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PERSPECTIVE

Models and Machines: How Deep Learning Will Take 
Clinical Pharmacology to the Next Level

Lucy Hutchinson1,†, Bernhard Steiert1,†, Antoine Soubret1, Jonathan Wagg1, Alex Phipps2, Richard Peck1, Jean-Eric Charoin1 and 
Benjamin Ribba1,*

Recent advances in machine learning (ML) have led to enthusiasm about its use throughout the biopharmaceutical industry. 
The ML methods can be applied to a wide range of problems and have the potential to revolutionize aspects of drug develop-
ment. The incorporation of ML in modeling and simulation (M&S) has been eagerly anticipated, and in this perspective, we 
highlight examples in which ML and M&S approaches can be integrated as complementary parts of a clinical pharmacology 
workflow. 

Recent advances in machine learning (ML) have led to, for 
example, intelligent algorithms based on deep learning 
that enable accurate face and voice recognition on mobile 
phones. Consequently, these demonstrations have gener-
ated excitement about potential applications of ML in the 
biopharmaceutical industry, particularly toward research 
and development and personalized health care.1 Many ML 
algorithms evolved over recent decades from a combina-
tion of computer science, engineering, and statistical meth-
ods,2,3 and in the last few years advances in data storage 
and computational power have enabled ML to become a 
daily reality. Applications of ML in the context of pharma-
ceutical research typically showcase algorithms trained 
on huge data sets that identify correlations between fea-
tures predictive of a given outcome.4 A few highlights from 
the drug discovery and development pipeline in which ML 
methods have added value are predictions of ligand- protein 
binding from chemical properties,5 automatic classification 
of biopsy images,6 and prediction of medical events from 
electronic health records.7

We define ML as “a set of methods that can automatically 
detect patterns in data, and then use the uncovered patterns 
to predict future data, or to perform other kinds of decision 
making under uncertainty.”2 These algorithms span from 
classical regression and support vector machines to deep 
convolutional neural networks. In particular, we consider 
deep and/or convolutional neural networks and ensemble 
tree- based methods, which have demonstrated excellent 
performance in automatically detecting and learning the 
most appropriate data representation to build predictive 
models.3,8

Quantitative modelers in clinical pharmacology streamline 
clinical drug development using mathematical approaches, 
such as nonlinear mixed-effects modeling, Bayesian ap-
proaches, stochastic and deterministic ordinary differential 

equations, and computational rule- based methods. We 
hereafter refer to this approach as modeling and simulation 
(M&S). The M&S models are usually interpretable and trans-
parent, influencing translation from animal to human, ex-
plaining response variability across patients, informing dose 
selection and treatment regimens, and predicting efficacious 
combinations of therapies. In contrast to M&S workflows, 
“black box” ML techniques require fewer assumptions 
about the interactions but automatically identify correlations 
between features in a data set that improve the model’s abil-
ity to predict a certain output.

In this perspective, we discuss examples of how ML can 
add value to M&S workflows and where M&S methods can 
be used to improve interpretability of ML methods in the 
context of clinical pharmacology. We assert that M&S and 
ML are complementary and that there is great potential to 
join forces of the two approaches, exploiting their relative 
merits. ML is a promising future avenue for M&S that will 
increasingly be incorporated to improve performance of, 
and confidence in, clinical pharmacological models. Below, 
we outline two illustrative examples of scenarios in which 
we anticipate a strong benefit in model performance and/
or predictivity by combining the strengths of M&S and ML. 
Thereby, we hope to stimulate discussion and promote 
wider application of ML within the M&S community.

1. MACHINE LEARNING FOR IMPROVING COMPLEX 
MODEL PERFORMANCE

Many M&S models, such as quantitative systems phar-
macology or pathophysiology models, can be compu-
tationally intensive to evaluate, which often limits the 
opportunity for full exploration of parameter sensitivity, 
model identifiability, and model behavior. Models that 
are prone to high computational costs are typically cell 
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signaling models consisting of numerous ordinary dif-
ferential equations, agent- based models, and models 
comprising stochastic or partial differential equations. 
Traditional methods to analyze these complex and typ-
ically nonlinear mathematical systems, including global 
sensitivity and identifiability analyses, can be prohibi-
tively intensive to run. Alden and colleagues9 proposed a 
combined approach to tackle this challenge.

Several ML algorithms lend themselves to such problems, 
improving the efficiency and performance of model analy-
sis. Here, we describe an example of how ML can supple-
ment M&S model analysis and/or computation and lead to a 
deeper understanding of the M&S model and its properties.

In order to conduct a global parameter sensitivity analysis 
to investigate the contributions of each of the M&S model 
parameters to the resulting model behavior, it is necessary 
to perform simulations of the model on a comprehensive 
random sample of a potentially high dimensional parameter 
space. For small- medium scale models with 10 parameters, 
prohibitively many simulations (on the order of 1010) are re-
quired for a full exploration of the parameter space.

However, an ML step can streamline the analysis while 
enriching the results. For this approach, the model is sim-
ulated for a broad but not exhaustive number (e.g., thou-
sands) of randomly generated parameter sets. The model 
parameters used for each simulation constitute the “input” 
data set for an ML algorithm, and the results of the sim-
ulations constitute the “output” data set. Several ML al-
gorithms, such as deep neural networks and ensemble 
tree- based methods, can be implemented to infer rela-
tionships between the “input” and “output” data set. After 
training the ML algorithm on the simulated data sets, the 
outcomes of model simulations for many more parameter 
sets can be predicted. An illustrative diagram is provided in 
Figure 1a. The outlined approach significantly reduces the 
number of parameter samples for which actual simulations 
need to be performed. The resulting predicted outcomes 
are used to investigate the sensitivity of the model’s out-
comes to its constituent parameters.

By reducing the number of simulations by several orders 
of magnitude, model analyses are no longer prohibitively 
computationally intensive. The described method applies to 

Figure 1 (a) A two- parameter example illustrates the method of using machine learning (ML) to improve efficiency of global sensitivity 
analysis for complex mathematical models. Taking a random sample of model parameters a and b, simulations are performed and the 
outcomes recorded. The parameter sample and corresponding outcomes are used to train an ML algorithm, which is subsequently 
used to predict model outcomes for a richer range of parameter sets in order to streamline model analyses. (b) The workflow illustrates 
how to integrate big data into modeling and simulation. Data and prior knowledge are used for calibrating the parameters of a 
mathematical model, depicted by the box “M&S.” The resulting patient- specific parameters are passed as “output” along with - omics 
and imaging data as “input” to train an ML algorithm, with the aim to establish a link between them. By predicting model parameter 
sets for measured “input” data, time courses and their variabilities can be analyzed by forward evaluation of the mathematical model.
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many computationally demanding model classes involving 
ordinary, stochastic, or partial differential equations, or other 
formulations. Furthermore, similar approaches can be used 
to investigate identifiability, inter-individual variability via 
nonlinear mixed effects modeling, steady state and linear 
stability analyses, and to identify regions of parameter space 
that generate unusual emergent properties in the temporal 
dynamics of the system.

2. INTEGRATING BIG DATA INTO M&S

Recent advances in measurement technology have led to 
the generation of data at scale, including - omics, imaging, 
laboratory tests, and digital biomarkers. These taken to-
gether are known as “big data”. Typical big data sets in a 
clinical setting contain thousands to millions of data points 
for each patient, and this number is likely to increase. It is 
assumed that big data sets contain important information 
about patients and their diseases and that understand-
ing these data is a key step toward next- generation per-
sonalized health care. Big data sets are well suited to ML 
approaches, and there are many examples in which such 
data sets have been used to train ML models to address 
specific questions.5–7 However, due to their “black box” 
nature, pure ML models do not necessarily provide bio-
logical insight or interpretability of results. The M&S com-
munity, who traditionally focus on relatively few variables 
such as drug concentration, biomarkers, or clinical end 
points, is challenged with the need to incorporate big data 
sets into tractable models accounting for known biological 
mechanisms. There is potential for combined approaches 
in which ML methods supplement M&S models to make 
informed decisions in a timely manner using all available 
patient data.

Mechanistic systems pharmacology models integrate 
prior knowledge about drug– target interactions and biolog-
ical mechanisms of interest through the structure of the un-
derlying equations, and clinical or preclinical data are used 
to calibrate model parameters. One of the goals of M&S in 
this context is to better understand and characterize re-
sponse variability within patient populations. However, the 
driving factors for response variability often remain unclear. 
ML approaches can establish a link between big data and 
mechanistic models, and, as such, a correspondence be-
tween heterogeneity in big data sets and inter-individual 
variability in response.

Potentially relevant big data, including - omics and im-
aging, can be used as an “input” to an ML algorithm, 
whereas the patient- specific parameters estimated using 
the mechanistic model are considered as the “output”. The 
link between input and output is established using (deep) 
neural networks, which provide an automatic approach 
to discover meaningful data representations (in particu-
lar, through dimensionality reduction) to build a predictive 
model.3,10

After training with these data, the ML algorithm is capable 
of predicting parameter sets from measured input data ob-
tained from additional patients. These ML- derived individual 
parameters can be implemented in the mechanistic model 
to predict time courses and their variability. Furthermore, the 

method enables the generation of virtual patient populations 
or determination of individual dosing regimens. A schematic 
for this approach is shown in Figure 1b.

The outlined approach is a generic recipe for integrat-
ing large data sets and model- based approaches. Different 
combinations of models may be favorable in certain situa-
tions, for example, a combination or “stacking” of multiple 
ML models to preprocess the input data.

CONCLUSION

We have described two conceptual and illustrative exam-
ples wherein M&S and ML join forces to improve model per-
formance, personalization, and predictivity compared with 
either approach in isolation. In the first example, model per-
formance is enhanced by including an ML step to predict 
unobserved model behaviors and, in the second example, 
the ML step identifies relationships among large - omics, 
imaging, or other complex data sets and interpretable 
model parameters.

We envision myriad combinations of M&S and ML in a 
clinical pharmacology context in the near future. One can 
foresee further examples, such as the virtual enhancement 
of data sets, to be used in ML approaches via mechanistic 
model simulations to address the challenge of small sample 
size and/or sparse temporal granularity. Another example is 
the incorporation of mechanistic pathophysiology models in 
predictive algorithms for real- time clinical decision support 
in indications such as diabetes, vision loss, or epilepsy.

Overall, we believe that M&S and ML are complementary 
approaches within the biopharmaceutical industry. Although 
certainly not applicable to every scenario, the arrival of ML 
marks a new horizon that we are excited to explore. M&S 
and ML are not antagonistic approaches, and scientists are 
not required to choose between them for any given problem; 
on the contrary, modelers have the opportunity to combine 
elements from both to establish reliable models, improve 
drug development, and ultimately take steps toward per-
sonalized health care.
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