4 expression in LUAD remains
unclear. Therefore, we further analyzed the protein
expression of ANGPTL4 in LUAD and its correlation with
patient prognosis. The immunohistochemical staining of

the tissue microarrays showed that ANGPTL4 was highly
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Figure 6 Clinicopathological characteristics and functional enrichment analyses of the risk groups. (A) PCA analysis of the risk groups. (B)

t-SNE analysis of the risk groups. (C) The Kruskal test was used to analyze the relationship between the risk score and T classification. (D)

The Kruskal test was used to analyze the relationship between the risk score and N classification. (E) The Kruskal test was used to analyze

the relationship between the risk score and stage. (F) The Wilcox test was used to analyze the relationship between the risk score and status.

(G) Correlation analysis of the clinicopathological characteristics between the low- and high-risk groups. (H) Differential GSVA enrichment
analysis of the risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. PC, principal component; t-SNE, t-distributed stochastic neighborhood
embedding; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCA, principal component analysis;

GSVA, gene set variation analysis.

expressed in the LUAD tissues compared with the normal
lung tissues (Figure 94,9B). The Chi-squared test revealed
ANGPTLA4 expression was correlated with stage (P=0.004),
differentiation degree (P=0.004), T classification (P=0.01),

© Journal of Thoracic Disease. All rights reserved.

and N classification (P=0.01), but was not correlated with
age (P=0.55) and gender (P=0.98) (Tzble I). The K-M
analysis showed that ANGPTL4 expression was correlated
with OS in LUAD patients (P=0.04) (Figure 9C).
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Figure 7 Immune cell infiltration and TME analyses of the risk groups. (A) CIBERSORT was used to analyze the abundance of 28 tumor-

infiltrating immune cells. (B) A ssGSEA was conducted to analyze the abundance of the 23 tumor-infiltrating immune cells. (C) Expression
of PD-L1 in the risk groups. (D) ESTIMATE was used to analyze the differences in the TME scores between the risk groups. *, P<0.05; **,
P<0.01; ***, P<0.001. ns, not significant; MDSC, myeloid-derived suppressor cells; TME, tumor microenvironment; ssGSEA, single-sample

gene set enrichment analysis; PD-L1, programmed death-ligand 1.

Discussion

In recent years, tumor marker research in the field of
molecular biology has achieved positive results in LUAD
prognosis and therapy (21,34). Despite this, the 5-year
OS rate of LUAD patients remains <20% (6). Therefore,
novel LUAD molecular subtypes, novel therapies, and early
prognostic indicators urgently need to be explored.

Anoikis is involved in the occurrence and progression
of many diseases, such as diabetes, infectious diseases, and
tumors (11). Hyperglycemia promotes anoikis and impairs

© Journal of Thoracic Disease. All rights reserved.

angiogenesis by inducing the dicarbonyl metabolism of
vascular endothelial cells (35). Aspergillus toxin induces lung
epithelial cell anoikis and promotes aspergillus invasion
by inhibiting the binding of integrins with extracellular
matrix components (36). Tumor cells have strong abilities
to escape anoikis, which protects them in the lymphatic and
circulatory systems and allows them to metastasize and grow
uncontrollably elsewhere (37). A previous study has found
the composition of the extracellular matrix, cytoskeletal

regulatory factors, cell adhesion associated membrane
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Figure 8 Mutation, immunotherapy and chemotherapy sensitivity analyses. (A) Somatic mutation frequency in the low-risk group. (B)
Somatic mutation frequency in the high-risk group. (C) TMB score analysis in the risk groups. (D) Kaplan-Meier analysis of the TMB score.
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Figure 9 Tissue microarray immunohistochemical staining and OS analysis of ANGPTL4. (A) Tissue microarrays used for
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(C) The relationship between ANGPTL4 expression and OS. OS, overall survival; LUAD, lung adenocarcinoma.

Table 1 Relationship between ANGPTL4 expression and clinicopathological characteristics of LUAD

Clinicopathological characteristics All cases ANGPTL4 expression P
Low High

Age 0.55
<60 years 37 22 15
>60 years 83 43 40

Gender 0.98
Male 59 32 27
Female 61 33 28

Stage 0.004
I+ 97 59 38
I+ v 23 6 17

Differentiation degree 0.004
| 33 25 8
I+ 87 40 47

T classification 0.01
1 88 54 34
2+3+4 32 11 21

N classification 0.01
NO 78 49 29
N1+2+3 42 16 26

LUAD, lung adenocarcinoma.
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proteins, and epithelial-mesenchymal transition (EMT)
are involved in anoikis resistance (11). For example, highly
expressed laminin 5 induces weak resistance and promotes
the proliferation and migration of LUAD by activating
integrin focal adhesion kinase signal transduction (38).
Phosphorylation of the membrane attached molecule Src
kinase attenuates anoikis and promotes the growth of
LUAD cells in the lymph nodes (39). High levels of BIII-
tubulin promote tumorigenesis and anoikis resistance in
LUAD via the phosphatase and tensin homolog/protein
kinase signaling axis (40). In addition, the dysregulation
of EMT-related proteins (E-cadherin and N-cadherin)
promotes LUAD progression by inhibiting anoikis (11).
In view of their important roles and extensive regulatory
mechanisms, the identification of anoikis-related LUAD
subtypes and prognostic evaluation is highly valuable.

In this study, we first identified 23 prognosis-related ARGs
in TCGA data set, and then divided the LUAD samples
into cluster A and cluster B according to the expression of
the 23 ARGs. The PCA, t-NSE, and clinicopathological
characteristic analyses showed that cluster A and cluster B
differed significantly. The prognostic analysis showed that
the OS time of cluster B was longer than that of cluster A.
The GSVA showed that cluster A was significantly more
enriched in the cell cycle and DNA replication signaling
pathways, and cluster B was significantly more enriched
in the fatty acid-related pathways. Cell cycle pathway
activation enables the cells to deviate from the normal
cycle, and enables continuous division and uncontrolled
proliferation (41). DNA replication is a major driver of
sustained proliferation for many cancers, and targeting
DNA replication is an effective therapeutic target (42).
Linolenic acid inhibits the hypoxia-induced proliferation
and invasion of non-small cell LC cells by inhibiting
hypoxia-inducible factor 1 alpha (43). Taurine significantly
inhibits cell proliferation, metastasis, and colony formation,
and induces apoptosis in colorectal cancer cells (44). Thus,
we speculated that the better OS of cluster B might be
related to its different enrichment pathways.

In addition, the GSEA showed that the asthma and
systemic lupus erythematosus pathways were more active
in cluster B than cluster B, which suggested that cluster B
had stronger immune activity. Thus, we further analyzed
the differences in the tumor-infiltrating immune cells and
TME between cluster A and cluster B. The results showed
that activated B cells, activated dendritic cells, eosinophils,
immature B cells, immature dendritic cells, macrophages,
mast cells, natural killer cells, T follicular helper cells, and
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type 17 T helper cells were more infiltrated in cluster B
than cluster A. While activated CD4 T cells, CD56 dim
natural killer cells, natural killer T cells, and type 2 T
helper cells were more infiltrated in cluster A than cluster
B. Previous studies have shown that activated B cells play an
anti-tumor role through the direct killing of tumor cells or
the production of tumor-specific antibodies. The infiltrating
abundance of B cells is closely related to the good prognosis
of patients (45). Dendritic cells present tumor cell-
associated antigens to naive T cells, which helps to produce
specific T cell-mediated anti-tumor effects (46). Classically
activated M1 macrophages directly mediate cytotoxicity
and antibody-dependent cell-mediated cytotoxicity to kill
tumor cells (47). Tumor-infiltrating follicular helper T cells
located in the tertiary lymphoid structure around the tumor
assist T cells to achieve anti-tumor immunity by secreting
the cell detoxifying factor (48). Natural killer cells are the
main effector cells in cancer innate immunity, which not
only directly damage tumor cells, but also produce a large
number of cytokines, such as interferon-y, and participate
in the immune effects of other related pathways (49). The
difference in immune cell infiltration also explains the
difference in prognosis between cluster A and cluster B to
some extent.

To better predict of LUAD survival, we constructed a
LASSO Cox prognostic model with the ARGs. The ROC
curve showed the model had high prediction efficiency.
The nomogram and external validation results showed that
the model had high reliability and stability. The risk score
of the model could be used as an independent prognostic
factor of LUAD. The immune cell infiltration and TME
analyses revealed greater immune cell infiltration and a
higher TME score in the low-risk group than the high-
risk group. The higher expression of PD-LI suggested
greater suppression of the immune response in the high-
risk group, and was consistent with the lower infiltration of
the immune cells. In addition, PD-LI is also an important
immunotherapeutic target, and its inhibitors act as tumor
suppressors by modulating immune cell and tumor cell
interactions (50). We also found that the high-risk group
had a higher somatic mutation rate, TMB score, and lower
TIDE score than the low-risk group. A previous study has
shown patients with a high TMB are more sensitive to ICB
therapy (51). Conversely, the TIDE score was negatively
correlated with the patients’ response to ICB therapy (27).
Thus, we hypothesized that the high-risk group patients
would benefit more from immunotherapy than the low-
risk group patients. The drug sensitivity analysis showed
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that the risk score was negatively correlated with common
chemotherapy drugs sensitivity. Our research provides
important references for the clinical selection of treatments.
Finally, we showed that the expression of ANGPTL4
was significantly correlated with the clinicopathological
characteristics of the LUAD patients. LUAD patients with
higher ANGPTL4 expression had a worse prognosis than
those with lower ANGPTL4 expression.

Conclusions

In conclusion, our research identified two novel molecular
subtypes of LUAD and elucidated the differences in the
clinicopathological characteristics, prognosis, functional
enrichment, and immune infiltration of the two subtypes.
We also constructed a new LUAD prognostic model
and evaluated the prognostic efficacy of that model. The
differences in prognosis, mutation, immunotherapy, and
chemotherapy of the risk groups were also investigated.
We examined the relationship between ANGPTL4 and
the clinicopathological characteristics and prognosis of
the LUAD patients. Our research provides important
references for the accurate diagnosis, prognosis, and
treatment of LUAD patients. However, it did not verify
the expression of other genes or the mechanism by which
ANGPTL4 promotes the progression of LUAD, which we
will address in our future work.
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