

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-{[(*Z*)-Cyclopentylidene]amino}-3-phenylthiourea

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Alaa A. Hassan^c and Mustafa R. Albayati^e*

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 27 March 2014; accepted 29 March 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.097; data-to-parameter ratio = 77.8.

The sample of the title compound, $C_{12}H_{15}N_3S$, chosen for study consisted of triclinic crystals twinned by a 180° rotation about the *a* axis. The five-membered ring adopts a twisted conformation. The dihedral angle between the phenyl ring and the mean plane of the thiourea unit is 78.22 (8)°. In the crystal, molecules are linked *via* pairs of $N-H\cdots S$ hydrogen bonds forming inversion dimers.

Related literature

For the use of thiourea as a building-block in the synthesis of heterocycles, see: Yin *et al.* (2008). For the diverse biological properties of thiourea-containing compounds and their metal complexes, see: Saeed *et al.* (2010); Solomon *et al.* (2010); Karakuş & Rollas (2002); Abdullah & Salh (2010). For the synthesis of the title compound, see: Akkurt *et al.* (2014). For structural studies on thiourea derivatives, see: Struga *et al.* (2009). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₂H₁₅N₃S

 $M_r = 233.33$

Triclinic, P1 V = 594.45 (2) Å³ a = 7.3997 (2) Å 7 - 2b = 7.5790(1) Å Cu Ka radiation c = 11.4657(2) Å $\mu = 2.21 \text{ mm}^{-1}$ $\alpha = 93.0220 \ (9)^{\circ}$ T = 100 K $\beta = 105.4530 \ (9)^{\circ}$ $0.21 \times 0.10 \times 0.04~\mathrm{mm}$ $\gamma = 104.7070$ (8) Data collection Bruker D8 VENTURE PHOTON 11363 measured reflections 100 CMOS diffractometer 11360 independent reflections Absorption correction: multi-scan 9454 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

(TWINABS; Sheldrick, 2009) $T_{min} = 0.65, T_{max} = 0.92$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	146 parameters
$vR(F^2) = 0.097$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
1360 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N2-H2\cdots S1^i$ 0.91 2.56 3.4636 (18)
 172

 Symmetry code: (i) -x + 2, -y + 2, -z + 2. -z + 2. z = 1.5 z = 1.5

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* and *CELL_NOW* (Sheldrick, 2008*a*); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008*a*); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008*a*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008*a*).

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5395).

References

- Abdullah, B. H. & Salh, Y. M. (2010). Orient. J. Chem. 26, 763-773.
- Akkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, 0359.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Karakuş, S. & Rollas, S. (2002). Il Farmaco, 57, 577-581.
- Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.
- Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
- Solomon, V. R., Haq, W., Smilkstein, M., Srivastava, K., Puri, S. K. & Katti, S. B. (2010). Eur. J. Med. Chem. 45, 4990–4996.
- Struga, M., Kossakowski, J. E., Koziol, A. & La Colla, P. (2009). Eur. J. Med. Chem. 44, 4960–4969.
- Yin, B., Liu, Zh., Yi, M. & Zhang, J. (2008). Tetrahedron Lett. 49, 3687-3690.

supplementary materials

Acta Cryst. (2014). E70, o515 [doi:10.1107/S1600536814007028]

1-{[(Z)-Cyclopentylidene]amino}-3-phenylthiourea

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Alaa A. Hassan and Mustafa R. Albayati

1. Comment

For the past few decades, thiourea derivatives have attracted great attention not only because they are important building blocks in the synthesis of heterocycles and organo-metal complexes (Yin *et al.*, 2008) but also due to their broad spectrum of biological activities such as anti-bacterial, anti-cancer (Saeed *et al.*, 2010), anti-malarial (Solomon *et al.*, 2010), anti-tuberculosis (Karakuş & Rollas 2002) anti-convulsion, analgesic and HDL-elevating properties. In addition, metal complex of thiourea derivatives exhibit anti-inflammatory, anti-cancer and anti-fungal activities (Abdullah & Salh, 2010). Furthermore, the thiourea structure contains a central hydrophilic part and two hydrophobic moieties forming a butterfly-like conformation. This conformation is a part of the structure of an anti-HIV agent (Struga *et al.*, 2009).

Fig. 1 shows a perspective view of the title compound (I). The five-membered ring (C1–C5) adopts a *twisted* conformation, [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.316 (2) Å and $\varphi(2) = 85.7$ (4)°]. The dihedral angle between the phenyl ring and the least-squares plane of the thiourea moiety is 78.22 (8)°.

In the crystal structure, the molecules are connected by weak N-H···S interactions (Fig. 2 and Table 1).

2. Experimental

The title compound was prepared according to our previously reported method (Akkurt *et al.*, 2014). Colourless crystals suitable for X-ray diffraction were obtained by crystallization of (I) from ethanol.

3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystal used proved to be twinned by a 180° rotation about *a*, CELL_NOW, (Sheldrick, 2008*a*) and the final structure was refined as a 2-component twin with a refined value for the minor twin fraction of 0.23070 (18).

Figure 1

Perspective view of I with 50% probability displacement ellipsoids.

Figure 2

Packing viewed down the *a* axis and showing N—H···S interactions.

1-{[(Z)-Cyclopentylidene]amino}-3-phenylthiourea

Crystal data	
$C_{12}H_{15}N_3S$	$\beta = 105.4530 \ (9)^{\circ}$
$M_r = 233.33$	$\gamma = 104.7070 \ (8)^{\circ}$
Triclinic, $P\overline{1}$	V = 594.45 (2) Å ³
a = 7.3997 (2) Å	Z = 2
b = 7.5790 (1) Å	F(000) = 248
c = 11.4657 (2) Å	$D_{\rm x} = 1.304 { m Mg m^{-3}}$
$\alpha = 93.0220 \ (9)^{\circ}$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å

S N H C

Cell parameters from 8773 reflections	
$\theta = 4.0-70.0^{\circ}$	
$u = 2.21 \text{ mm}^{-1}$	

Data collection

Dura concention	
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer	$T_{\min} = 0.65, T_{\max} = 0.92$ 11363 measured reflections
Radiation source: INCOATEC IµS micro-focus	11360 independent reflections
source	9454 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.026$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\rm max} = 70.0^{\circ}, \theta_{\rm min} = 4.0^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(TWINABS; Sheldrick, 2009)	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: mixed
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 0.1956P]$
11360 reflections	where $P = (F_o^2 + 2F_c^2)/3$
146 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

direct methods Special details

Experimental. Analysis of 985 reflections having $I/\sigma(I) > 15$ and chosen from the full data set with *CELL_NOW* (Sheldrick, 2008*a*) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the *a* axis. The raw data were processed using the multi-component version of *SAINT* under control of the two-component orientation file generated by *CELL_NOW*.

T = 100 KPlate, colourless $0.21 \times 0.10 \times 0.04 \text{ mm}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Refined as a 2-component twin.

	1		1. 1	,	1 821
Fractional atomic coordinates	and isofronic or	eauvalent isotroni	c displacement	narameters	(A-)
i racional alonne coorainales	and ison opic of	equivalent ison opt	e aispiacemeni	pur uniciers (11/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.89113 (8)	1.01459 (7)	0.81488 (4)	0.02372 (18)
N1	0.7313 (2)	0.5215 (2)	0.90890 (15)	0.0216 (4)
N2	0.8223 (3)	0.7082 (2)	0.91604 (15)	0.0213 (4)
H2	0.8859	0.7824	0.9880	0.026*
N3	0.7179 (2)	0.6693 (2)	0.70759 (14)	0.0226 (4)
Н3	0.6668	0.5483	0.7126	0.027*

C1	0.7350 (3)	0.4552 (3)	1.01002 (18)	0.0201 (5)
C2	0.8303 (3)	0.5512 (3)	1.13816 (17)	0.0221 (5)
H2A	0.7989	0.6695	1.1480	0.027*
H2B	0.9739	0.5749	1.1600	0.027*
C3	0.7435 (3)	0.4160 (3)	1.21708 (19)	0.0274 (5)
H3A	0.8400	0.4244	1.2973	0.033*
H3B	0.6258	0.4424	1.2306	0.033*
C4	0.6913 (3)	0.2257 (3)	1.14529 (19)	0.0280 (5)
H4A	0.5820	0.1399	1.1656	0.034*
H4B	0.8049	0.1748	1.1635	0.034*
C5	0.6317 (3)	0.2559 (3)	1.01077 (19)	0.0242 (5)
H5A	0.6742	0.1736	0.9604	0.029*
H5B	0.4885	0.2326	0.9791	0.029*
C6	0.8052 (3)	0.7858 (3)	0.81110 (18)	0.0201 (5)
C7	0.6780 (3)	0.7262 (3)	0.58782 (18)	0.0240 (5)
C8	0.8249 (4)	0.7674 (3)	0.5318 (2)	0.0358 (6)
H8	0.9527	0.7619	0.5729	0.043*
C9	0.7831 (5)	0.8171 (4)	0.4146 (2)	0.0453 (7)
Н9	0.8827	0.8458	0.3751	0.054*
C10	0.5971 (5)	0.8248 (3)	0.3557 (2)	0.0448 (7)
H10	0.5690	0.8582	0.2755	0.054*
C11	0.4526 (4)	0.7845 (3)	0.4123 (2)	0.0410 (7)
H11	0.3249	0.7906	0.3714	0.049*
C12	0.4930 (4)	0.7346 (3)	0.5295 (2)	0.0309 (5)
H12	0.3933	0.7066	0.5690	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.0326 (3)	0.0182 (3)	0.0185 (3)	0.0051 (2)	0.0058 (2)	0.0045 (2)
N1	0.0248 (10)	0.0173 (9)	0.0231 (9)	0.0043 (8)	0.0089 (8)	0.0044 (7)
N2	0.0278 (10)	0.0178 (9)	0.0159 (9)	0.0025 (7)	0.0058 (7)	0.0029 (7)
N3	0.0303 (10)	0.0178 (9)	0.0165 (9)	0.0016 (8)	0.0056 (8)	0.0036 (7)
C1	0.0203 (11)	0.0204 (11)	0.0229 (11)	0.0082 (9)	0.0091 (9)	0.0057 (9)
C2	0.0244 (11)	0.0220 (11)	0.0208 (11)	0.0067 (9)	0.0070 (9)	0.0062 (9)
C3	0.0293 (12)	0.0298 (12)	0.0225 (11)	0.0056 (10)	0.0078 (10)	0.0104 (9)
C4	0.0264 (12)	0.0257 (12)	0.0333 (13)	0.0064 (10)	0.0097 (10)	0.0135 (10)
C5	0.0263 (12)	0.0198 (11)	0.0276 (12)	0.0053 (9)	0.0104 (10)	0.0053 (9)
C6	0.0197 (11)	0.0235 (11)	0.0196 (10)	0.0076 (9)	0.0076 (9)	0.0062 (9)
C7	0.0369 (13)	0.0156 (10)	0.0161 (10)	0.0031 (10)	0.0064 (10)	0.0015 (8)
C8	0.0437 (15)	0.0386 (14)	0.0242 (12)	0.0061 (12)	0.0133 (11)	0.0051 (10)
C9	0.073 (2)	0.0360 (14)	0.0241 (13)	-0.0004 (14)	0.0238 (14)	0.0033 (11)
C10	0.088 (2)	0.0192 (12)	0.0158 (12)	0.0041 (13)	0.0058 (14)	0.0039 (9)
C11	0.0595 (18)	0.0246 (13)	0.0279 (13)	0.0113 (12)	-0.0054 (13)	0.0043 (10)
C12	0.0402 (15)	0.0224 (11)	0.0269 (12)	0.0075 (11)	0.0054 (11)	0.0040 (9)

Geometric parameters (Å, °)

S1—C6	1.682 (2)	C4—C5	1.533 (3)
N1—C1	1.284 (2)	C4—H4A	0.9900

N1—N2	1.392 (2)	C4—H4B	0.9900
N2—C6	1.357 (2)	С5—Н5А	0.9900
N2—H2	0.9098	С5—Н5В	0.9900
N3—C6	1.341 (3)	C7—C12	1.373 (3)
N3—C7	1.439 (2)	С7—С8	1.382 (3)
N3—H3	0.9098	C8—C9	1.391 (3)
C1—C2	1.503 (3)	С8—Н8	0.9500
C1—C5	1.512 (3)	C9—C10	1.379 (4)
$C^2 - C^3$	1.535(3)	С9—Н9	0.9500
C_2 H2A	0.9900	C10—C11	1373(4)
C2H2B	0.9900	C10 $H10$	0.9500
$C_2 C_2$	1 526 (3)	C_{11} C_{12}	1 301 (3)
C_{2} H_{2}^{A}	0.0000	C11 H11	1.591(5)
	0.9900		0.9300
Сэ—нзв	0.9900	C12—H12	0.9500
C1—N1—N2	117.12 (17)	C1—C5—C4	104.55 (17)
C6—N2—N1	118.43 (17)	C1—C5—H5A	110.8
C6—N2—H2	118.3	C4—C5—H5A	110.8
N1—N2—H2	123.1	C1—C5—H5B	110.8
C6—N3—C7	123.96 (16)	C4—C5—H5B	110.8
C6—N3—H3	118 7	H5A—C5—H5B	108.9
C7—N3—H3	116.9	N3_C6_N2	115.83 (18)
$N_1 C_1 C_2$	128 72 (18)	N3 C6 S1	113.03(10) 123.58(14)
N1 = C1 = C2	120.72(10) 120.66(18)	N2 C6 S1	120.50(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.00(18)	112 - 00 - 51	120.39(10)
$C_2 = C_1 = C_3$	110.01(10) 104.01(17)	C12 - C7 - V2	120.89 (19)
C1 = C2 = C3	104.01 (17)	C12 - C7 - N3	119.41 (19)
CI-C2-H2A	111.0	C8 - C / - N3	119.68 (19)
C3—C2—H2A	111.0	C/C8C9	119.1 (2)
C1—C2—H2B	111.0	С/—С8—Н8	120.4
C3—C2—H2B	111.0	С9—С8—Н8	120.4
H2A—C2—H2B	109.0	C10—C9—C8	120.0 (3)
C4—C3—C2	105.41 (17)	С10—С9—Н9	120.0
С4—С3—НЗА	110.7	С8—С9—Н9	120.0
С2—С3—НЗА	110.7	C11—C10—C9	120.4 (2)
С4—С3—Н3В	110.7	C11—C10—H10	119.8
С2—С3—Н3В	110.7	С9—С10—Н10	119.8
НЗА—СЗ—НЗВ	108.8	C10—C11—C12	120.0 (2)
C3—C4—C5	105.07 (16)	C10-C11-H11	120.0
C3—C4—H4A	110.7	C12—C11—H11	120.0
C5—C4—H4A	110.7	C7—C12—C11	119.6 (2)
C3—C4—H4B	110.7	C7—C12—H12	120.2
C5—C4—H4B	110.7	C11—C12—H12	120.2
H4A—C4—H4B	108.8		
C1—N1—N2—C6	-173.97 (17)	N1—N2—C6—N3	-6.8 (3)
N2—N1—C1—C2	-1.9 (3)	N1—N2—C6—S1	173.42 (14)
N2—N1—C1—C5	177.10 (17)	C6—N3—C7—C12	-100.6 (2)
N1—C1—C2—C3	166.7 (2)	C6—N3—C7—C8	80.9 (3)
C5—C1—C2—C3	-12.4 (2)	С12—С7—С8—С9	-0.3 (3)

supplementary materials

C1—C2—C3—C4	27.7 (2)	N3—C7—C8—C9	178.2 (2)
C2—C3—C4—C5	-32.9 (2)	C7—C8—C9—C10	0.0 (4)
N1-C1-C5-C4	173.24 (18)	C8—C9—C10—C11	0.3 (4)
C2-C1-C5-C4	-7.6 (2)	C9—C10—C11—C12	-0.3 (4)
C3—C4—C5—C1	24.8 (2)	C8—C7—C12—C11	0.3 (3)
C7—N3—C6—N2	176.88 (18)	N3—C7—C12—C11	-178.16 (19)
C7—N3—C6—S1	-3.4 (3)	C10-C11-C12-C7	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···S1 ⁱ	0.91	2.56	3.4636 (18)	172

Symmetry code: (i) -x+2, -y+2, -z+2.