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Abstract
Inhaled glucocorticoids are the first-line treatment for patients with persistent
asthma.  However, approximately thirty percent of patients exhibit
glucocorticoid insensitivity, which may involve excess metabolic clearance of
the glucocorticoids by CYP3A enzymes in the lung.  CYP3A4, 3A5, and 3A7
enzymes metabolize glucocorticoids, which in turn induce CYP3A genes. 
However, the mechanism of CYP3A5 mRNA regulation by glucocorticoids in
lung cells has not been determined.  In hepatocytes, glucocorticoids bind to the
glucocorticoid receptor (GR), which induces the expression of the constitutive
androstane receptor or pregnane X receptor; both of which bind to the retinoid
X receptor alpha, leading to the induction of CYP3A4, 3A5, and 3A7.  There is
also evidence to suggest a direct induction of CYP3A5 by GR activation in liver
cells. In this study, these pathways were evaluated as the mechanism for
CYP3A5 mRNA induction by glucocorticoids in freshly isolated primary tracheal
epithelial, adenocarcinomic human alveolar basal epithelial (A549),
immortalized bronchial epithelial (BEAS-2B), primary normal human
bronchial/tracheal epithelial (NHBE), primary small airway epithelial (SAEC),
and primary lobar epithelial lung cells. In A549 cells, beclomethasone
17-monopropionate ([M1]) induced CYP3A5 mRNA through the glucocorticoid
receptor. CYP3A5 mRNA induction by five different glucocorticoids was
attenuated by inhibiting the glucocorticoid receptor using ketoconazole, and for
beclomethasone dipropionate, using siRNA-mediated knock-down of the
glucocorticoid receptor. The constitutive androstane receptor was not
expressed in lung cells. SAEC cells, a primary lung cell line, expressed
CYP3A5, but CYP3A5 mRNA was not induced by glucocorticoid treatment
despite evaluating a multitude of cell culture conditions. None of the other lung
cells expressed CYP3A4, 3A5 or 3A7 mRNA. These studies demonstrate that
CYP3A5 mRNA is induced by glucocorticoids in A549 cells via the
glucocorticoid receptor, but that additional undefined regulatory processes
exist in primary lung cells.
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Introduction
Inhaled glucocorticoids are the first-line treatment for asthma1–3. 
Glucocorticoids bind to the glucocorticoid receptor to reduce the 
expression of genes that produce a variety of pro-inflammatory 
mediators and mucus in the lung4–6. The most commonly pre-
scribed glucocorticoids are beclomethasone dipropionate (BDP), 
triamcinolone acetonide (TCL), budesonide (BUD), fluticasone 
propionate (FLT), and flunisolide (FLN)1. BDP is a pro-drug 
and requires removal of the C-21 propionate group to become 
pharmacologically active; the active drug is beclomethasone  
17-monopropionate, referred to as [M1] (Figure 1)7. Pharmaco-
logical inactivation and clearance of glucocorticoids, such as BDP 
and its active metabolite [M1], is mediated, in part, by cytochrome 
P450 (CYP) enzymes (Figure 1).

In humans, CYP3A4, 3A5, and 3A7 are the primary CYP enzymes 
involved in glucocorticoid metabolism8–11. CYP3A4 is the most 
abundant CYP3A enzyme in the liver and intestines8,12,13, CYP3A5 

is more prevalent in the lung than the liver12,14–16, and CYP3A7 is 
expressed in fetal liver, but diminishes after birth when CYP3A4 
becomes the dominant adult hepatic CYP3A enzyme17,18. Expres-
sion of CYP3A7 in fetal and adult respiratory tissue has also been 
observed16.

Regulation of CYP3A enzymes in response to glucocorticoid 
treatment has been extensively characterized in the liver, but 
less is known about this phenomenon in the lung. In hepato-
cytes, CYP3A enzyme induction is mediated by the pregnane X  
receptor (PXR)19,20 (Figure 2A). However, PXR is not expressed 
in the lung21. Glucocorticoids can also influence CYP3A induction 
via the glucocorticoid receptor (GR) and the constitutive andros-
tane receptor (CAR) in the liver22,23. Briefly, glucocorticoids bind 
GR in the cytosol, which forms a homodimer and translocates into 
the nucleus, leading to increased transcription of CAR. CAR forms 
a heterodimer with the retinoid X receptor alpha (RXRα), which 
binds to the RXR-response element and induces the expression of 
CYP3A enzymes (Figure 2A)22. Previous work by Hukannen et al. 
demonstrated that CAR was not expressed in A549 (adenocarci-
nomic human alveolar basal epithelial) cells and suggested that 
glucocorticoid binding to GR may directly regulate CYP3A gene 
expression in A549 cells (Figure 2B), based on inhibition using 
RU-48615,24. However, these pathways have not been evaluated in 
primary lung cell cultures or lung tissue.

The purpose of this study was three fold: to evaluate the changes in 
the expression of CYP3A mRNA in primary lung cells treated with 
glucocorticoids; to determine which pathway was responsible for 
glucocorticoid-induced changes in CYP3A mRNA expression; and 
to determine the role of BDP metabolism in this phenomenon. The 
cell lines used in this study were BEAS-2B (immortalized bron-
chial epithelial cell line), NHBE (normal human bronchial/tracheal 

Figure 1. Metabolic scheme for the production of [M1] (the active form of the drug) by esterase enzymes and [M5] by CYP3A enzymes.
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      Changes from Version 1

Clarification has been made to the cell culture methods section to 
explicitly state that all primary cell lines were cultured in medium 
containing hydrocortisone. In addition, clarification has been 
added in the results discussion to further emphasize that the exact 
mechanism by which esterases are inhibited by 1-ABT is unknown.  
The results observed with A549 cells, which were absent in the 
primary cell cultures, may not have clinical/in vivo significance.  
This conclusion has been removed from the discussion.  The 
authors acknowledge this limitation and now suggest studies 
that could be performed to more thoroughly assess the potential 
clinical implications of the phenomena we have characterized.
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were grown in bronchial epithelial cell growth medium (BEGM 
Bullet kit) (LONZA). BEAS-2B cells (American Type Culture 
Collection) were cultured in LHC-9 medium (Life Technologies). 
Lobar cells (donor number 01334) were cultured in BronchiaLife 
Basal Medium supplemented with the BronchiaLife B/T supple-
ment kit (Lifeline Cell Technology, Walkersville, MD). All cells ex-
cept A549 cells were plated in 12-well plates pre-coated with LHC 
basal medium (Life Technologies) and cultured in the presence of 
hydrocortisone. Tracheal epithelial cells were recovered from tra-
cheal washes from mechanically ventilated pediatric patients in the 
neonatal intensive care unit and pediatric intensive care unit at Pri-
mary Children’s Medical Center at the University of Utah, with IRB 
approval (00026839). Briefly, cells were separated from sputum by 
centrifugation at 900 x g for 30 min in 14 mL of DMEM/F12 media. 
Cells were plated in a 12-well plate pre-coated with 2% gelatin (Life 
Technologies) and cultured in DMEM/F12 media + 10% fetal bovine 
serum (FBS) (Life Technologies). All cells were cultured in an at-
mosphere of 5% CO

2
:95% air at 37ºC.

Cell treatments
Cell treatments were prepared in treatment media with a final  
concentration of DMSO less than 1%. Cells were treated at 
~70% confluence. A549 cells were cultured in OPTIMEM (Life  
Technologies) and SAEC cells were cultured in growth media either 
with or without hydrocortisone and with or without heat inactivated 
and/or charcoal-stripped FBS. All other cell lines were treated in their  

Figure 2. Possible mechanisms for the induction of CYP3A genes in lung cells. (A) Active glucocorticoid will bind to the glucocorticoid 
receptor (GR), which forms a homodimer and translocates to the nucleus. The homodimer binds to its response element (GRE) and induces 
the expression of either the pregnane X receptor (PXR) or the constitutive androstane receptor (CAR). CAR or PXR (though this receptor is 
not expressed in the lungs) forms a heterodimer with the retinoic X receptor alpha (RXRα) which in turn induces the expression of the CYP3A 
enzymes via binding of the respective response-elements (CARE and/or PXRE). (B) Active glucocorticoid will bind to the glucocorticoid 
receptor (GR), which forms a homodimer and translocates into the nucleus. The homodimer binds to its response element (GRE) and induces 
the expression of CYP3A enzymes.

epithelial cells), lobar epithelial cells (secondary bronchus epithe-
lial cells), primary cells recovered from tracheal washes of pediatric 
patients on ventilation, SAEC (small airway epithelial cells), and 
A549 (human lung adenocarcinoma) cells. It was hypothesized that 
CYP3A5 mRNA induction in primary cells by BDP11 and other gluco-
corticoids would occur via a mechanism involving GR/CAR/RXRα, 
as previously demonstrated using hepatocytes.

Methods
Chemicals, reagents, and treatments
Beclomethasone dipropionate (BDP), triamcinolone acetonide 
(TCL), fluticasone propionate (FLT), flunisolide (FLN), budesonide 
(BUD), prednisolone, ammonium acetate, eserine, and methanol were 
purchased from Sigma-Aldrich Chemical Company (St. Louis, MO). 
Paraoxon was purchased from Chem Service (West Chester, PA).

Cell culture
A549 cells (American Type Culture Collection, Manassas, VA) 
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 
fortified with 5% fetal bovine serum (Life Technologies, Grand Is-
land, NY). SAEC cells (LONZA, Walkersville, MD; donor num-
bers 11662, 14453, 14457) were cultured in small airway epithelial 
growth medium, supplemented with the SAGM bullet kit (LON-
ZA). Cells were cultured with and without hydrocortisone by add-
ing or not adding the hydrocortisone component from the SAGM 
bullet kit. NHBE cells (LONZA; donor numbers 15268, 5S03795) 
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respective growth medium, and heat inactivated to eliminate ester-
ase activity from the FBS, which would metabolize BDP before 
it could diffuse into the cells. Cytotoxicity assays were performed 
using the Dojindo Cell Counting Kit-8 (Dojindo Laboratories, 
Rockville, MD) to determine glucocorticoid, esterase inhibitor, and 
ketoconazole concentrations exhibiting <20% cytotoxicity in A549 
cells. All other cell lines were treated with the same concentrations 
as determined with A549 cells. Glucocorticoid treatments were as 
follows: BDP (10 μM), TCL (1 μM), BUD (10 μM), FLT (1 μM), 
and FLN (100 nM). Pre-treatments in various experiments included 
ketoconazole (Sigma-Aldrich Chemical Company) (50 μM, 10 μM, 
and 1 μM, to antagonize GR), esterase inhibitors (1:1 mixture of 
eserine and paraoxon, each at 175 μM, to inhibit [M1] formation), 
and 1-aminobenzotriazole (Sigma-Aldrich Chemical Company)  
(1-ABT; 200 μM, to inhibit P450-mediated metabolism) for 2 h 
prior to a 22 h glucocorticoid co-treatment. Controls were treated 
with an equivalent concentration of DMSO. All A549 cell treat-
ments were carried out in 6-well plates for 24 h (n=6). All other 
cell lines were cultured in pre-coated 12-well plates and treated for 
24 h (n=3).

Analysis of BDP metabolites
After treatment, BDP and its metabolites were extracted from the 
collected media by adding 2x volume (6 mL for A549, 4 mL for all 
other cell lines) methyl tert-butyl ether containing 1 nM predniso-
lone (internal standard for quantification) and shaking for 25 min. 
Samples were clarified by centrifugation, the organic fraction was 
collected, dried under air, reconstituted in 100 μL 1:1 H

2
O:MeOH, 

clarified again by centrifugation, and transferred to autosampler 
vials for analysis by liquid chromatography-mass spectrometry  
(LC/MS/MS). LC/MS/MS was conducted on a Thermo LCQ Ad-
vantage Max ion trap instrument equipped with a Finnigan Survey-
or LC pump, Surveyor Autosampler and universal Ion Max source 
operated with Thermo Xcalibur software version 2.0 (Thermo  
Fisher Scientific, Waltham, MA) as previously described11.

Quantitative reverse transcription-PCR
Total RNA was isolated from cells using TRIzol reagent (Life 
Technologies). cDNA was synthesized using iScript Reverse Tran-
scription Supermix for qPCR (BIO RAD, Hercules, CA). qPCR 
was performed using either LightCycler 480 Probes Master mix  
(CYP3A5*1) or LightCycler 480 SYBR Green I Master Mix (all 
other genes) (Roche, Indianapolis, IN) with a LightCycler 480 
System. The PCR program for the probe mix consisted of a 5 min 
incubation at 95ºC, followed by 45 cycles of 95ºC for 10s, 55ºC 
for 30s, then 72ºC for 1s. The PCR program for SYBR Green I 
mix consisted of a 5 min incubation at 95ºC, followed by 40 cy-
cles of 95ºC for 10s, 63ºC for 5s for CYP3A4, CYP3A7 and β2-
microglobulin. For GR and CAR, annealing was performed at 65ºC 
for 5s and extension at 72ºC for 10s. mRNA copy number was de-
termined from standard curves for each gene and was normalized 
using β2-microglobulin. Primer sequences for the various genes are 
listed in Table 125.

siRNA-mediated protein knockdown
Pre-annealed, short interfering “Smart Pool” siRNAs specific to hu-
man GR were purchased from Dharmacon (Waltham, MA). siRNA 

directed against GFP (negative control)26 was synthesized at the 
University of Utah oligonucleotide synthesis core and annealed by 
combining 40 μM of each strand and incubating in annealing buffer 
(100 mM potassium acetate, 30 mM HEPES KOH, 2 mM magne-
sium acetate adjusted to pH 7.4) for 1 min at 90ºC followed by 1 h 
at 37ºC, in a final volume of 0.5 mL. A549 cells were plated into 
6-well plates containing 20 nM siRNA per well, previously com-
plexed with Lipofectamine 2000 (Life Technologies) using a ratio 
of 3:2 lipid to siRNA in 100 μL of OPTIMEM (Life Technologies). 
The cells were grown for 48, 72, and 96 h to determine the time at 
which maximum decreases in GR mRNA occurred (72 h). In sub-
sequent experiments, cells were treated with DMSO, 10 μM BDP, 
or 10 μM BDP + 175 μM esterase inhibitors (1:1 eserine:paraoxon) 
for 24 h to determine the effects of attenuated GR expression on the 
induction of CYP3A5 in A549 cells.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 4.02 
software for Windows (San Diego, CA). One-way ANOVA and  
Dunnett’s post-hoc test were used with p<0.05. All data are repre-
sented as a mean with error bars representing standard deviation.

Results
Inhibition of [M1] formation prevented CYP3A5 mRNA 
induction by BDP in A549 cells
Media from A549 cells treated with BDP (10 μM) for 24 h was 
extracted and analyzed for metabolites of BDP produced by  
CYP3A enzymes. The only CYP3A-mediated metabolite detected 
was [M5] (Figure 1 and Figure 3A)11. For the remainder of the stud-
ies, [M1], the active metabolite, was used as a marker for ester-
ase activity and [M5] was used as a marker for CYP3A5 activity. 
Only CYP3A5*1 mRNA was detected in A549 cells. CYP3A4 and 
CYP3A7 mRNA were not detected in A549 cells, as previously 
documented11,16. BDP treatment significantly induced the expres-
sion of CYP3A5 mRNA (~2-fold) compared to the DMSO control 

Table 1. Primer sequences for qPCR assays.

CYP3A5*1
F-5´ CCTATCGTCAGGGTCTCTGGAA 3´ 
R-5´ TGATGGCCAGCACAGGGA 3´ 
Probe [6FAM]ATGTGGGGAACGTATGAA[BHQ1]

CYP3A5-all F-5´ CGTCAGGGTCTCTGGAAATTTG 3´ 
R-5´ CACGTCGGGATCTGTGATGG 3´

CYP3A4 F-5´ GAAAGTCGCCTCGAAGATAC 3´ 
R-5´ ACGAGCTCCAGATCGGACAG 3´

CYP3A7 F-5´ TTCCGTAAGGGCTATTGGAC 3´ 
R-5´ TCTGTGATAGCCAGCATAGG 3´

Glucocorticoid 
receptor

F-5´ CCAACGGTGGCAATGTGAAA 3´ 
R-5´ CCGCCAGAGGAGAAAGCAAA 3´

Constitutive 
androstane 
receptor

F-5´ CCGTGTGGGGTTCCAGGTAG 3´ 
R-5´ CAGCCAGCAGGCCTACGAAC 3´

β2-
microglobulin

F-5´ GATGAGTATGCCTGCCGTGTG 3´ 
R-5´ CAATCCAAATGCGGCATCT 3´
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(Figure 3B). Inhibiting the production of [M1] using esterase in-
hibitors also blocked the induction of CYP3A5 mRNA (Figure 2A 
and Figure 2B); esterase inhibitor (EI) treatment alone had no effect 
on CYP3A5 expression. 1-ABT, a mechanism-based inactivator of 
P450 enzymes, also inhibited esterase activity (i.e. [M1] formation) 
(Figure 3A), and as a result, prevented the induction of CYP3A5 
mRNA (Figure 3B). The mechanism by which 1-ABT inhibits  
esterases is not known.

[M1] was sufficient to induce CYP3A5 mRNA in A549 cells
Cells were treated with [M1] in either the absence or presence of 
1-ABT and esterase inhibitors. [M1] treatment was sufficient to in-
duce CYP3A5 mRNA (~2-fold), without the requirement of ester-
ases to produce [M1] (Figure 3B), indicating that CYP3A5 mRNA 
induction in A549 cells was mediated by [M1].

GR, but not CAR, regulated the induction of CYP3A5 
mRNA in A549 cells
GR and CAR mRNA were quantified in A549 cells. A significant 
increase in GR mRNA (~2.5-fold) was observed following 24 h 
treatment with BDP (Table 2), consistent with previous studies15, 
suggesting that GR, not CAR, was responsible for the induction of 
CYP3A5 message in A549 cells.

Inhibition of GR with ketoconazole attenuated CYP3A5 
mRNA induction by glucocorticoids in A549 cells
Ketoconazole is a competitive antagonist of GR25. Ketoconazole 
alone had no significant effect on CYP3A5 mRNA expression as 
compared to DMSO controls. As the concentration of ketocona-
zole was decreased, dose-dependent increases in the expression of  
CYP3A5 mRNA were observed for BDP, TCL, FLT, BUD, and 
FLN (Figure 4A–E): BDP caused a ~2-fold induction, BUD caused 
a ~4-fold induction, TCL caused a ~5.5-fold induction, FLT caused 
a ~3.5-fold induction, and FLN caused a ~5.5-fold induction, rela-
tive to their respective controls. These data confirm the hypothesis 
that the induction of CYP3A5 mRNA in A549 cells was mediated 
by GR. BDP or FLT paired with KTZ 1 μM treatment also showed 
further induction of CYP3A5 mRNA as compared to controls (~3.5 
for BDP and ~6.5 for FLT). However, the basis and significance for 
this enhanced induction are not clear at this time.

Figure 3. [M1] is required to induce CYP3A5 mRNA. (A) Relative 
quantities of [M1] and [M5] measured by LC/MS/MS in A549 cell culture 
media following beclomethasone dipropionate (BDP) treatment alone, 
BDP + esterase inhibitors (EI), 1-aminobenzotriazole (1-ABT) + BDP, 
and 1-ABT + EI + [M1]. (B) CYP3A5 mRNA detected in A549 cells 
following DMSO control, BDP treatment alone, BDP + EI, 1-ABT alone, 
1-ABT + BDP, and 1-ABT + EI + [M1]. Values are expressed as fold 
over DMSO controls. Statistics used for data analysis were one-way 
ANOVA with Dunnett’s post-hoc test. Data are the mean and standard 
deviation from n=6 replicates. * p<0.05, ** p<0.01.

Table 2. Comparison of glucocorticoid receptor (GR), constitutive androstane receptor (CAR), and CYP3A5 mRNA 
expression in lung cell cultures.

Cell type GR 
expression

GR induction by 
GC treatment

CAR 
expression

CAR induction 
by GC treatment

CYP3A5 
mRNA

CYP3A5 induction 
by GC treatment

Beas-2B + N.D. N.D. N.D. N.D. N.D.

NHBE + N.D. N.D. N.D. N.D. N.D.

Patient 
tracheal 
washes

N.D. N.D. N.D. N.D. N.D. N.D.

Lobar + N.D. N.D. N.D. N.D. N.D.

A549 + 2.4 ± 0.35 ** N.D. N.D. + 2.1 ± 0.55 **

SAEC + N.D. N.D. N.D. 1 out of 3 
patients N.D.

Data are represented as fold over DMSO control. Statistics used for data analysis were one-way ANOVA with Dunnett’s post-hoc test.  
** p<0.01, N.D. = not detected, GC = glucocorticoid.
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siRNA-mediated knockdown of GR also attenuated 
CYP3A5 mRNA induction by BDP in A549 cells
Cells were transfected with siRNA and grown for 48, 72, and 
96 h to determine the time of maximum GR mRNA knock down  
(Figure 5A). Maximum suppression occurred as early as 48 h, but 
the 72 h time point was chosen for further experiments to ensure 
efficient GR protein depletion. An approximate 2-fold induction 
of CYP3A5 mRNA was observed in A549 cells following treat-
ment with BDP in control cells transfected with “nonsense” siRNA 
directed against GFP. Consistent with previous results (Figure 3A 
and Figure 3B), CYP3A5 mRNA induction was prevented by es-
terase inhibitors (Figure 5B). Cells transfected with siRNA tar-
geted for GR mRNA showed no change in CYP3A5 mRNA with 
BDP treatment (Figure 5B), further confirming the role of GR in 
directly regulating the induction of CYP3A5 mRNA in A549 cells 
treated with BDP and presumably the other glucocorticoids used 
in Figure 4.

CYP3A5 was not expressed or induced by glucocorticoid 
treatment in tracheal/bronchial epithelial cells
Neither CYP3A5*1 mRNA nor any other variant form of CYP3A5 
mRNA was detected or induced by glucocorticoids in NHBE, BE-
AS-2B, lobar, and freshly isolated tracheal wash samples (Table 2).

SAEC cells expressed CYP3A5, but mRNA for CYP3A5 
was not induced by glucocorticoid treatment
SAEC cells from three separate donors were evaluated for  
CYP3A5*1 and other variant forms of CYP3A5 mRNA expres-
sion and induction in response to glucocorticoid treatment. Initial 
experiments demonstrated that mRNA for CYP3A5*1, but not 
CYP3A4 or 3A7, was expressed in one of the three SAEC samples 
(donor number 11662), but that expression levels were not altered 
by glucocorticoid treatment. It was hypothesized that the high con-
centration of hydrocortisone (500 μM) in the SAEC growth media 
prevented the induction of CYP3A5 mRNA by substantially lower 
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Figure 4. Ketoconazole inhibits the induction of CYP3A5 through the glucocorticoid receptor (GR). CYP3A5 mRNA detected in A549 
cells treated with (A) beclomethasone dipropionate (BDP), (B) budesonide (BUD), (C) triamcinolone acetonide (TCL), (D) fluticasone 
propionate (FLT), and (E) flunisolide (FLN), with and without ketoconazole (KTZ), a competitive antagonist for GR. Results are presented as 
fold over DMSO controls. Statistics used for data analysis were one-way ANOVA with Dunnett’s post-hoc test. Data are the mean and standard 
deviation from n=6 replicates. * p<0.05, ** p<0.01, *** p<0.001.
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concentrations of the glucocorticoids used in the treatments. Elimi-
nation of hydrocortisone from the media decreased the basal expres-
sion of CYP3A5 mRNA (Figure 6). However, no change in mRNA 
abundance was observed over a 24 h treatment period with BDP. 
Furthermore, neither increasing the treatment concentration of BDP 
to 50 μM, nor treatment with [M1] at 150 μM led to an increase 
in CYP3A5 mRNA in SAEC cells. It was subsequently hypoth-
esized that phthalates or other substances in the FBS might alter GR  

function and CYP3A5 mRNA induction by glucocorticoids27. How-
ever, neither heat inactivation nor charcoal-stripping of the FBS in 
media with or without hydrocortisone led to CYP3A5 mRNA in-
duction. The various manipulations to SAEC culture conditions and 
results for CYP3A5 induction are summarized in Table 3.

Effect of inhaled glucocorticoids and their metabolites on 
CYP3A5 mRNA expression in human lung cells

11 Data Files

http://dx.doi.org/10.6084/m9.figshare.757766

Discussion
Inhaled glucocorticoids are used to control undesirable symptoms 
in asthmatic patients. However, about 30% of the population does 
not benefit from this first-line treatment6. Prior work demonstrat-
ed that the five most commonly prescribed glucocorticoids used 
in the treatment of asthma are metabolized by CYP3A enzymes, 
specifically CYP3A4, CYP3A5, and CYP3A710,11. Therefore, it has 
been proposed that unusually high rates of metabolism of gluco-
corticoids in lung cells by these enzymes might contribute to the  
decrease and/or lack of efficacy in some individuals. However, it is 
not understood how the expression of CYP3A enzymes is regulated 
in the lung in response to glucocorticoid treatment, despite exten-
sive knowledge of this phenomenon in hepatocytes and the liver22.

Using A549 cells, it was demonstrated that CYP3A5*1 mRNA was 
induced by glucocorticoid treatment (Figure 3B and Figure 4A–E); 
neither CYP3A4 nor CYP3A7 mRNA were detected in A549 cells. 
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Figure 5. Glucocorticoid receptor (GR) siRNA blocks the 
induction of CYP3A5 by beclomethasone dipropionate (BDP). 
(A) siRNA-mediated GR knockdown in A549 cells at 48, 72, 96 h 
compared to “nonsense” GFP siRNA (negative control), expressed 
as fold over designated GFP control for each time point. (B) Cells 
were exposed to siRNA for 72 h then treated with DMSO, BDP, or 
BDP + esterase inhibitor (EI). Statistics used for data analysis were 
one-way ANOVA with Dunnett’s post-hoc test. Data are the mean 
and standard deviation from three replicates. * p<0.05, ** p<0.01.

Figure 6. Beclomethasone dipropionate (BDP) treatment in 
SAEC cells results in no change in CYP3A5 mRNA. SAEC cells 
treated with BDP (10 µM; 24 h) or DMSO matching controls with and 
without hydrocortisone (HC). There was no significant difference 
between treatments or matching controls using one-way ANOVA 
with p<0.05.
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not play a role in CYP3A-dependent metabolism of glucocorticoids 
in the lung. In contrast, select donor samples of SAEC cells, repre-
senting cells of the distal bronchioles, alveolar ducts, and alveoli, 
did express CYP3A5 (Table 2). However, there was no change in 
CYP3A5 mRNA when these cells were treated with glucocorti-
coids. A thorough examination of potential confounding issues  
associated with cell culture revealed a high concentration of  
hydrocortisone (500 μM) in the growth media. Because cells were 
treated with only 10 μM BDP, it would stand to reason that no 
change in CYP3A5 mRNA would occur because CYP3A5 expres-
sion would already be maximized as a result of hydrocortisone  
activating the GR pathway.

Experiments conducted in A549 cells showed that culturing cells in 
500 μM hydrocortisone increased the basal expression of CYP3A5 
mRNA by 2-fold, masking the induction routinely observed using 
10 μM BDP for 24 h. When A549 cells were subsequently cultured 
in media without hydrocortisone for 48 h, providing sufficient time 
for a “wash out” of the hydrocortisone, the basal expression of 
CYP3A5 mRNA was reduced, and ~2-fold induction of CYP3A5 
mRNA occurred with the 10 μM BDP, 24 h treatment. Therefore, 
hydrocortisone was omitted from the SAEC growth media. Subse-
quent experiments in SAEC cells showed no change in CYP3A5 
mRNA in response to glucocorticoid treatment (Figure 6), albeit re-
moval of hydrocortisone from the media caused a slight decrease in 
the basal level of CYP3A5 mRNA expression, suggesting that GR 
plays a role in the regulation of CYP3A5. It is feasible that because 
cells had been exposed to such high concentrations of hydrocorti-
sone during their isolation and expansion, that 10 μM of BDP was 
not sufficient to induce CYP3A5 mRNA, even after culturing the 
cells in the absence of hydrocortisone for multiple division cycles. 
Therefore, the concentration of BDP was increased to 50 μM and an 
additional treatment group using 150 μM [M1] was added. Again no 
increases in CYP3A5 mRNA was observed. Heat-inactivated and 
charcoal-stripped FBS were also utilized to remove potential inter-
fering compounds from FBS, and still no change was observed.

To our knowledge, no one has observed a change in CYP3A mRNA 
expression in any primary human lung cell cultures. However,  
Cyp3a11, 3a13, and 3a16 mRNA and protein induction have been 
documented in mouse lung following dexamethasone treatment29. 
As such, additional studies using animal models and relevant  

Table 3. Modifications made to SAEC culture media.

Basal culture conditions Experimental modifications Result

Cultured in growth media -Heat inactivated media for treatment 
-10 µM BDP for 24 h

-Basal CYP3A5 mRNA expression observed 
in 1 out of 3 patients 
-No change in CYP3A5 mRNA

Cultured in growth media without 
hydrocortisone

-Heat inactivated media for treatment 
-10 µM BDP for 24 h

-Lowered basal level of CYP3A5 mRNA 
-No change in CYP3A5 mRNA

Cultured in growth media without 
hydrocortisone

-Heat inactivated media for treatment 
-50 µM BDP or 105 µM [M1] for 24 h

-No change in CYP3A5 mRNA

Cultured in growth media without 
hydrocortisone

-Treated in heat inactivated and charcoal 
stripped FBS 
-50 µM BDP or 105 µM [M1] for 24 h

-No change in CYP3A5 mRNA

Subsequent studies using a competitive antagonist of GR (ketocon-
azole) and siRNA selective for GR mRNA, demonstrated that inhi-
bition of GR function prevented the induction of CYP3A5 mRNA 
by BDP and other glucocorticoids in A549 cells (Figure 4A–E and 
Figure 5B). It was also demonstrated that CAR mRNA was not ex-
pressed by lung cells, consistent with previous data15, and there-
fore could not be involved in the regulation of CYP3A5 expression 
by glucocorticoids as occurs in hepatocytes. It was concluded that  
CYP3A5 expression was directly regulated by GR (Figure 2B). 
Schuetz et al.24 previously described two “half sites” of GR 
(TGTTCT) separated by 160 bp in the promoter region of CYP3A5 
in HepG2 cells and in human and rat hepatocytes. It was demon-
strated that dexamethasone induced the expression of CYP3A5 by 
the GR homodimer binding to these two joined “half-sites” which 
could be blocked by RU-486, a GR antagonist. It is plausible these 
same sites are involved in the regulation of CYP3A5 in lung cells 
by BDP and other glucocorticoids.

Regardless of the exact mechanism of regulation, the current re-
sults illustrate that glucocorticoids have the capacity to induce 
the expression of CYP3A5 in A549 cells. These data, in conjunc-
tion with prior metabolism studies of glucocorticoids10,11, support 
the hypothesis that treating patients with glucocorticoids could  
increase levels of CYP3A5 in the lung, and therefore increase  
pulmonary glucocorticoid metabolism, ultimately increasing clear-
ance, and potentially decreasing the concentration of active drug 
in lung cells. Though most of the population expresses the inactive 
form of CYP3A5 (CYP3A5*3)13,28 those expressing CYP3A5*1, 
the active form of CYP3A513, would exhibit increased clearance of 
the drug, and therefore could account for at least some of the 30% 
of patients who do not respond to inhaled glucocorticoid therapy.

In order to further support the hypothetical scenario above, the in-
duction of CYP3A enzymes by glucocorticoids in various lung cells 
was studied. CYP3A5 mRNA expression was quantified in primary 
lung cells, which presumably more closely model epithelial cells 
of the human respiratory tract and lung. NHBE, lobar, and cells 
recovered from tracheal washes of mechanically ventilated children 
were evaluated for CYP3A enzyme expression and induction by 
glucocorticoids. Results in Table 2 show that CYP3A mRNA was 
not expressed in cells of the conducting airways in response to glu-
cocorticoid treatment, indicating that these epithelial cells likely do 
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samples from human patients need to be evaluated in order to  
conclusively confirm or reject the hypothesis that CYP3A genes are 
regulated in human subjects, particularly asthmatics, in response 
to glucocorticoid treatment since current in vitro models remain  
unexplainably limited in value for such studies.

In summary, the data presented herein demonstrate that, in A549 
cells, glucocorticoid binding to the glucocorticoid receptor regu-
lates the expression of CYP3A5. However, further research is 
needed to determine if changes in CYP3A5 expression occur in the 
human respiratory tissue similar to A549 cells, the precise mecha-
nism by which this process occurs, and whether changes in the lo-
cal metabolism of glucocorticoids by CYP3A5 ultimately impact 
glucocorticoid efficiency in asthma patients refractory to glucocor-
ticoid treatment. Because we have not been able to evaluate this 
mechanism more thoroughly in primary lung cells, particularly 
from asthmatic subjects, the physiological and/or clinical relevance 
of the present study in steroid insensitive patients requires further 
investigation.
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