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Background: Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high 
mortality. Anoikis resistance is an important mechanism of tumor cell proliferation and migration. Our 
research is devoted to exploring the role of anoikis in the diagnosis, classification, and prognosis of LUAD.
Methods: We downloaded the expression profile, mutation, and clinical data of LUAD from The Cancer 
Genome Atlas (TCGA) database. The “ConsensusClusterPlus” package was then used for the cluster 
analysis, and least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression 
analyses were used to establish the prognostic model. We verified the reliability of the model using a Gene 
Expression Omnibus (GEO) data set. A gene set variation analysis (GSVA) was conducted to investigate the 
functional enrichment differences in the different clusters and risk groups. The CIBERSORT algorithm and 
a single-sample gene set enrichment analysis (ssGSEA) were used to analyze immune cell infiltration. The 
tumor mutation burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) scores were used to 
evaluate the patients’ sensitivity to immunotherapy. Immunohistochemical staining of tissue microarrays was 
used to verify the correlation between ANGPTL4 expression and the clinicopathological characteristics and 
prognosis of LUAD patients.
Results: First, we screened 135 differentially expressed anoikis-related genes (ARGs) and 23 prognosis-
related ARGs from TCGA-LUAD data set. Next, 494 LUAD samples were allocated to cluster A and cluster 
B based on the 23 prognosis-related ARGs. The Kaplan-Meier (K-M) analysis showed the overall survival 
(OS) of cluster B was better than that of cluster A. The clinicopathological characteristics and functional 
enrichment analyses revealed significant differences between clusters A and B. The tumor microenvironment 
(TME) analysis showed that cluster B had more immune cell infiltration and a higher TME score than 
cluster A. Subsequently, a LASSO Cox regression model of LUAD was constructed with ten ARGs. The K-M 
analysis showed that the low-risk patients had longer OS than the high-risk patients. The receiver operating 
characteristic curve, nomogram, and GEO data set verification results showed that the model had high 
accuracy and reliability. The level of immune cell infiltration and TME score were higher in the low-risk 
group than the high-risk group. The high-risk group had stronger sensitivity to immune checkpoint block 
therapy and weaker sensitivity to chemotherapy drugs than the low-risk group. ANGPTL4 expression was 
correlated with stage, tumor differentiation, tumor size, lymph node metastasis, and OS.
Conclusions: We discovered novel molecular subtypes and constructed a novel prognostic model of 
LUAD. Our findings provide important insights into subtype classification and the accurate survival 
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Introduction

Lung cancer (LC) is one of the most aggressive and 
lethal malignancies. In 2020, there were approximately  
2.2 million new LC cases and 1.8 million LC-related deaths 
worldwide, accounting for about 11.4% of new cancers and 
18% of cancer-related death cases, respectively (1). Lung 
adenocarcinoma (LUAD) is the most important pathological 
histological type of LC, accounting for 40% of all LCs (2,3). 
In recent years, with the rapid development of molecular 
biology and tumor genetics, numerous new therapeutic 
methods have emerged. For example, inhibitors of the 
targets of immunotherapy [e.g., cytotoxic T lymphocyte 
associated protein 4, programmed cell death protein 1, and 
programmed death-ligand 1 (PD-L1)] and targeted therapy 
(e.g., anaplastic lymphoma kinase, ROS proto-oncogene 1 

and neurotrophic tropomyosin receptor kinase) have been 
shown to effectively prolong the survival of LUAD patients 
(4-6). However, LUAD is a highly heterogeneous cancer 
with significant individual differences, and some patients 
do not respond well to existing treatments (7). Thus, 
conducting further research to identify new molecular 
subtypes is of great significance to the accurate diagnosis 
and prognostic evaluation of LUAD.

Anoikis is a form of programmed death that prevents 
cells from growing, attaching to inappropriate stroma, 
and colonizing distant organs when they detach from 
the primary extracellular matrix (8). The overactivation 
of carcinogenic signaling pathways, mutations of growth 
factor receptors and enhancements of oxidative stresses 
promote cancer cells to develop anoikis resistance (8). For 
instance, the transforming growth factor β1/SH2B adaptor 
protein 3 axis promotes the anoikis resistance of LC 
through the Janus kinase 2/signal transducer and activator 
of transcription 3 signaling pathway (9). The overexpression 
of epidermal growth factor Cripto-1 has been shown to 
enhance the anoikis resistance and aggressiveness of breast 
cancer cells (10). Meanwhile, a LC study has also found that 
anoikis inhibits the escape of tumor cells from the natural 
extracellular matrix to other organs, and is associated 
with tumor progression and treatment failure (11). In 
vivo and in vitro studies of LC have shown that several 
natural and synthetic products (such as artonin E, oroxylin 
A, sulforaphane, and carbenoxolone) can inhibit tumor 
progression by activating anoikis (11). Given the important 
roles of anoikis in cancer progression, numerous research 
studies have sought to explore the relationship between 
anoikis and tumor molecular typing and prognosis. 

A classification and prognostic risk model based on five 
anoikis-related genes (ARGs) in hepatocellular carcinoma 
provided novel insights into tumor subtype and survival 
analyses (12). In an ovarian cancer study, the ARG signature 
could be used to evaluate the prognosis, immune cell 
infiltration, mutation, and therapeutic response (13). In 
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pancreatic cancer and pancreatic neuroendocrine tumors, 
the ARGs also revealed the molecular, prognostic and 
microenvironmental characteristics of tumors (14). A recent 
study also revealed the relationship between ARGs and the 
prediction of prognosis, immune infiltration and treatment 
outcome of LUAD (15), but numerous bioanalyses and 
experiments are still needed for further confirmation. 

In our research, we first identified 135 differentially 
expressed and 23 prognosis-related ARGs of LUAD in The 
Cancer Genome Atlas (TCGA) program. Subsequently, we 
performed an unsupervised consensus clustering analysis 
of the 23 prognosis-related ARGs, and divided the 494 
LUAD samples into cluster A and cluster B. There were 
significant differences in the prognosis, clinicopathological 
characteristics, gene set variation analysis (GSVA) results, 
and immune cell infiltration between cluster A and cluster 
B. Next, we constructed a prognostic model using least 
absolute shrinkage and selection operator (LASSO) and Cox 
regression analyses based on 10 ARGs. We then validated 
the model with a Gene Expression Omnibus (GEO) data 
set and further investigated the differences between the risk 
groups in terms of the clinicopathologic characteristics, 
immune cell infiltration, mutation, and drug sensitivity. 
Finally, we conducted experiments to verify the relationship 
between ANGPTL4 expression and the clinicopathological 
characteristics and prognosis of LUAD patients. Our 
research provides novel insights into molecular subtype 
classification and the prognosis prediction of LUAD. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-1123/rc).

Methods

Acquire and process LUAD data from TCGA and the 
GEO

We downloaded the  gene express ion matr ix  and 
clinicopathologic data of 535 LUAD and 59 matched normal 
lung samples from TCGA (https://portal.gdc.cancer.gov/) (16), 
and 226 LUAD samples from the GSE31210 GEO (https://
www.ncbi.nlm.nih.gov/gds) data set (17). After removing the 
samples with incomplete clinical data, 494 TCGA and 226 
GEO LUAD samples remained for the analysis. R software 
(version 4.1.3) and Perl (Strawberry version) software were 
applied to process and analyze the data. 

Identification of differentially expressed and prognosis-
related ARGs

Initially, we obtained 640 ARGs from the GeneCards 
(https://www.genecards.org/) (18) and Harmonizome 
(https://maayanlab.cloud/Harmonizome/) portals (19). 
Subsequently, we used the “limma” R package to analyze 
the differentially expressed genes between the LUAD and 
normal lung tissues based on the following criteria: |log 
fold change| >1 and false discovery rate <0.05. A univariate 
Cox analysis was then conducted to identify the prognosis-
related ARGs based on the following criterion: P<0.01.

Consensus clustering analysis based on ARGs

“ConsensusClusterPlus” R package (20) was used for 
the unsupervised clustering of the 494 TCGA-LUAD 
samples. The following criteria were set: a gradual and 
steady growth in the cumulative distribution function 
(CDF) curve, an increase in the intra-group correlation, 
and a decrease in the inter-group correlation. The clusters 
were verified by a principal component analysis (PCA) and 
t-distributed stochastic neighborhood embedding (t-SNE) 
using the “ggplot2” and “Rtsne” packages respectively. The 
“pheatmap” package was used to visualize the differences 
in the gene expression profiles and clinicopathological 
characteristics of the different clusters. A Kaplan-Meier (K-
M) analysis was used to examine differences in OS between 
the different clusters.

Construction and validation of anoikis-related risk model

First, we used LASSO regression to reduce overfitting and 
screen out the best value for lambda (λ) (21). Subsequently, 
we constructed a Cox regression risk model comprising 
ten prognosis-related ARGs. We calculated the risk score 
of each patient using the following formula: risk score 
= esum(each gene expression × corresponding regression coefficient). The LUAD 
patients were segmented into low- and high-risk groups 
based on the median score. The K-M curve was used to 
analyze the differences in OS between the risk groups. 
Receiver operating characteristic (ROC) curves were used 
to validate the 1-, 3- and 5-year prognostic efficacy of 
the model and to compare the accuracy of the risk score 
with the clinicopathological characteristics. In addition, 
we analyzed the relationship between the risk score and 
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clinicopathological characteristics, and further validated the 
model efficacy with the GSE31210external data set.

Functional enrichment analysis

The “GSVA” package was used to examine the differences 
in the enrichment pathways between the different clusters 
and risk groups (22). The hallmark gene sets “c2.cp.kegg.
v7.2.symbols.gmt” from the MsigDB database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp) were 
employed. In addition, a gene set enrichment analysis (GSEA) 
annotated by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database was used to further examine the differences 
in biological function between the two clusters (23).

Immune cell infiltration and immune microenvironment 
analyses

The CIBERSORT algorithm was used to estimate the 
infiltration abundance of 28 types of immune cells in 
the different clusters and risk groups (24). The single-
sample GSEA (ssGSEA) algorithm was used to evaluate 
the proportion of 23 immune cells in the different clusters 
and risk groups (25). The results were visualized using 
the “ggplot2” package. The ESTIMATE algorithm 
was used to assess the ImmuneScore, MatrixScore, and 
ESTIMATEScore of each patient (26).

Mutation, immunotherapy, and drug sensitivity analyses

The “maftools” package was used to analyze the somatic 
mutation data of the different risk groups, which were 
visualized in waterfall plots. We also calculated and 
compared the tumor mutation burden (TMB) scores of the 
different risk groups. The Tumor Immune Dysfunction 
and Exclusion (TIDE) score of each patient was calculated 
to evaluate the efficacy of immune checkpoint blocking 
(ICB) therapy (27). The “pRRophetic” package was used 
to calculate the half-maximal inhibitory concentration of 
common chemotherapy drugs based on the Genomics of 
Drug Sensitivity in Cancer database (28).

Immunohistochemical staining analysis of tissue 
microarrays

We collected 150 LUAD samples and 35 matched normal 

lung tissue paraffin blocks from the People’s Hospital 
of Rugao from 2015 to 2017, and fabricated them into 
tissue microarrays. The clinical data, including age, sex, 
stage, tumor differentiation, tumor size, lymph node 
status, and survival time, of all the patients were collected. 
The microarrays were dewaxed with xylene and gradient 
ethanol, and then repaired with ethylenediaminetetraacetic 
acid antigen repair buffer (pH 9.0) under high pressure for 
20 minutes. The microarrays were then incubated with 
3% hydrogen peroxide and 10% goat serum solutions, 
respectively, for 20 minutes to block endogenous peroxidase 
and non-specific antibody binding sites. ANGPTL4 
polyclonal antibody (Proteintech, Wuhan, China) was 
diluted at 1:100 and incubated on the microarrays overnight 
at 4 ℃. Next, we successively covered the microarrays with 
horseradish peroxidase-conjugated secondary antibody 
and 3,3’-diaminobenzidine. The staining intensities of no, 
weak, medium, and strong staining were allocated 0, 1, 2, 
and 3 scores, respectively. The staining range percentages 
of 0–10%, 11–30%, 31–50%, and ≥50% were evaluated 
as 1, 2, 3, and 4 scores respectively. The immunostaining 
score was equal to the staining intensity score multiplied 
by the range percentage score. Immunostaining scores ≥6 
or <6 were considered positively or negatively expressed, 
respectively (29). Two pathologists independently scored the 
microarrays. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics board of The People’s 
Hospital of Rugao (No. KY202308002) and informed 
consent was taken from all the patients.

Statistical analysis

The statistical analyses of TCGA and GEO data were 
conducted using Rsoftware (version 4.1.3). Kruskal and 
Wilcoxon tests were used to analyze the differences in the 
clinicopathological characteristics between the risk groups. 
A Spearman test was used to evaluate the correlation 
between the ARGs and the abundance of immune cell 
infiltration. The Chi-squared test was used to confirm 
the relationship between ANGPTL4 expression and the 
clinicopathological characteristics using SPSS software 
(version 20.0). The correlation between ANGPTL4 
and OS was examined by a K-M analysis in GraphPad 
Prism 5. A P value <0.05 was considered statistically  
significant.
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Results

Identification of the differentially expressed and  
prognosis-related ARGs

First, we obtained 640 ARGs from the GeneCards website 
and Harmonizome portal (Table S1). We then screened 
135 differentially expressed genes between the LUAD and 
normal lung tissues and presented them in a Venn diagram 
(Table S2) (Figure 1A). The univariate Cox analysis identified 
23 prognosis-related ARGs (Figure 1B). Compared with the 
normal lung tissues, DAPK2 (P<0.001) and KL (P<0.001) 
were underexpressed in the LUAD tissues, while CDX2 
(P<0.001), KIF18A (P<0.001), PBK (P<0.001), CDC25C 
(P<0.001), BIRC5 (P<0.001), CDKN3 (P<0.001), MAD2L1 
(P<0.001), BUB1 (P<0.001), CDK1 (P<0.001), CENPF 
(P<0.001), PLK1 (P<0.001), UBE2C (P<0.001), HMGA1 
(P<0.001), SLC2A1 (P<0.001), SLCO1B3 (P<0.001), 

ANGPTL4 (P<0.001), LDHA (P<0.001), CDCP1 (P<0.001), 
ITGB4 (P<0.001), KRT14 (P<0.001), and SERPINB5 (P<0.001) 
were overexpressed in the LUAD tissues (Figure 1C). The 
correlation among the expression of the 23 ARGs was also 
examined (Figure 1D).

Consensus clustering of LUAD based on the ARGs

We performed an unsupervised consensus clustering 
analysis to explore the possible subtype clustering of LUAD 
based on the 23 ARGs. As Figure 2A-2C shows, when 
k=2, the data set could be well clustered into two groups. 
The PCA and t-SNE analyses revealed a clear boundary 
between cluster A and cluster B (Figure 2D,2E). The K-M 
curve showed that cluster B had better OS than cluster A 
(Figure 2F). The clinicopathological characteristics analysis 
revealed significant differences in N classification (P<0.01), 

Figure 1 Identification of differentially expressed and prognosis-related ARGs. (A) Identification of differentially expressed ARGs in 
LUAD and normal lung tissues. Red, highly expressed ARGs in LUAD; green, highly expressed ARGs in normal lung tissues; black, no 
differentially expressed ARGs. (B) Prognosis-related ARGs identified by the univariate Cox analysis. (C) Expression of 23 prognosis-related 
ARGs in normal lung and LUAD tissues. (D) The expression correlations among the 23 prognosis-related ARGs. ***, P<0.001. FDR, false 
discovery rate; FC, fold change; N, normal; T, tumor; ARGs, anoikis-related genes; LUAD, lung adenocarcinoma.
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T classification (P<0.01), stage (P<0.001), gender (P<0.01), 
age (P<0.01), and survival status (P<0.01) between cluster 
A and cluster B (Figure 2G). Further the boxplot analysis 
showed that the expression of the 23 ARGs differed 
significantly between clusters A and B, which also indicated 
the ARG clusters performed well (Figure 2H).

Functional enrichment and immune cell infiltration 
analyses of the clusters

To explore the differences in biological function between 
cluster A and cluster B, we conducted a GSVA. Cluster 
A was significantly more enriched in the p53 signaling 

Figure 2 Consensus clustering of LUAD based on ARGs. (A) Consensus clustering for k=2. (B) Consensus clustering CDF for k=2–9. (C) 
CDF curve of consensus clustering analysis. (D) PCA analysis of the clusters. (E) t-SNE analysis of the clusters. (F) Kaplan-Meier analysis 
of the clusters. (G) Correlation analysis of the clusters and clinicopathological characteristics. (H) Differential expression analysis of the 
23 ARGs between cluster A and B. **, P<0.01; ***, P<0.001. CDF, cumulative distribution function; PC, principal component; t-SNE, 
t-distributed stochastic neighborhood embedding; ns, not significant; LUAD, lung adenocarcinoma; ARGs, anoikis-related genes; PCA, 
principal component analysis.
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pathway, cell cycle, one carbon pool by folate, glyoxylate 
and dicarboxylate metabolism, and other pathways. While 
cluster B was significantly more enriched in arachidonic 
acid metabolism, alpha linolenic acid metabolism, primary 
bile acid biosynthesis, and the taurine and hypotaurine 
metabolism pathways (Figure 3A). The GSEA showed 

that the cell cycle, DNA replication, and oocyte meiosis 
pathways were more active in cluster A, while the asthma 
and systemic lupus erythematosus pathways were more 
active in cluster B (Figure 3B,3C). In view of the significant 
differences in the metabolism-related pathways between the 
clusters, and the correlation between metabolism and the 

Figure 3 Functional enrichment and immune cell infiltration analyses of the clusters. (A) Differential GSVA between the clusters. (B,C) 
GSEA of the clusters. (D) CIBERSORT was used to analyze the abundance of 28 tumor-infiltrating immune cells in the two clusters. (E) 
A ssGSEA was conducted to analyze the abundance of 23 tumor-infiltrating immune cells in the two clusters. (F) The ESTIMATE analysis 
showed the TME scores of the clusters. *, P<0.05; **, P<0.01; ***, P<0.001. TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia 
of Genes and Genomes; ns, not significant; MDSC, myeloid-derived suppressor cells; GSVA, gene set variation analysis; ssGSEA, single-
sample GSVA; TME, tumor microenvironment. 
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tumor immune microenvironment (30), we further analyzed 
the difference in immune cell infiltration between cluster 
A and cluster B. The CIBERSORT analysis revealed that 
activated B cells, activated dendritic cells, central memory 
CD4 T cells, effector memory CD8 T cells, eosinophils, 
immature B cells, immature dendritic cells, macrophages, 
mast cells, myeloid-derived suppressor cells, memory B 
cells, monocytes, natural killer cells, T follicular helper 
cells, and type 17 T helper cells were more infiltrated 
in cluster B. While activated CD4 T cells, natural killer 
T cells, and type 2 T helper cells were more infiltrated 
in cluster B (Figure 3D). The results of the ssGSEA also 
showed that the activated B cells, activated dendritic cells, 
eosinophils, immature B cells, immature dendritic cells, 
macrophages, mast cells, natural killer cells, T follicular 
helper cells, and type 17 T helper cells were more abundant 
in cluster B than cluster A. While the activated CD4 T cells, 
CD56 dim natural killer cells, natural killer T cells, and 
type 2 T helper cells were more abundant in cluster A than 

cluster B (Figure 3E). The tumor microenvironment (TME) 
analysis revealed that the StromalScore, ImmuneScore, and 
ESTIMATEScore were all higher in cluster B than cluster 
A (Figure 3F).

Construction of the anoikis-related prognostic model

To further examine the effect of anoikis on the LUAD 
prognosis, we performed a LASSO Cox regression analysis 
of the 23 prognosis-related ARGs from TCGA. We 
ultimately constructed a risk model comprising ten ARGs 
(i.e., ANGPTL4, CDCP1, ITGB4, KL, SLC2A1, CDC25C, 
SLCO1B3, LDHA, CDX2, and KIF18A) (Figure 4A,4B). 
The median value of the risk score was used to divide the 
patients into low- and high-risk groups. Compared to the 
high-risk group, the low-risk group had a better OS rate 
and a better survival status (P<0.001) (Figure 4C,4D). The 
expression profiles of the risk genes are shown in Figure 4E. 
The ROC analysis clarified the values of the areas under the 

Figure 4 Construction of the anoikis-related prognostic model. (A) Ten-fold cross-validation for tuning parameter selection in the LASSO 
model. (B) LASSO coefficient profiles of the ten ARGs. (C) Kaplan-Meier analysis of the risk groups. (D) Risk score and survival status 
distributions of the risk groups. (E) Expression of ten modeling ARGs in the low- and high-risk groups. (F) 1-, 3-, and 5-year ROC curve 
analyses. AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; ARGs, anoikis-related genes; ROC, receiver 
operating characteristic. 
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curve (AUCs) of the model at 1, 3, and 5 years were 0.716, 
0.715, and 0.624, respectively (Figure 4F).

Evaluation and validation of the anoikis-related prognostic 
model

The multivariate ROC curve showed that the 1-year AUC 
value of the model was higher than that of age (0.550), 
gender (0.593), stage (0.711), T classification (0.648), and 
N classification (0.625) (Figure 5A). The univariate Cox and 

multivariate Cox analyses revealed that the risk score could 
be considered an independent survival prognostic indicator 
of LUAD (hazard ratio: 1.065, P<0.001) (Figure 5B,5C). To 
better predict patient survival, we constructed a nomogram 
incorporating the risk score and other clinicopathological 
characteristics, and visualized the performance of the 
nomogram with calibration plots at 1, 3, and 5 years  
(Figure 5D,5E). We used the GSE31210 data set to verify 
the accuracy of the model. Similarly, we calculated the risk 
score of each sample separately using the above-mentioned 

Figure 5 Evaluation and validation of the anoikis-related prognostic model. (A) ROC analysis of multiple indicators. (B) Univariate Cox 
analysis of the risk score. (C) Multivariate Cox analysis of the risk score. (D) Nomogram for predicting survival in LUAD patients. (E) 
Calibration curves for the nomogram. (F) Kaplan-Meier survival analysis of GSE31210. (G) Risk score and survival status distributions 
of GSE31210. (H) Expression of 10 modeling ARGs of GSE31210. (I) Alluvial diagram of the patient distribution in the clusters and 
risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. AUC, area under the curve; CI, confidence interval; OS, overall survival; ROC, receiver 
operating characteristic; LUAD, lung adenocarcinoma; ARGs, anoikis-related genes.
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model formula and divided the samples into low- and high-
risk groups. Consistent with TCGA analysis, the patients 
in the high-risk group had higher risk scores, worse OS, 
and a higher mortality rate than those in the low-risk group 
(Figure 5F,5G). The expression of the modeling genes in the 
risk groups were similar to that in TCGA (Figure 5H). The 
alluvial diagram showed the change in patient distribution 
between the clusters and risk groups (Figure 5I).

Clinicopathological characteristics and functional 
enrichment analyses of the risk groups

The PCA and t-SNE analyses showed that the risk groups 
were well distinguished in the model (Figure 6A,6B). The 
Kruskal test indicated the risk scores of T2 (P<0.001), 
T3 (P<0.001), and T4 (P=0.04) were higher than that of 
T1 (Figure 6C), and the risk scores of N1 (P=0.004) and 
N2 (P<0.001) were significantly higher than that of N0 
(Figure 6D). Similarly, patients in stage II (P=0.002), stage 
III (P<0.001), and stage IV (P=0.009) all had higher risk 
scores than those in stage I (Figure 6E). The Wilcox test 
revealed that the dead patients had higher risk scores than 
the alive patients (P<0.001) (Figure 6F). In addition, the 
Chi-squared test revealed that the risk score was correlated 
with N classification (P<0.01), T classification (P<0.01), 
stage (P<0.001), gender (P<0.05), age (P<0.05), and survival 
status (P<0.001) (Figure 6G). Subsequently, to understand 
the differences in the biological function enrichment of 
the risk groups, we performed a differential GSVA. The 
results showed that the low-risk group was more enriched 
in taurine and hypotaurine metabolism, alpha linolenic acid 
metabolism, and arachidonic acid metabolism, while the 
high-risk group was more enriched in pentose phosphate 
pathway, glycolysis gluconeogenesis, cell cycle, oocyte 
meiosis, and the p53 signaling pathway (Figure 6H).

Immune cell infiltration and TME analyses of the risk 
groups

The CIBERSORT analysis showed that the activated B 
cells, eosinophils, immature B cells, immature dendritic 
cells, mast cells, T follicular helper cells, and type 17 T 
helper cells were more infiltrated in the low-risk group, 
and activated CD4 T cells, gamma delta T cells, memory 
B cells, natural killer T cells, regulatory T cells, and type 2 
T helper cells were more infiltrated in the high-risk group 
(Figure 7A). The ssGSEA analysis showed that the activated 
B cells, eosinophils, immature B cells, immature dendritic 

cells, mast cells, monocytes, and type 17 T helper cells were 
more infiltrated in the low-risk group, and activated CD4 
T cells, CD56 bright natural killer cells, gamma delta T 
cells, natural killer T cells, regulatory T cells, and type 2 
T helper cells were more infiltrated in the high-risk group 
(Figure 7B). In addition, the immune checkpoint gene PD-
L1 was overexpressed in the high-risk group (Figure 7C). 
The StromalScore, ImmuneScore, and ESTIMATEScore 
were all higher in the low-risk group than the high-risk 
group (P<0.05) (Figure 7D).

Mutation, immunotherapy, and chemotherapy sensitivity 
analyses

The rate of somatic mutation is closely related to the  
TME (31). The “maftools” package was used to analyze the 
difference in the somatic mutation rates between the two 
risk groups. The five genes with the highest mutation rates 
were TP53, TTN, MUC16, CSMD3, and RYR2, and their 
mutation rates were significantly higher in the high-risk 
group than the low-risk group (Figure 8A,8B). In addition, 
we discovered that the TMB score was higher in the high-
risk group than the low-risk group (P<0.001) (Figure 8C), and 
the TMB score was positively associated with OS both in 
the entire cohort and the risk groups (P=0.01 and P<0.001, 
respectively) (Figure 8D,8E). The high-risk group had a 
lower TIDE score than the low-risk group, which indicated 
that ICB therapy was more effective in the high-risk group 
than the low-risk group (Figure 8F). The chemotherapy 
drug sensitivity analysis showed that the high-risk group 
had lower sensitivity to bleomycin (P<0.001), camptothecin 
(P<0.001), cisplatin (P<0.001), cytarabine (P<0.001), 
gemcitabine (P<0.001), methotrexate (P<0.001), paclitaxel 
(P<0.001), and vinorelbine (P<0.001) than the low-risk 
group (Figure 8G-8N).

Verification of the expression and prognostic significance of 
ANGPTL4 in LUAD

ANGPTL4 was a key gene in our prognostic model, and 
previous studies have shown it plays important roles in 
regulating apoptosis, amino acid and fatty acid metabolism, 
and drug sensitivity in LUAD cells (32,33). And the 
significance of ANGPTL4 expression in LUAD remains 
unclear. Therefore, we further analyzed the protein 
expression of ANGPTL4 in LUAD and its correlation with 
patient prognosis. The immunohistochemical staining of 
the tissue microarrays showed that ANGPTL4 was highly 
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expressed in the LUAD tissues compared with the normal 
lung tissues (Figure 9A,9B). The Chi-squared test revealed 
ANGPTL4 expression was correlated with stage (P=0.004), 
differentiation degree (P=0.004), T classification (P=0.01), 

and N classification (P=0.01), but was not correlated with 
age (P=0.55) and gender (P=0.98) (Table 1). The K-M 
analysis showed that ANGPTL4 expression was correlated 
with OS in LUAD patients (P=0.04) (Figure 9C).

Figure 6 Clinicopathological characteristics and functional enrichment analyses of the risk groups. (A) PCA analysis of the risk groups. (B) 
t-SNE analysis of the risk groups. (C) The Kruskal test was used to analyze the relationship between the risk score and T classification. (D) 
The Kruskal test was used to analyze the relationship between the risk score and N classification. (E) The Kruskal test was used to analyze 
the relationship between the risk score and stage. (F) The Wilcox test was used to analyze the relationship between the risk score and status. 
(G) Correlation analysis of the clinicopathological characteristics between the low- and high-risk groups. (H) Differential GSVA enrichment 
analysis of the risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. PC, principal component; t-SNE, t-distributed stochastic neighborhood 
embedding; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCA, principal component analysis; 
GSVA, gene set variation analysis.
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Figure 7 Immune cell infiltration and TME analyses of the risk groups. (A) CIBERSORT was used to analyze the abundance of 28 tumor-
infiltrating immune cells. (B) A ssGSEA was conducted to analyze the abundance of the 23 tumor-infiltrating immune cells. (C) Expression 
of PD-L1 in the risk groups. (D) ESTIMATE was used to analyze the differences in the TME scores between the risk groups. *, P<0.05; **, 
P<0.01; ***, P<0.001. ns, not significant; MDSC, myeloid-derived suppressor cells; TME, tumor microenvironment; ssGSEA, single-sample 
gene set enrichment analysis; PD-L1, programmed death-ligand 1.
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Discussion

In recent years, tumor marker research in the field of 
molecular biology has achieved positive results in LUAD 
prognosis and therapy (21,34). Despite this, the 5-year 
OS rate of LUAD patients remains <20% (6). Therefore, 
novel LUAD molecular subtypes, novel therapies, and early 
prognostic indicators urgently need to be explored.

Anoikis is involved in the occurrence and progression 
of many diseases, such as diabetes, infectious diseases, and 
tumors (11). Hyperglycemia promotes anoikis and impairs 

angiogenesis by inducing the dicarbonyl metabolism of 
vascular endothelial cells (35). Aspergillus toxin induces lung 
epithelial cell anoikis and promotes aspergillus invasion 
by inhibiting the binding of integrins with extracellular 
matrix components (36). Tumor cells have strong abilities 
to escape anoikis, which protects them in the lymphatic and 
circulatory systems and allows them to metastasize and grow 
uncontrollably elsewhere (37). A previous study has found 
the composition of the extracellular matrix, cytoskeletal 
regulatory factors, cell adhesion associated membrane 
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Figure 8 Mutation, immunotherapy and chemotherapy sensitivity analyses. (A) Somatic mutation frequency in the low-risk group. (B) 
Somatic mutation frequency in the high-risk group. (C) TMB score analysis in the risk groups. (D) Kaplan-Meier analysis of the TMB score. 
(E) Kaplan-Meier analysis of the TMB score in the low- and high-risk groups. (F) TIDE score analysis of the risk groups. (G-N) Sensitivity 
analysis of chemotherapy drugs. TMB, tumor mutation burden; H, high; L, low; TIDE, Tumor Immune Dysfunction and Exclusion; IC50, 
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Table 1 Relationship between ANGPTL4 expression and clinicopathological characteristics of LUAD

Clinicopathological characteristics All cases
ANGPTL4 expression

P
Low High

Age 0.55

≤60 years 37 22 15

>60 years 83 43 40

Gender 0.98

Male 59 32 27

Female 61 33 28

Stage 0.004

I + II 97 59 38

III + IV 23 6 17

Differentiation degree 0.004

I 33 25 8

II + III 87 40 47

T classification 0.01

1 88 54 34

2+3+4 32 11 21

N classification 0.01

N0 78 49 29

N1+2+3 42 16 26

LUAD, lung adenocarcinoma.
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proteins, and epithelial-mesenchymal transition (EMT) 
are involved in anoikis resistance (11). For example, highly 
expressed laminin 5 induces weak resistance and promotes 
the proliferation and migration of LUAD by activating 
integrin focal adhesion kinase signal transduction (38).  
Phosphorylation of the membrane attached molecule Src 
kinase attenuates anoikis and promotes the growth of 
LUAD cells in the lymph nodes (39). High levels of βIII-
tubulin promote tumorigenesis and anoikis resistance in 
LUAD via the phosphatase and tensin homolog/protein 
kinase signaling axis (40). In addition, the dysregulation 
of EMT-related proteins (E-cadherin and N-cadherin) 
promotes LUAD progression by inhibiting anoikis (11). 
In view of their important roles and extensive regulatory 
mechanisms, the identification of anoikis-related LUAD 
subtypes and prognostic evaluation is highly valuable.

In this study, we first identified 23 prognosis-related ARGs 
in TCGA data set, and then divided the LUAD samples 
into cluster A and cluster B according to the expression of 
the 23 ARGs. The PCA, t-NSE, and clinicopathological 
characteristic analyses showed that cluster A and cluster B 
differed significantly. The prognostic analysis showed that 
the OS time of cluster B was longer than that of cluster A. 
The GSVA showed that cluster A was significantly more 
enriched in the cell cycle and DNA replication signaling 
pathways, and cluster B was significantly more enriched 
in the fatty acid-related pathways. Cell cycle pathway 
activation enables the cells to deviate from the normal 
cycle, and enables continuous division and uncontrolled 
proliferation (41). DNA replication is a major driver of 
sustained proliferation for many cancers, and targeting 
DNA replication is an effective therapeutic target (42). 
Linolenic acid inhibits the hypoxia-induced proliferation 
and invasion of non-small cell LC cells by inhibiting 
hypoxia-inducible factor 1 alpha (43). Taurine significantly 
inhibits cell proliferation, metastasis, and colony formation, 
and induces apoptosis in colorectal cancer cells (44). Thus, 
we speculated that the better OS of cluster B might be 
related to its different enrichment pathways.

In addition, the GSEA showed that the asthma and 
systemic lupus erythematosus pathways were more active 
in cluster B than cluster B, which suggested that cluster B 
had stronger immune activity. Thus, we further analyzed 
the differences in the tumor-infiltrating immune cells and 
TME between cluster A and cluster B. The results showed 
that activated B cells, activated dendritic cells, eosinophils, 
immature B cells, immature dendritic cells, macrophages, 
mast cells, natural killer cells, T follicular helper cells, and 

type 17 T helper cells were more infiltrated in cluster B 
than cluster A. While activated CD4 T cells, CD56 dim 
natural killer cells, natural killer T cells, and type 2 T 
helper cells were more infiltrated in cluster A than cluster 
B. Previous studies have shown that activated B cells play an 
anti-tumor role through the direct killing of tumor cells or 
the production of tumor-specific antibodies. The infiltrating 
abundance of B cells is closely related to the good prognosis 
of patients (45). Dendritic cells present tumor cell-
associated antigens to naive T cells, which helps to produce 
specific T cell-mediated anti-tumor effects (46). Classically 
activated M1 macrophages directly mediate cytotoxicity 
and antibody-dependent cell-mediated cytotoxicity to kill 
tumor cells (47). Tumor-infiltrating follicular helper T cells 
located in the tertiary lymphoid structure around the tumor 
assist T cells to achieve anti-tumor immunity by secreting 
the cell detoxifying factor (48). Natural killer cells are the 
main effector cells in cancer innate immunity, which not 
only directly damage tumor cells, but also produce a large 
number of cytokines, such as interferon-γ, and participate 
in the immune effects of other related pathways (49). The 
difference in immune cell infiltration also explains the 
difference in prognosis between cluster A and cluster B to 
some extent.

To better predict of LUAD survival, we constructed a 
LASSO Cox prognostic model with the ARGs. The ROC 
curve showed the model had high prediction efficiency. 
The nomogram and external validation results showed that 
the model had high reliability and stability. The risk score 
of the model could be used as an independent prognostic 
factor of LUAD. The immune cell infiltration and TME 
analyses revealed greater immune cell infiltration and a 
higher TME score in the low-risk group than the high-
risk group. The higher expression of PD-L1 suggested 
greater suppression of the immune response in the high-
risk group, and was consistent with the lower infiltration of 
the immune cells. In addition, PD-L1 is also an important 
immunotherapeutic target, and its inhibitors act as tumor 
suppressors by modulating immune cell and tumor cell 
interactions (50). We also found that the high-risk group 
had a higher somatic mutation rate, TMB score, and lower 
TIDE score than the low-risk group. A previous study has 
shown patients with a high TMB are more sensitive to ICB 
therapy (51). Conversely, the TIDE score was negatively 
correlated with the patients’ response to ICB therapy (27). 
Thus, we hypothesized that the high-risk group patients 
would benefit more from immunotherapy than the low-
risk group patients. The drug sensitivity analysis showed 
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that the risk score was negatively correlated with common 
chemotherapy drugs sensitivity. Our research provides 
important references for the clinical selection of treatments. 
Finally, we showed that the expression of ANGPTL4 
was significantly correlated with the clinicopathological 
characteristics of the LUAD patients. LUAD patients with 
higher ANGPTL4 expression had a worse prognosis than 
those with lower ANGPTL4 expression.

Conclusions

In conclusion, our research identified two novel molecular 
subtypes of LUAD and elucidated the differences in the 
clinicopathological characteristics, prognosis, functional 
enrichment, and immune infiltration of the two subtypes. 
We also constructed a new LUAD prognostic model 
and evaluated the prognostic efficacy of that model. The 
differences in prognosis, mutation, immunotherapy, and 
chemotherapy of the risk groups were also investigated. 
We examined the relationship between ANGPTL4 and 
the clinicopathological characteristics and prognosis of 
the LUAD patients. Our research provides important 
references for the accurate diagnosis, prognosis, and 
treatment of LUAD patients. However, it did not verify 
the expression of other genes or the mechanism by which 
ANGPTL4 promotes the progression of LUAD, which we 
will address in our future work.
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