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Ferroptosis: a double-edged sword mediating immune
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The term ferroptosis was put forward in 2012 and has been researched exponentially over the past few years. Ferroptosis is an
unconventional pattern of iron-dependent programmed cell death, which belongs to a type of necrosis and is distinguished from
apoptosis and autophagy. Actuated by iron-dependent phospholipid peroxidation, ferroptosis is modulated by various cellular
metabolic and signaling pathways, including amino acid, lipid, iron, and mitochondrial metabolism. Notably, ferroptosis is
associated with numerous diseases and plays a double-edged sword role. Particularly, metastasis-prone or highly-mutated tumor
cells are sensitive to ferroptosis. Hence, inducing or prohibiting ferroptosis in tumor cells has vastly promising potential in treating
drug-resistant cancers. Immunotolerant cancer cells are not sensitive to the traditional cell death pathway such as apoptosis and
necroptosis, while ferroptosis plays a crucial role in mediating tumor and immune cells to antagonize immune tolerance, which has
broad prospects in the clinical setting. Herein, we summarized the mechanisms and delineated the regulatory network of
ferroptosis, emphasized its dual role in mediating immune tolerance, proposed its significant clinical benefits in the tumor immune
microenvironment, and ultimately presented some provocative doubts. This review aims to provide practical guidelines and
research directions for the clinical practice of ferroptosis in treating immune-resistant tumors.
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FACTS

1. Ferroptosis is a programmed cell death induced by iron-
dependent lipid peroxidation, which is modulated by
various cellular metabolic and signaling pathways.

2. Ferroptosis has been linked to various diseases and acts as a
double-edged sword while mediating immune tolerance.

3. Drug-resistant cancer cells, especially those in a mesench-
ymal state and prone to metastasis, are remarkably sensitive
to ferroptosis, which could bring a promising strategy for
drug-resistant cancer treatment.

OPEN QUESTIONS

1. The mechanisms and vulnerability of ferroptosis in varied
tumor cells demand further investigations to target precisely
and maximize clinical therapeutic benefits.

2. How to modulate immune tolerance by inducing or
suppressing cellular ferroptosis in an artificially regulated
manner still should be explored.

3. Discovering a method to balance the dual role of ferroptosis

in tumor cells, anti-tumor immune cells, and immunosup-
pressive cells is especially crucial to broaden the application
of ferroptosis in anti-cancer treatment.

4. Currently whether ferroptosis is immunogenic and whether
mitochondria play an essential role in all forms of ferroptosis
or only GPX4 inhibition-induced ferroptosis are controversial
and still require experimental demonstrations in the future.

INTRODUCTION
Cells serve as the fundamental organizational unit of life. Their
multiple activities, including proliferation, differentiation, and
ultimately cell death, are essential for ontogeny, homeostasis,
and disease progression [1]. Among them, cell death is particularly
crucial. Historically, biochemists believed that cell death was
unregulated. However, numerous experimental evidence that cell
death could be regulated has been accumulating over the past
few years [2], and regulated cell death (RCD) was found to rely on
specific genetically encoded molecular mechanisms driving the
targeted elimination of excess and irreversibly injured or/and
underlying detrimental cells [3]. Ferroptosis, a term firstly
recovered in 2012, is a form of RCD that relies on iron, driven
by unrestricted lipid peroxides [4]. Given the reliance on oxygen as
the final electron acceptor in reduction/oxidation (redox)-based
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metabolic processes, the critical association with the cell destiny
decisions lies in the way cells address oxidative stress [5–7].
Although ferroptosis was disclosed in mammalian research, this
inimitable way of RCD could also be observed in distant species
[8–10]. Hence, ferroptosis is potentially one of the most prevalent
and archaic RCD. Marked by the oxidative modification of
phospholipid membranes, ferroptosis is distinct from other types
of RCD in morphology and mechanism [11, 12]. Cellular
morphological characteristics of ferroptosis include: (1) small
cellular volume with normal nucleus volume; (2) the absence of
pyknosis; (3) atrophic mitochondria with elevated membrane
density and diminished mitochondrial crista, instead of typical
apoptotic features [11]. In addition, cardinally characterized by a
fatal accumulation of lipid peroxides, ferroptosis involves a
confrontation between its inducers and defense systems. Once
the anti-ferroptosis systems are compromised, ferroptosis occur
consequently [13–19]. Thus, ferroptosis is mechanistically distin-
guished from other forms of RCD that depend on cell death
executioner proteins, including gasdermin D-mediated pyroptosis
and caspase-mediated apoptosis [20]. As a new concept, the
mechanisms behind ferroptosis have only been approximately
unveiled in recent studies. The consumption of cysteine leads to
the limited synthesis of intracellular reduced glutathione (GSH)
[11]. On the basis of optimum activation of glutathione peroxidase
4(GPX4), GSH is required to protect from ferroptosis [21]. GPX4 is a
selenoprotein that contributes to efficient phospholipid peroxida-
tion [13, 19, 22]. Consequently, with the depletion of the
intracellular pool of GSH, ferroptosis could be triggered under
the unrestrained lipid peroxidation [23].
During the neoplastic process, tumor cells obtain immune

tolerance to elude immunity, thereby contributing to the defeat of
targeted therapy [24]. Immune tolerance is a phenomenon in
which immune cells under the antigenic stimulation can’t be
activated and generate specific immune effector cells or
antibodies, ultimately failing to establish a well-balanced immune
response [25]. CD8+ T cells experience transcriptional and
epigenetic changes under the impact of the tumor microenviron-
ment (TME) and chronic antigenic stimulation, allowing their
failure to generate effector molecules and to acquire a gene
expression program associated with depletion, in which the
transcription factors Tox and Eomes are identified as force
depletion regulatory transcription factors [26, 27]. During this
procedure, molecules engaged in modulating T cell tolerance,
such as PD-1 and Nr4a1, are particularly crucial [28]. In previous
studies, the mechanisms of immune tolerance were widely
divided into innate and adaptive tolerance, while the latter can
be comprehensively categorized into central and peripheral
tolerance [29]. Co-stimulatory or co-inhibitory signals pathway,
immune checkpoints, and the presence of specialized cell
populations form the basis of peripheral tolerance, which are
determinants for modulating the immune response [30–32].
Exorbitant or inadequate co-stimulation can bring about immu-
notolerance. Immune cells are scrutinized by co-stimulatory or co-
inhibitory receptors, specific immune checkpoint inhibitors (ICIs)
and Transforming growth factor-β (TGF-β), aiming to impede the
devastation of tissues due to immoderate or improper immune
responses. Co-inhibitory receptors, including programmed cell
death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4),
function as pivotal checkpoints in constraining immune reactions
targeting the tumor [33, 34]. Specific immune checkpoint
inhibitors targeting PD-1 and CTLA-4 pathways crucially amelio-
rated the prognosis of patients with multiple types of cancer. TGF-
β is a critical enforcer of immunotolerance, curbing the evolve-
ment and activity of the immune system [35]. It can control
adaptive immunity via direct promotion of regulatory T cells
(Tregs) and suppression of effector T cells and antigen-presenting
dendritic cells (DCs). Similarly, TGF-β can also regulate the innate
immune system via suppressing natural killer (NK) cells [36]. As

regulates both the innate and adaptive immune system, TGF-β is
pivotal in tumor immune evasion [37]. Notably, immune tolerance
has been a Gordian knot in immunology for several decades. How
to reasonably utilize immune tolerance or neutralize the immune
tolerance of tumor cells and eventually achieve the therapeutic
aims has not been effectively solved.
Ferroptosis could be observed throughout the process of

peripheral immunotolerance [38–42]. As a distinct mechanism of
RCD, ferroptosis has triggered considerable concern, as addressing
ferroptosis might represent new curative options for treating
immunotolerant cancers. In this review, we systematically
summarized the present cognition of ferroptosis, including its
mechanisms and regulatory networks, and deeply analyzed the
potential mechanisms of abnormal susceptibility to ferroptosis in
certain cancer cells. We also discussed how ferroptosis participates
in immune tolerance as a double-edged sword. We aim to provide
a refreshing idea for the clinical cancer treatment strategies
targeting the dual role of ferroptosis in immune tolerance.

Ferroptosis
Dolma et al. began high-throughput screening in the early 20th
century in search of new small-molecule anti-cancer therapies,
and in 2003 published a series of compounds that can induce a
different mode of cell death from necrosis and apoptosis [43]
(Table 1). In subsequent reverse screening studies, this pattern of
cell death was found to be inhibited by iron chelating agents and
lipid antioxidants. Therefore, the requirement of iron in such RCD
was termed “ferroptosis” by Dixon and coworkers [11].

Mechanisms governing ferroptosis
Amino acid metabolism. Two pivotal molecules in the amino acid
metabolism of ferroptosis are GPX4 and system xc- (Fig. 1). GPX4
belongs to the GPX family and contains selenocysteine in its
catalytic center, which is the only enzyme in the cell that can
reduce lipid hydroperoxides to corresponding alcohols. When
hydroperoxide isn’t effectively removed by GPX4, it accumulates
further in the presence of iron, contributing to cell death [44]. As
an essential intracellular antioxidant, reduced GSH is synthesized
by glutamate, cysteine, glycine, and GSH synthase via the ATP-
dependent cytoplasmic enzymes glutamate-cysteine ligase (GCL)
and glutathione synthase (GSS). The availability of cysteine limits
GSH synthesis. It has been demonstrated in vivo and in vitro that
both extracellular cystine, which could be ingested and then
transformed into cysteine, and tracellular cysteine is necessary for
constraining GSH biosynthesis and for suppressing certain modes
of death in mammalian cells that can be inhibited by iron-
chelating agents [45–47]. For the synthesis of GSH, in addition to
the above pathways, cysteine has been demonstrated to be
absorbed from the environment through neutral amino acids to
form an oxidized form through the system xc- cysteine/glutamate
antiporter, or to be synthesized in the transsulfuration pathway
(Fig. 1) [48].

Lipid peroxidation. In the 1950s, vitamin E and cysteine, as well as
the trace element selenium, were certified as the bond that
restrained lipid peroxidation [49–52]. Lipid peroxidation is evoked
by a complicated lipid metabolism engaging initiation, propaga-
tion, and termination. Polyunsaturated fatty acids, such as
arachidonic acid, are prime targets for peroxidation. Ferroptosis
potentially proceeds through the peroxidation of membrane
phospholipids to generate PLOOH and the breakdown of PLOOH
to produce 4-hydroxynonenal or malondialdehyde. Products of
this cascade reaction involving the decomposition products of
lipid peroxides as well as oxidized or modified proteins, could
cause membrane instability and permeabilization, ultimately
bringing about cell death [53, 54]. In non-enzymatic lipid
peroxidation, polyunsaturated fatty acids (PUFAs) are attached
to coenzyme A (CoA) via the function of acyl-CoA synthase long-
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Fig. 1 Molecular mechanisms of ferroptosis. Ferroptosis is typically triggered by iron-dependent lipid peroxidation. The cystine/glutamate
transporter (also known as system xc-) imports cystine into cells with a 1:1 counter-transport of glutamate. Once inside the cells, cystine can
be oxidated into cysteine, which is used to synthesize GSH. Taken as a reducing cofactor, GSH is in the reaction of reducing lipid
hydroperoxides to lipid alcohols under the capability of glutathione peroxidase GPX4. Transsulfuration pathway is involved in supporting the
availability of cystine and reduced GSH. Respectively, the mevalonate pathway generates a series of biomolecules and then drives ferroptosis.
Several proteins (including serotransferrin, lactotransferrin, Transferrin receptor (TFRC), ferroportin 1 (FPN1), nuclear receptor co-activator 4
(NCOA4)) control ferroptosis through the regulation of iron metabolism. Fe3+ could be internalized into cells through three distinct pathways
including lactotransferrin, haemin and serotransferrin-TFRC-SLC11A2 pathway, during which Fe3+ is reduced and storage in the liable iron
pool. Cells have evolved at least four systems inhibiting ferroptosis with different subcellular localizations to decrease lipid peroxides. The
GPX4-GSH system can collaborate with FSP1-CoQH2 system on the plasma membrane and can also cooperate with DHODH-CoQH2 system on
mitochondrial membrane. Of late, the impact of the hypoxia-inducible factor (HIF) system on fatty acid (FA) metabolism has been depicted. α-
KG α-ketoglutarate, AA arachidonic acid, ABCA1 ATP- binding cassette subfamily A member 1, ACSL4 Long- chain fatty acid–CoA ligase 4,
ATGL adipose triglyceride lipase (also known as PNPL A2), ALOXs Arachidonate lipoxygenases, CoQ coenzyme Q10, CPT carnitine palmitoyl
transferase, DGAT diacylglycerol O- acyltransferase, DPP4 dipeptidyl peptidase 4, ETC electron transport chain, ER endoplasmic reticulum,
FLVCR2, FPN1 ferroportin 1 (also known as SLC40A1), GLS glutaminase, GSR glutathione disulfide reductase, GSSG glutathione disulfide,
HILPDA hypoxia-inducible lipid droplet- associated, HMGCR HMG-CoA reductase, LOX lipoxygenase, LPCAT lyso-phosphatidylcholine
acyltransferase, NCOA4 nuclear receptor co-activator 4, NOX1 NADPH oxidase 1, OGDH oxoglutarate dehydrogenase, OXPHOS oxidative
phosphorylation, PE phosphatidylethanolamine, PLIN2 perilipin 2, PS phosphatidylserine, SREBP2 sterol regulatory element binding protein 2,
system xc- cystine–glutamate antiporter, TFRC transferrin receptor, GCH1 GTP cyclohydrolase 1, HMOX1 Heme oxygenase, SLC48A1 solute
carrier family 48 member 1, SLC46A1 solute carrier family 46 member 1, SLC7A11 solute carrier family 7 member 11, SLC3A2 solute carrier
family 3 member 2, SLC11A2 solute carrier family 11 member 2.
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chain family member 4 (ACSL4) to generate acyl-CoA (Fig. 1).
Subsequently, acyl-CoA could be re-esterified in phospholipids via
lysophosphatidylcholine acyltransferase 3 (LPCAT3) to form PL.
Regarded as crucial mediators of PUFA-PL composition and vital
drivers of ferroptosis, the two membrane-remodeling enzymes,
ACSL4 and LPCAT3, were uncovered from the Genome-wide
haploid and CRISPR–Cas9-based screens. Regulation of ACSL4 and
LPCATs may determine susceptibility to ferroptosis [54–61].

Iron metabolism. From the term “ferroptosis”, iron metabolism
serves a vital function in the death of ferroptotic cells, including
iron uptake, utilization, storage, and efflux [62]. Cells generally
maintain iron homeostasis through orchestrated regulation and
then impact the sensitivity of ferroptosis. The binding of iron-
containing transferrin (TF) to transferrin receptor (TFR) and
transferrin endocytosis could mediate the cellular iron uptake
(Fig. 1) [63]. As for the storage of iron, numerous cellular processes
could modulate the susceptibility to ferroptosis via altering the
labile iron pool (LIP) (Fig. 1). In 2016, it was found that autophagy
could facilitate ferroptosis by decomposing iron-storage protein
ferritin in fibroblasts and cancer cells [64, 65]. Consequently,
regulation of autophagy, including nuclear receptor coactivator 4
(NCOA4) and glutamate oxaloacetate transaminase 1 (GOT1) could
increase or decrease LIP (Fig. 1) [65, 66]. The increasing cellular LIP
could produce PLOOH and ROS directly or indirectly resulting in
ferroptosis [67, 68]. Alternatively, augmenting cellular iron export
is proven to enhance cellular resistance to ferroptosis [69, 70].

Mitochondrial mechanism. For lipid peroxidation and ferroptosis,
the generation of mitochondrial reactive oxygen species (ROS) is
crucial. As an essential supplier of ROS, mitochondria could
generate hydroxyl radicals via the Fenton reaction, and then
drives the PUFA-FL peroxidation [71]. The mitochondrion is also
the major organelle to produce ATP through electron transport
and proton pumping [72, 73]. Mechanically, with ATP-depletion,
AMP-activated protein kinase (AMPK) could deactivate and
phosphorylate Acetyl-CoA carboxylase (ACC), thus inhibiting
PUFA-FL composition and ferroptosis, while under adequate
cellular energy, PUFA-FL synthesis and ferroptosis are triggered.
Therefore, ATP production contributes to ferroptosis [74, 75].
Mitochondria also have a hand in promoting ferroptosis with its
function in biosynthetic pathways. Taken together, the versatile
capabilities of mitochondria in bioenergetics and biosynthesis
could trigger lipid peroxidation to ferroptosis. Controversially, Gao
et al. have proved that mitochondria play a critical role in cysteine-
depletion-induced ferroptosis but not in GPX4 inhibition-induced
ferroptosis [76].

The regulation pathway toward ferroptosis
Hippo-YAP signaling. The hippo-YAP pathway in ferroptosis,
which could be involved in multiple biological functions such as
cell proliferation, was identified by the heightened resistance of
densely grown cells to cysteine deficiency- and GPX4 degradation-
induced ferroptosis [59, 77]. Mechanistically, YAP targets several
modulators of ferroptosis, such as ACSL4 and transferrin receptor
1 (TFR1). Hence, it is inevitable that ferroptosis susceptibility
depends on the Hippo-YAP pathway, with the activation of Hippo
signaling and the transcriptional co-regulator YAP-depletion [59].

AMPK. Energetic loss induced by the energy and metabolic
disorder could bring about a serial breakdown of systems required
to retain homeostasis, consequently contributing to cell death
[78, 79]. Strikingly, glucose starvation plays an opposite role in
influencing ferroptosis, either improving ferroptosis by an
accumulation of ROS or blocking ferroptosis [74, 75]. The
protective function was proved to rely on AMPK, a kinase sensing
energy. Hence, stimulated by the absence of glucose, AMPK then

turns on an energy stress-protective program against ferroptosis,
impairing the biosynthesis of PUFAs [74, 80, 81].

HIF. Hypoxia-inducible factor (HIF) is composed of an oxygen-
depleted α-subunit consisting of HIF1α, EPAS1 (HIF2α), and HIF3α,
and a constitutively expressed β-subunit (ARNT) [82]. In specific
circumstances, HIF1α and EPAS1 would perform differently. The
expression of HIF1α and EPAS1 is upgraded in numerous cancer
cell lines and is associated with inferior prognosis [82].
HIF possesses a double capacity in modulating ferroptosis [83].

Hypoxia-induced HIF1α impairs ferroptosis in fibrosarcoma by
elevating fatty acid-binding proteins 3 and 7 levels to avert
unrestrained lipid peroxidation [84]. Conversely, EPAS1-activation
is involved in hypoxia-induced lipid droplet-associated protein
(HILPDA) (Fig. 1) expression in RCC-derived cells, leading to
ferroptosis [60]. Accordingly, effective regulation of HIF to sustain
lipid homeostasis and thereby generate ferroptotic responses is
essential.

EMT. The epithelial-mesenchymal transition (EMT) is a cellular
process whereby epithelial cells repress characteristics, such as the
polarity and intercellular adhesion, and progressively attain
migratory and invasive faculties relevant to the mesenchymal
phenotype [85].
In clinical practice, EMT is considered a cellular process to yield

stem cells causing tumor metastasis and treatment resistance, for
instance, SNAI1, TWIST1, and ZEB1 [85]. Equivalently, EMT is also
concerned with inducing ferroptosis. Highly mesenchymal-like cell
states are generally more sensitive to ferroptosis than those with
epithelial properties [11, 13, 59]. ZEB1 is believed to function
essentially in ferroptosis induction, partly attributed to the direct
transcriptional regulation of PPARγ which primarily regulates lipid
metabolism in the liver [86]. Regarded as a positive modulator of
EMT, protein LYRIC (also known as metadherin) sustains ferrop-
tosis by depleting GPX4 and SLC3A2 [87]. In summary, EMT might
result in susceptibility to therapies based on ferroptosis.

Anti-ferroptosis system
Ferroptosis is a critical anti-tumor mechanism. Tremendous
evidence suggests that the tumor has evolved at least three
mechanisms to avoid ferroptosis, such as downregulating PUFA-
PL levels and lipid peroxidation, astricting the storage of iron in
LIP, and uprising defense systems against ferroptosis.

The GPX4-GSH system. The antioxidant enzyme GPX4 is the only
GPX member that straightway converts phospholipid hydroper-
oxide to phospholipid hydroxyphospholipid (Fig. 1), serving as a
prime suppressor under diverse in vitro and in vivo conditions
[14, 15, 22, 59, 88]. The activation of GPX4 depends on its cofactor,
GSH, which provides electrons to GPX4 [89, 90]. Sometimes the
electrons can be rendered by other low-molecular or protein thiols
[91]. GSH is a thiol-containing tripeptide produced from cysteine,
glycine, and glutamate, with cysteine being the major rate-
astricting precursor. The majority of tumor cells acquire cysteine
primarily utilizing system xc- with a transporter submit, the solute
carrier family 7 member 11 (SLC7A11, also termed xCT) [92–94].
Depleting cysteine from the culture medium or blocking SLC7A11
through ferroptosis inducers (FINs) (Table 2), such as erastin, could
trigger potent ferroptosis [5, 11, 95–97]. Therefore, SLC7A11-GSH-
GPX4 is identified as the principal ferroptosis defense system.

The FSP1–CoQH2 system. Ferroptosis suppressor protein 1 (FSP1),
with its plasma membrane localization being a prerequisite for its
function, operates as a NAD(P)H-dependent oxidoreductase
capable of converting CoQ to CoQH2 [14, 15, 98]. CoQH2 could
recruit lipid peroxyl radicals thus inhibiting lipid peroxidation and
ferroptosis (Fig. 1).
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The DHODH–CoQH2 system. A recent study unveiled a dihy-
droorotate dehydrogenase (DHODH)-mediated ferroptosis
defense system in mitochondria that could compensate for
GPX4 deficiencies to antitoxify mitochondrial lipid peroxidation
[18]. Rendering with the substrate and product of DHODH could
attenuate or potentiate ferroptosis induced by inhibition of GPX4
[18]. As GPX4 is sharply depleting, flux through DHODH noticeably
rises, contributing to augmented production of CoQH2 which
neutralizes extensive ferroptosis (Fig. 1) [18].

The GCH1–BH4 system. GTP cyclohydrolase 1 (GCH1) is also
identified as a conditioner of ferroptosis [16, 17]. BH4 is capable of
trapping lipid peroxyl radicals with GCH1 mediating the rate-
limiting reaction in its biological synthesis [99]. Specifically, the
GCH1-BH4 system suppresses ferroptosis through GCH1-mediated
generation of CoQH2 as well as via the radical-trapping
antioxidant ability of BH4 (Fig. 1) [16, 17].

The FSP1-Vitamin K system. The finding of the antioxidant effect
of vitamin K predates the term ferroptosis, which has recently
been demonstrated to be essential in anti-ferroptotic activity
[100, 101]. All three forms of vitamin K, phylloquinone,
menaquinone-4 (MK4) and menadione, could dampen ferroptosis
through their reduced forms VKH2 [102]. The FSP1 could sustain a
warfarin-insensitive non-canonical vitamin K cycle, suppressing
ferroptosis by preserving VKH2 at the sacrifice of NAD(P)H to avoid
lipid peroxidation [103].

Ferroptosis vulnerability
Metabolic status and gene mutation in cancer cells. In certain
cancer cells, not only the specific cellular states but also mutations
in some genes will exhibit unexpected sensitivity to ferroptosis. As
for the metabolic features, therapy-refractory cancer cells in
certain statuses could perform surprisingly sensitive to ferroptosis
[58, 104, 105]. Cancer cells with mesenchymal phenotype are
highly dependent on GPX4 and are abundant in polyunsaturated
fatty acids due to the elevated levels of ZEB1, ELOVL5, and FADS1
expression [58, 106, 107]. The sensitivity of dedifferentiated
melanoma cell subtypes to ferroptosis owing to the accumulation
of polyunsaturated fatty acids and the deficiency of GSH [58].
Similarly, certain cancer types with unique metabolic character-
istics are susceptible to ferroptosis, such as triple-negative breast
cancer (TNBC), clear-cell RCC (ccRCC), and non-neuroendocrine
small cell lung cancer (SCLC). TNBC cells could elevate the levels of
PUFA and LIP while attenuating the GPX4-GSH defense system
[55, 108].
Additionally, genetic mutations, for instance, the inactivation of

tumor suppressor genes in certain cases, also increase suscept-
ibility to ferroptosis. Incapacitation of any element of the E-
cadherin-NF2-Hippo pathway contributes to the expression or
activity of its downstream molecule YAP, leaving cancer cells or
mutant tumors like NF2- mutant mesotheliomas especially
vulnerable to FINs [59, 109].

The imbalance in the ferroptosis defense system. Ferroptosis can
be suppressed by GPX4-dependent and GPX-independent meth-
ods. Once one method is inactivated or exhausted, cancer cells
become extremely reliant on the other method to fight against
ferroptosis and are supremely sensitive to ferroptosis induced by
the other defense system.

Immune tolerance mediated by ferroptosis
Inducing and maintaining robust immune tolerance have been
the holy grail of immunology for decades. How to effectively
restrain tumor immune tolerance still requires long-term
investigation.
Peripheral immune tolerance can be induced by the co-

stimulatory or co-inhibitory signaling pathway, equally vital as
which, additional controls on the surface of activated T cells,
acknowledged as immune checkpoints, can also generate active
immune tolerance. Another key mechanism is the presence of
specialized cell populations designed to suppress pathogenic
immune responses that inadvertently target self-tissue [110].
Ferroptosis obtains a double-sided effect on regulating tumor
immune tolerance. Hence, we focus on the role of ferroptosis in
mediating tumor peripheral immune tolerance via the three
pathways mentioned below.

Co-stimulatory or co-inhibitory receptor. Immune cell functions are
regulated by co-inhibitory and co-stimulatory receptors. Effective
activation of these receptors may have significant therapeutic
benefits and prospects in anti-cancer immunity [111–114]. Ferrop-
tosis, as a non-apoptotic iron-dependent form of cell death, is
predicted to be profitable in inhibiting cancer immune tolerance
mediated by apoptotic immune cell death. Thus, in the tumor
immune microenvironment, the combination of co-stimulatory or
co-inhibitory signals and ferroptosis could achieve a greater clinical
therapeutic prospect promisingly (Table 3). The key to success lies
in precise comprehension of the correlation, aiming to ameliorate
immune tolerance maximally (Fig. 2).

CD28. Effective T cell signaling requires both participation of
primary antigen-specific receptors and a second costimulatory
signal to generate proliferation, differentiation, and survival [115].
As a constitutive T-cell-surface molecule, CD28 is the first T-cell
costimulatory receptor to be identified. B7-CD28 costimulation
could facilitate thymus central immune tolerance by forming T cell
libraries and limiting autoimmune functions through regulatory T
cell (Treg) generation. Without B7-CD28 costimulation, Treg
generation is defective, while functional self-reactive T cells
accumulate in the periphery, mediating destructive autoimmunity,
which restrains immune tolerance consequently [32, 116]. Further,
Gpx4-deficient Tregs can contribute to ferroptosis upon T cell
receptor (TCR)/CD28 co-stimulation, thus weakening immune
tolerance [38]. Hence, ferroptosis may obstruct immune tolerance
by inducing the death of Gpx4-deficient Tregs through the CD28
costimulation pathway.

Table 2. Ferroptosis inducers (FINs).

Class Class characteristics Compounds example Suitable for in vivo use

i GSH depleting compounds [178, 238] Erastin, PE, IKE, other erastin analogs, sulfasalazine,
sorafenib, glutamate [242, 243]

PE, IKE, sorafenib

ii GPX4 inhibitors [13] RSL3, ML162, DPI compounds 7,10,12,13,17,18,1 No [244]

iii Depletion of GPX4 protein and CoQ10 [239] FIN56, CIN56 Not evaluated yet

iv Iron oxidation and indirect GPX4
inactivation [240, 241]

FINO2 Not evaluated yet

CIL56 caspase-independent lethal 56, CoQ10 coenzyme Q10, DPI diverse pharmacological inhibitor, FIN56 ferroptosis inducer 56, FINO2 ferroptosis inducer
endoperoxide, IKE imidazole ketone erastin, ML162 Molecular Libraries 162, PE piperazine erastin, RSL3 RAS-selective lethal 3.
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CTLA-4. CTLA-4 blockade contributed to the CD28-mediated
proliferation of tumor-associated Tregs, inducing tumor immune
tolerance ultimately. This procedure allows polyclonal Treg
repertoire to be pre-enriched for recognizing antigens submitted
by tumor-associated conventional dendritic cells (CDCs). Unsteady
CDC contacts ensured Treg capability, while CTLA-4-mediated
downregulation of CDC co-stimulatory B7 proteins, via Tregs,
resulted in contact instability. CTLA-4-blockade sparked CD28-
dependent Tregs hyper-proliferation in the TME. Therefore, the
blockade of CTLA-4 may lessen therapeutic benefits in cancer
patients [116].

Studies revealed that CTLA-4 expression was higher in high
ferroptosis scores groups than in the lower ones. In bladder
cancer, low ferropscores indicated a better immunotherapy
response, while in clear cell renal cell carcinoma, the high
ferropscores were characterized by a higher immune and
enhanced response to anti-CTLA-4 immunotherapy [117, 118].
Accordingly, the effect of immune tolerance mediated by
upregulation of CTLA-4 via ferroptosis varies in diverse tumors,
which still needs to be specifically analyzed in extensive
investigations. Further, combined induction of ferroptosis and
immune checkpoint inhibitors (ICIs) indicated synergistic anti-

Fig. 2 Co-stimulatory, co-inhibitory and checkpoint pathways. In addition to the co-stimulatory, co-inhibitory and checkpoint pathways,
there are other stimulatory and inhibitory pathways (respectively indicated by upward and downward arrows,) that impact the immune
response, including tumor necrosis factor (TNF)-related molecules, other members of the CD28 family, adhesion molecules, and T-cell
immunoglobulin and Mucin (TIM) molecules. Various stimulatory and inhibitory pathways can affect the onset of ferroptosis in immune cells
and tumor cells via a wide range of mechanisms, ultimately facilitating (green plus) or inhibit (red minus) immune tolerance. Moreover,
prostate cancer cells could upregulate PD-L1 through HnRNPL over-expression, which in turn inhibits IFN-γ released by CD8+ T cells via the
STAT1/SLC7A11/GPX4 signaling axis. Subsequently, the expression of SLC3A2 and SLC7A11 (two subunits of system Xc-) increases,
suppressing lipid peroxidation by facilitating cystine uptake, which ultimately contributes to ferroptosis evasion and dampens tumor
immunity. Likewise in GBM, activated CD8+ T cells could release IFN-γ, inducing ferroptosis in cancer cells. Fe3O4-siPD-L1@M-BV2, a novel
GBM-targeted pharmaceutical delivery system, could stimulate ferroptosis for immunotherapy of drug-resistant GBM and establish a cascade
of amplification between ferroptosis and immune activation.
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tumor activity, providing significant avenues for future research
might and potentially driving immunotherapy of cancer to
promising results, especially on PD-1 and CTLA-4 targets [40, 42].

CD40. CD40 is involved in humoral immunity and inflammatory
response. Belonging to the tumor necrosis factor (TNF) receptor
superfamily, CD40 is expressed in a variety of cells, including
antigen-presenting cells (APCs) and fibroblasts [119–124]. CD154,
the receptor of CD40, mainly locates on activated CD4+ T cells
[125, 126]. The CD40-CD154 pathway is the core of humoral
immune response, simultaneously promoting dendritic cell (DC)
maturation and inducing effective T cell initiation [125, 127, 128].
The CD40-ATP-P2X7 pathway can amplify inflammation and
contribute to the death of retinal endothelial cells. It was
established that CD40 was a novel generator of ATP release and
purine-induced inflammation. By engaging the P2X7 receptor, ATP
subsequently induces the release of pro-inflammatory cytokines
by monocytes, macrophages, and microglia, resulting in the death
of retinal endothelial cells [129, 130]. Additionally, CD40 partici-
pates in the pathological process of autoimmune, and anti-CD40
monoclonal antibodies can lead to immune tolerance [131–134].
As the most well-characterized damage-associated molecular

patterns (DAMPs) implicated in immunogenic cell death, ATP and
high mobility group box chromosomal protein 1 (HMGB1) have
been elucidated to be automatically emitted following the
timeline of ferroptosis, which also serve as immune signals
correlated with the immunogenicity of early ferroptotic cancer
cells. Further, ATP and HMGB1 may be essential in accelerating
ferroptotic immunogenic cell death (ICD) [135]. Therefore, ATP
participates as an immunogenic signal of ferroptosis, while
ferroptosis could inhibit immune tolerance through the CD40-
ATP-P2X7 pathway promisingly. Given the above, ferroptosis is
proposed as a potential immunogenic mode of cell death
[136–140]. Nevertheless, Wiernicki et al. held a contradictory
perspective, asserting that ferroptotic DCs were unable to resist
tumor growth compared to necroptosis and apoptosis, and that
ferroptotic cancer cells entirely failed to trigger immune protec-
tion in spite of releasing DAMP and cytokines. Ferroptosis
adversely affected antigen-presenting cells and the adaptive
immune response, which might also interfere with cancer immune
treatments, hampering ferroptosis-induced therapeutic applica-
tions [141]. Thus, whether ferroptosis is indeed immunogenic still
demands additional work to demonstrate experimentally for a
better understanding of its role in anti-cancer therapy.

CD86. CD86 could prohibit immune tolerance [142]. As research
on hypertension revealed, the mobilization of the ATP-P2X7-CD86
axis ultimately intensified T cell activation. Hypertension generates
an accumulating release of ATP in plasma. ATP initiates revitaliza-
tion of APCs, which in turn stimulates P2X7 receptors on APCs,
increasing expression of CD86 through P2X7-gated Ca2+ influx
and activating T cells ultimately [143]. There are compact links
between cancer and hypertension on account of their overlapping
risk factors and pathophysiological mechanisms [144–146]. Extra-
cellular ATP has been certified to modulate the expression of P2X7
receptors on APCs in cancer [147, 148]. Thus, the ATP-P2X7-CD86
axis might function in tumors up-regulating CD86. Ferroptosis
could ultimately inhibit immune tolerance through the ATP-P2X7-
CD86 axis.

Immune checkpoint
Immunotherapy is a promising strategy to treat malignant tumors
by harnessing the cytotoxic potential of the immune system,
especially tumor-specific cytotoxic T cells. ICIs have an extensive
impact and early success in the clinic. Such as PD-1 ligand (PD-L1)
within TME, the expression of immune checkpoint molecules has
been shown to predict response to ICIs in some but not all cases
[149, 150]. Some patients with PD-L1-positive tumors don’t react

to treatment, while some patients with PD-L1-negative tumors
may also benefit from ICIs [41, 151, 152]. Ferroptosis is intensely
associated with anti-tumor immunity and immune microenviron-
ment [153, 154], and is of great significance in improving
traditional drug resistance. Hence, the combination of ferroptosis
and ICIs could be a new exploration for reducing ICIs resistance
and ultimately broaden the pool of patients potentially benefiting
from ICIs (Table 3).

PD-1 and PD-L1. PD-1 and PD-L1 are significant proteins for
immune regulation and have a dual impact on cancer prognosis
[155]. PD-L1 expression strongly predicted poor prognosis in
multiple cancers, including RCC and ovarian cancer [156–161],
while optimistic prognosis has been confirmed in breast cancer
and Merkel cell carcinoma [162, 163]. Surprisingly, in CRC and
melanoma, the simultaneously positive and negative predictive
value of PD-L1 expression was observed [164–169]. Hence, there is
an urgent need to seek strategies to improve the traditional PD-1
and PD-L1 targeting immunotherapies. Coded by the CD274 gene,
PD-L1 is the transmembrane protein that can conduce to
immunosuppression by combining with PD-1 presented on
T cells and eliciting T-cell asthenia [170]. The pool of PD-L1 has
been implicated in being enlarged to evade immune surveillance
in lung cancer and bladder cancer [171–175].
In prostate cancer, PD-L1 was positively related to hetero-

geneous nuclear ribonucleoprotein L (HnRNPL) [176], which
overexpressed and consequently enhanced the mRNA stability
of YY1, in turn generating pro-proliferative and anti-apoptotic
effects [177]. HnRNPL knockout effectively downregulates PD-L1
and restores the cancer cell sensitivity to T cell killing in vitro and
in vivo. Ferroptosis functions remarkably in T cell-driven adverse
outcomes of cancer cells, and HnRNPL inhibits Jurkat T cell-
mediated Castration-Resistant Prostate Cancer (CRPC) cell ferrop-
tosis through the YY1/PD-L1 axis, partially promoting cancer
immune escape. Further, suppression of HnRNPL boosted the anti-
PD-1 effect of CRPC tumors via enrolling CD8+ T cells in PCa
tumors [176]. Investigations have revealed that ferroptosis is a
previously unrecognized mechanism of CD8+ T cell-mediated
tumor elimination [178]. IFN-γ is one of the primary cytokines
released by effector CD8+ T cells [179, 180]. IFN-γ down-
modulates the expression of SLC3A2 and SLC7A11 and inactivates
cystine uptake, in turn promoting lipid peroxidation and
ferroptosis in tumor cells and increasing the clinical benefit of
cancer immunotherapy [178]. HnRNPL knockdown could inhibit
the expression of PD-L1, thus producing increased IFN-γ, which
triggers ferroptosis of CRPC cells by the STAT1/SLC7A11/
GPX4 signaling axis [176, 178].
Glioblastoma (GBM) is an invasive intracranial malignant tumor

[181]. Frustratingly, with long-term temozolomide (TMZ)-therapy
in GBM patients, drug resistance ineluctably develops and the
efficacy is remarkably attenuated or even eliminated [182, 183]. As
the most abundant programmed cell death process in glioma
[184], ferroptosis induces DCs maturation and enhances T cell
activity. Activated T cells then release IFN-γ, inducing the
ferroptosis of cancer cells. Thereby, a novel GBM-targeting
pharmaceutical delivering system, Fe3O4-siPD-L1@M-BV2, was
constructed to facilitate ferroptosis for immunotherapy of drug-
resistant GBM. A cascade of amplification between ferroptosis and
immune activation was formed via the system, ultimately
prohibiting tumor growth [181].
Tumor-derived exosomes could restrain DC maturation, down-

regulate the expression of surface markers like CD80, CD86, and
MHC-II, and up-regulate the expression of CD11b and PD-L1,
which ultimately obstructed the anti-tumor activity of Teff and
reinforced immune evasion [185–187]. Xie et al. designed
phototheranostic metal-phenolic networks (PFGMPNs) via a
semiconductor polymer assembly that encapsulated FIN (Fe3+)
and GW4869 (exosome inhibitor). More strikingly, GW4869-
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meditated PD-L1-based exosomes hinder revitalized T cells and
amplify ferroptosis. This neoteric synergistic effect of photother-
mal therapy (PTT) with anti-exosomal PD-L1 enhanced ferroptosis
and induced effective anti-tumor immunity in tumors [188].
Although immunotherapy with ICIs has generated significant

positive applications in a subset of cancer patients, there are still
numerous mechanisms of tumors to motivate drug resistance. It
was revealed that TYRO3 prohibited the ferroptosis of tumor cells
induced by anti-PD-1/PD-L1 via the AKT/NRF2 axis and amplified a
pro-tumor microenvironment by downgrading the ratio of M1/M2
macrophages, consequently contributing to anti-PD-1/PD-L1
treatment [189]. Thus, TYRO3 could serve as a predictive
biomarker and a promising therapeutic target for overcoming
anti-PD-1/PD-L1 resistance in cancer patients. By understanding
the specific mechanisms of drug resistance targeting immune
checkpoints, it is of great promise to hinder drug resistance and
enhance the efficacy of therapies that promote ferroptosis in
tumor cells in combination with ICIs.
Simultaneous induction of cancer-target cytotoxicity and anti-

tumor immunity could be a prospective method for treating drug-
resistant tumors. An investigation highlighted the potential of
zero-valent-iron nanoparticles (ZVI-NP) as an innovative integra-
tive cancer-fighting strategy. Notably, ZVI-NP enhanced anti-
tumor immunity via transforming pro-tumor M2 macrophages
into anti-tumor M1, reducing Tregs and down-regulating CTLA-4
and PD-1 in CD8+ T cells to provoke their cytolytic activity against
cancer cells. Therefore, the dual mechanism of anti-cancer activity
of ZVI-NPs insightfully exploited the prospect of novel anti-cancer
therapies while reducing adverse effects and improving prognosis
[190]. To conclude, multiple studies have systematically demon-
strated that synergy between ferroptosis and immunoregulation
could generate a significant anti-cancer effect, showing great
promise in anti-cancer therapy.
Nevertheless, ferroptosis in glioma might generate an immu-

nosuppressive microenvironment, eventually contributing to
immunotherapy resistance. Enhanced ferroptosis revealed the
induction of immune cell activation and infiltration, but attenu-
ated anti-tumor cytotoxic killing, among which tumor-associated
macrophages (TAMs) were involved in ferroptosis-mediated
immunosuppression. TAM was the most abundant immune cell
in GBM tissue and initiated pro-inflammatory (M1) or immuno-
suppressant (M2) responses according to its polarization state.
Patients with enhanced ferroptosis were characterized by recruit-
ment of TAM and M2 polarization. The combination of ferroptosis
obstacle with PD-1/L1 blockade triggered synergistic therapeutic
results in GBM mouse models [184]. Hence, considering the dual
role of ferroptosis in tumor cell death and immunosuppressive
phenotypes, how to optimize the therapeutic benefits of
ferroptosis in different cancers by balancing ferroptosis and
overcoming immunosuppressive phenotypes still requires to be
clarified.

Specialized cell populations
Specialized cell populations include naturally occurring Treg and
in vitro- induced Tregs (iTregs), as well as type 1 regulatory T (Tr1)
cells and TGF-β producing type 3 helper T (Th3) cells. Of these
subpopulations, the most extensively studied are Tregs [191]. By
acquiring a better understanding of ferroptosis and specialized
cell populations, it is feasible to combine them to promote
immune tolerance antagonism (Table 3).

TGF-β-producing Th3. Th3 regulatory cells are a unique T cell
subset that secretes TGF-β and assists IgA [192]. TGF-β functions in
a variety of diseases by mediating ferroptosis, such as coronary
heart disease, diabetes, acute liver failure (ALF), and pulmonary
fibrosis. In mammals, there are three subtypes of TGF-β, including
TGF-β1, TGF-β2, and TGF-β3 [193]. TGF-β1 enhances ultrastructural
variation in mitochondria with increased ROS and MDA levels,

similar to ferroptosis [194, 195]. Further, current research
speculated that TGF-β2 affected the expression of GPX4, nuclear
factor E2-related factor 2 (NRF2), HO-1, NOX4, and ACSL4 to
promote ferroptosis [196–201]. Thus, the combination of TGF-β
and ferroptosis could have a prospective therapeutic outlook and
provide potential targets for cancer immunotherapy. XCT is
associated with unfavorable prognosis for various types of tumors,
including HCC, colorectal cancer, and GBM [202, 203]. In diabetes,
TGF-β1 can induce renal tubular cell death, which contributes to
diabetic nephropathy, as well as renal fibrosis. In TGF-β1-
stimulated renal tubular cells, the expression of xCT and GPX4
as the same as the GSH level is dramatically decreased. The lipid
peroxidation is enhanced adversely. Both the GSH and lipid
peroxidation are associated with ferroptosis [204]. Therefore,
prohibiting TGF-β1-induced ferroptosis in renal tubular cells may
be a promising method for preventing or treating diabetic
nephropathy. These findings are in line with the research showing
that TGF-β1 enhances lipid peroxidation and inhibits susceptibility
to GPX4 in hepatocellular cancer cells by repressing xCT
expression via Smad3 activation. Moreover, TGF-β obtains a
profound effect in the process of EMT in pulmonary fibrosis.
Upregulating TGF-β amplifies ferroptosis and ultimately generates
EMT [205, 206]. Hence, TGF-β could be applied as a promising
target to amplify ferroptosis and reinforce EMT, ulteriorly
achieving the purpose of cancer treatment. The combination of
Fe, checkpoint antibody (Pa), and TGF-β inhibitor (Ti) with
constructed nanoparticles (NPs) can effectively enhance immuno-
genic TME and kill tumor cells [207]. All these investigations could
propose an underlying new method for future cancer treatment.

Ferroptosis vulnerability of immune cells
Apart from cancer cells, TME also comprises immune cells,
including T cells, macrophages, myeloid-derived suppressor cells
(MDSCs), etc. [208], which are proven to obtain similar growth
signals and metabolic properties to cancer cells [209–211]. This
peculiarity contributes to the analogical vulnerability of immune
and tumor cells to anti-tumor therapy, which could in turn impair
the function of immune cells. T cells are crucial in anti-tumor
immunity [211]. Ferroptosis can serve as the metabolic vulner-
ability of tumor-specific CD8+ T cells, while GPX4-deficient T cells
render high sensitivity to ferroptosis, consequently being unable
to exert an ant i-tumor effect. GPX4 overexpression inhibited
ferroptosis in CD8+ T cells and restored the production of
cytotoxic cytokines in vitro [212, 213], simultaneously increasing
the quantity of cancer infiltrative CD8+ T cells in vivo, which
enhanced tumor control [213, 214].
As a portion of CD4+ T cells, Tregs can hamper anti-tumor

immunity. Tregs rapidly induce GPX4 expression after TCR/CD28
co-stimulation activation to avert ferroptosis [38]. Ferroptosis
inhibitors can prohibit ferroptosis in activated GPX4-deficient
Tregs and maintain their immunosuppressive function in tumors.
Ferroptosis inhibitors may be a promising strategy to enhance
anti-tumor immunity. Nevertheless, the effect is dissimilar due to
differences in the sensitivity of tumor cells and CD8+ T cells to
proferroptotic stimulation. It is of great necessity to further explore
the effect of ferroptosis on tumor immunotherapy under different
conditions.
MDSCs in TME have potent immunosuppressive capacity

exhibiting resistance to ferroptosis [215]. Ferroptosis promotion
of MDSC will be a promising target for improving tumor
immunosuppressive microenvironment. TAMs predominantly pre-
sent M2 phenotype to suppress anti-tumor immunity [216]. The
resistance of M1 to ferroptosis was more intense than M2 [217].
Hence, eradicating M2 TAM or reverting M2 to anti-tumor M1
phenotype is of vital prospect for anti-cancer immunotherapy
[218]. Evidence showed that elimination of GPX4 in TAM could
restrain the viability of M2 TAM without affecting M1. Thus,
targeting these cells with FINs is a potentially promising
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therapeutic strategy to reverse immunosuppressive TME (Table 2)
[217].
It was widely validated that natural killer (NK) cells were also

affected by the ferroptosis, resulting in dysfunction [219], and
NRF2 could save NK cell glucose metabolism and anti-tumor
activity in vivo [196, 219]. DCs, as specialized APCs demanded for
naïve T cell function and maintaining T cell-dependent immunity,
were also vulnerable to ferroptosis [220]. In diverse B-cell subsets
with contrary features in tumor immunity, B1 and MZ B cells
exhibited greater amounts of CD36 and absorbed greater
amounts of lipids than follicular B2 cells. Deprivation of GPX4
provoked lipid peroxidation and triggered ferroptosis in B1 and
MZ B cells, but not in follicular B2 cells [221]. Tumor cells may
release various signals to stimulate or suppress ferroptosis in
different immune cells. In sum, the vulnerability of immune cells to
ferroptosis plays a dual role in anti-tumor immunity. For one thing,
induction of ferroptosis may attenuate the survival of anti-tumor
immune cells and contribute to functional defects. For another,
some immunosuppressive immune cells require GPX4 to forestall
ferroptosis and maintain cell activation. Simultaneously inhibiting
ferroptosis of anti-tumor immune cells and promoting ferroptosis
of immunosuppressive immune cells could maximize the benefits
of tumor immunotherapy. How to balance the ferroptosis
vulnerabilities of cancer cells, anti-tumor immune cells, and
immunosuppressive cells remains a crucial encumbrance. A
comprehensive exploration of the mechanisms behind the varying
susceptibilities of cancer cells and diverse immune cells to
ferroptosis is essential.

CONCLUSIONS AND CHALLENGES
In summary, ferroptosis, a non-traditional pattern of cell death,
operates as a double-edged sword in mediating tumor immune
tolerance. The mechanisms of ferroptosis in diverse tumor cells
require further exploration to maximize clinical therapeutic
benefits. Meanwhile, the susceptibility of tumor cells to ferropto-
sis, to some extent, implies that regulating ferroptosis could be a
novel treatment for drug-resistant tumors.
Nevertheless, to fully recognize the potential of ferroptosis-

inducing strategies in cancer therapy, there are still vast thought-
provoking uncertainties to be clarified in future investigations.
Firstly, how to target tumor types or patients more accurately that
are considered suitable for proferroptotic therapy? How to detect
the iron level of tumor cells? It was confirmed that appropriateness
could be assessed by iron level, gene, and mutation levels in tumor
cells [222, 223]. Iron-rich tumors such as breast cancer [55] and HCC
[199] are more likely to benefit. Thus, the detection of these three
factors is of great significance for the selection of therapeutic
targets. Secondly, are there additional ferroptosis defenses in other
organelles? The recently summited compartmentalization model
suggested that extra ferroptosis defense systems might exist in
other organelles [18]. The discovery of neoteric defense systems
could be a promising solution to ferroptosis resistance. Thirdly,
current studies have indicated additional ferroptosis enforcement
mechanisms downstream of plasma membrane lipid peroxidation,
but the specific steps remain to be discovered. The discovery of
downstream steps may help identify new targets for cancer
therapy. Fourth, more research is needed to explore other
regulative mechanisms associated with ferroptosis execution and
their correlation to anti-tumor therapy. Fifth, how to balance the
vulnerability of ferroptosis among tumor cells, anti-tumor immune
cells, and immunosuppressive cells? Meanwhile, how can pharma-
cological suppression of GPX4 specifically target tumors without
causing wide-ranging virulence in patients’ normal tissues?
Prophetic biomarkers that can precisely forecast tumor responsive-
ness to ferroptosis induction remain to be discovered, particularly
those that can be detected directly in patient body fluids and
biopsy specimens aiming to screen targeted patients and assess

clinical efficacy. Via erastin-treated HT −1080 cells by RNA-Seq and
RT-qPCR, the upregulation of the ER stress response gene cation
transport regulator homolog 1 (CHAC1) was validated to be a
significant pharmacodynamic marker of system xc- inhibition and a
transcriptional PD marker for exposure to erastin and other agents
that deplete cells of cystine or cysteine [83, 224, 225]. Identified by
PCR, western blot assay, gene transfection, and ACSL4 knockdown
techniques, ACSL4 was found as a biomarker and contributor of
ferroptosis [226]. Feng et al. elucidated that 3F3 ferroptotic
membrane antibody (3F3-FMA) could detect ferroptotic cells by
screening antibodies that utilized TfR1 protein as antigen. And anti-
TfR1 antibodies could detect ferroptosis by immunofluorescence
and flow cytometry. 3F3-FMA was validated as a ferroptosis-
detecting antibody in cell culture and cancer models [227].
Although some biomarkers of ferroptosis have been investigated,
it is far from enough in clinical practice. Accordingly, novel
technologies such as liquid biopsy, high-dimensional cytology,
single-cell omics, metabolomics, and high-resolution imaging could
be used to discover more easily detected biomarkers, bringing
great convenience to drug-resistant cancer treatment.
To sum up, ferroptosis will be an extremely promising research

direction and can provide a new method for drug-resistant cancer
treatment. It will generate massive clinical benefits only if
balancing the double-sided effect of ferroptosis in the tumor
immune microenvironment.
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