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Abstract

Recently, Cicer species have experienced increased research interest due to their eco-

nomic importance, especially in genetics, genomics, and crop improvement. The Cicer arie-

tinum, Cicer reticulatum, and Cicer echinospermum genomes have been sequenced and

provide valuable resources for trait improvement. Since the publication of the chickpea draft

genome, progress has been made in genome assembly, functional annotation, and identifi-

cation of polymorphic markers. However, work is still needed to identify transposable ele-

ments (TEs) and make them available for researchers. In this paper, we present

CicerSpTEdb, a comprehensive TE database for Cicer species that aims to improve our

understanding of the organization and structural variations of the chickpea genome. Using

structure and homology-based methods, 3942 C. echinospermum, 3579 C. reticulatum, and

2240 C. arietinum TEs were identified. Comparisons between Cicer species indicate that C.

echinospermum has the highest number of LTR-RT and hAT TEs. C. reticulatum has more

Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TEs, while C. arietinum has the highest

number of Helitron. CicerSpTEdb enables users to search and visualize TEs by location and

download their results. The database will provide a powerful resource that can assist in

developing TE target markers for molecular breeding and answer related biological

questions.

Database URL: http://cicersptedb.easyomics.org/index.php

Introduction

Transposable elements (TEs) are mobile DNA sequences that can move and integrate them-

selves in another location throughout the genome [1]. Based on the transposition systems, TEs

were classified into two classes [2]. Class I is known as retrotransposons, and Class II is known

as DNA transposons. Retrotransposons utilize a copy and paste system, while DNA transpo-

sons use the cut and paste systems to transpose along the genome [2]. Retrotransposons are

divided into two sub-classes, the long terminal repeat-retrotransposons (LTR-RT) and the
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non-LTR retrotransposons [2]. More evidence documented that TEs contribute to the reshap-

ing of plant genomes and play important roles in regulating, altering, and creating new genes,

as well as its essential role in the evolutionary dynamics of host genomes [3–5]. Many reports

discussed in detail the impacts of TEs in both the genome and the epigenome [6, 7], the crea-

tion of pseudo-gene [8], the alteration [8], and transcriptional silencing [9, 10]. Moreover, TEs

affect the development of both vertebrates [11] and plants [12]. In rice, maize, wheat, and bar-

ley, there is a correlation between the insertion of TEs near genes and the increased mutation

rates in regulatory regions and coding sequences [13]. TEs represent a large percentage of

plant genomes, such as rice 40% [14], maize, and wheat 85% [15, 16]. In plants, researchers

have found evidence that TEs affect agronomic traits for maize [17], grape [18], foxtail millet

[19], blood oranges [20], apples [21, 22] and others. Since TEs play an important role in

genome variations, their genetic variation could be considered advantageous for crop breeding

[23–26].

The Cicer genus contains 45 species with nine annual and 36 perennial species. Only chick-

pea (Cicer arietinum L.) is cultivated in 49 countries on a large scale. Currently, only two

annual Cicer species (Cicer reticulatum and Cicer echinospermum) are in the primary and sec-

ondary gene pools and crossable to chickpea [27]. Chickpea is one of the most important Faba-

ceae crops. It has special significance to food security in developing countries due to its

potential nutritional and health benefits [28]. According to 2019 FAO statistics [29], about

13.7 million hectares were cultivated with chickpea in more than 47 countries, yielding about

14.2 million tons. As a member of the Fabaceae family, chickpeas can restore soil fertility by

fixing atmospheric nitrogen [30]. Because of its value for the economy and human nutrition,

chickpea-related research has also increased interest, especially in crop improvement, genetic,

genomics, and basic biological studies [31].

A significant achievement in Cicer species genomics was attained as a result of publishing

the genomic sequences of Cicer arietinum [30–32], Cicer reticulatum [33], and Cicer echinos-
permum [34]. Chickpea genomic studies aim to improve our knowledge of genome organiza-

tion, structural variations, genome evolution, and the basic biology of legume crops. Advances

in bioinformatics and sequencing technologies have led to the fast creation of large-scale

sequencing and genotyping data sets for chickpea [35–37]. The integrated study of massive

phenotypic and genomics data opens the door for discovering new genes, functional elements,

and biological processes correlated with several economic traits [38].

The fast-growing of chickpea omics data led to the establishment of many functional geno-

mics databases, including the microsatellites markers database "CicArMiSatDB" [39], the SNP

and InDels database "CicArVarDB" [40], and the transcriptome database "CTDB" [41]. In

recent years, functional genomic elements such as miRNAs [42], transcription factors [38],

long non-coding RNAs [43], and transposable elements [44] were discovered for several plant

species. For chickpea, miRNAs were identified in 2014 [45], transcription factor in 2016 [46],

and long non-coding RNAs in 2017 [47].

At present, several multiple-species TE databases are available and are exemplified by

Repbase [48], GyDB [49], PlantsDB [50], and RepetDB [51]. Species-specific TE databases are

also available such as RetrOryza [52], BmTEdb [53], BrassicaTED [54], MnTEdb [55],

FmTEMDb [56], PlanTE-MIR DB [57], SPTEdb [58], and ConTEdb [59]. Despite advance-

ments in functional genome annotation of chickpea, no database for chickpea TEs has been

established. Chickpea TEs need to be clearly identified in detail and made available to

researchers. Studying these valuable genomic elements should accelerate the improvement of

this important crop and become a new area of research in chickpea.

Genome-wide identification of TEs in the Cicer species and the establishment of compre-

hensive TE databases are key resources for the accurate characterization of genes and other
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genomic elements. Here, we used the Extensive de-novo TE Annotator (EDTA) pipeline [60]

as both structure and homology-based methods to identify, classify and annotate TEs in Cicer
species. All identified TEs were deposited for browsing and visualization in the developed

Cicer species Transposable Elements database (CicerSpTEdb). CicerSpTEdb will represent an

open resource that will allow researchers to improve our knowledge of the origin, organiza-

tion, structural variations, and evolution of the Cicer species, including the chickpea genome.

The CicerSpTEdb database will also provide an essential resource to other related legume

crops. In addition, we hope that CicerSpTEdb aid plant breeders in developing TE target

markers for molecular breeding and help the research community in general answer related

biological questions.

Materials and methods

Genomic data

We retrieved the chickpea (C. arietinum) reference genome sequence of Kabuli type cultivar

CDC-Frontier (ASM33114v1) from the NCBI FTP server [61] in both fasta and gff formats.

Due to the unavailability of annotations, only fasta files were downloaded for Cicer reticulatum
(GCA_002896235.1) and Cicer echinospermum (GCA_002896215.2) from NCBI FTP server

[61].

Identification of TEs

We conducted the intact transposon identification and characterization for the 530, 657,

and 715 Mbps representing the Cicer arietinum, Cicer echinospermum, and Cicer reticulatum
reference genome, respectively, using EDTA pipeline [60]. EDTA pipeline combines tools for

the structure, homology-based, and de novo identification methods. The EDTA pipeline com-

bines LTRharvest [62], LTR_FINDER [63], LTR_retriever [64], Generic Repeat Finder [65],

TIR-Learner [66], HelitronScanner [67], and RepeatModeler [68]. The parameters of each tool

are described in S1 File.

Estimation of LTR-RT insertion time

ClustalW [69] was used to alignment the 50and 30 LTRs of each intact LTR-RTs to estimate the

insertion time of LTR-RTs. The nucleotide substitutions/divergence among LTRs (K) were

computed by applying the Kimura-2-parameter model [70] using the KaKs_Calculator pro-

gram [71]. Using an evolutionary rate (r) of 1.5 × 10−8 substitutions per synonymous site per

year [72–74] and the formula T = k/2r the insertion time was estimated [70].

Identification of TEs positioned inside or nearby genes

Perl scripts were used to differentiate the predicted TEs according to the localization in the

genome sequence. The goal was to identify TEs that are positioned within or nearby genes

according to the genome annotation. For nearby genes, 10 kbp upstream genes were used to

detect TEs located inside this region. We performed gene ontology on all genes that house TEs

using UniProtKB [75].

Protein-protein interaction analysis

The amino acid sequences of genes that contain or are close to TEs were used for protein-pro-

tein interaction analysis using the STRING database [76]. Cytoscape 3.8.2 software and the

STRING-App were used for PPI networks analysis and visualization [77, 78].
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Database construction

JBrowse [79] was embedded in our developed database to map and visualize identified TEs

across the reference genome. The CicerSpTEdb database was designed as an interactive web

application using CSS, Perl, MySQL, PHP, HTML, and JavaScript. (Fig 1) illustrates the frame-

work used to identify TEs in Cicer species and develop the proposed CicerSpTEdb.

Results and discussion

TEs identification and annotation have been formed for numerous plant genomes through

extensive efforts and manual identification, e.g., Arabidopsis [80], rice [14], and maize [81].

Despite the increase in the number of sequenced plant genomes, manual identification

remains labor-intensive, and automated TE annotation is needed [60]. Intact TEs are the com-

plete structures of TEs that can transpose throughout the genome [82]. Most sequenced plant

genomes have had annotated TEs. However, it is important to predict which of these TEs are

still viable for mobility. Thus, in the present investigation, we focused only on the analysis of

intact TEs. Using the EDTA pipeline [60], several approaches were applied to identify intact

TEs in the C. arietinum, C. reticulatum, and C. echinospermum genomes. EDTA consist of

LTRharvest [62] and LTR_FINDER [63] for LTR identification. False discoveries are filtered

by LTR_retriever [64]. In addition, TIR-Learner [66] is used for TIR candidates identification,

and HelitronScanner [67] is used to recognize Helitron candidates.

TEs identification in Cicer species

As a result, a total of 794 intact LTR-RTs were identified in C. arietinum, including 521 Copia,

80 Gypsy, and 193 unknown LTRs. For DNA TEs, we identified 775 Mutator followed by 245

CACTA, 215 hAT, 156 helitrons, 28 Tc1 Mariner, and 27 PIF Harbinger (Table 1). S1 Table

includes details of the identified TEs, including the chromosome/scaffold id, TE start and end

position in the genome, TE corresponding superfamily, and TE length.

Fig 1. The overall framework used for identifying and characterizing TEs in Cicer species and the steps involved in creating CicerSpTEdb.

https://doi.org/10.1371/journal.pone.0259540.g001
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Interestingly, Varsheny et al. [30] reported that approximately 49.41% of the C. arietinum
genome is composed of TEs and unclassified repeats, including 617,505 repeat retrotranspo-

sons and 197,959 DNA transposons. However, our investigation produced lower numbers and

found that the intact TEs represent only 2240 elements, approximately 1.3% of the whole

genome. This difference could be because many of them will not be intact TEs and may be

nested elements or fragmented.

(Fig 2) shows the distribution and histogram of TEs across eight C. arietinum chromo-

somes. As shown, the distribution of TEs superfamily were 217, 179, 187, 200, 230, 240, 200, 76

elements for chromosomes 1, 2, 3, 4, 5, 6, 7, and 8, respectively. Chromosome 6 (CA6) had the

highest presence of TEs (240 elements), including 57 Copia, 55 Mutator, 29 unknown, 27

CACTA, 27 hAT, 21 helitrons, 12 Gypsy, 9 PIF, and 3 Tc1_mariner.

The analysis of C. reticulatum TEs revealed that 14.54 Mb (approximately 2% of the

genome) were intact TEs. The highest copy number of LTR-RT was 1097 Copia, followed by

193 unknown LTRs, and 80 Gypsy. In addition, 1808 C. reticulatum DNA transposons were

detected and consist of 1025 Mutator, 329 CACTA, 211 hAT, 151 helitrons, 56 PIF Harbinger,

and 36 Tc1 Mariner (Table 1 and S2 Table). For C. echinospermum, a total of 3942 intact TEs

were detected and covered 18.76 Mb (approximately 2.8% of the genome). Out of these, 2272

LTR-RTs included 1404 Copia, 423 Gypsy, and 445 unknown LTRs. C. reticulatum has more

Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TE types (Table 1 and S3 Table). The pres-

ent investigation revealed that C. reticulatum, C. echinospermum, and C. arietinum have a

higher copy number of Copia superfamily than Gypsy, which is consistent with previous

reports of flax [73], grape [83], cocoa [84], and cucumber [85].

To our knowledge, there are no TE reports for both C. echinospermum and C. reticulatum
to allow the discussion of our new findings. In addition, the draft genomes of C. reticulatum,

C. echinospermum, and C. arietinum were partially sequenced. The sizes of their available

sequences are 530, 657, and 715 Mb, respectively. This variation in size could be correlated

with the variation of the identified copy number of TEs in these genomes.

Estimation of LTR-RT insertion time

It is deemed that the 50 and 3’ LTRs are the same at transposition time for each LTR-RT. Con-

sequently, based on nucleotide substitutions/divergence among LTR-RT, the 5’ and 3’ LTRs

accumulated through ages were applied to estimate the insertion time [86–88]. In the present

Table 1. Summary of the intact TEs identified in Cicer species.

TE

superfamily

Cicer arietinum Cicer reticulatum Cicer echinospermum
No.

elements

Total length

(bp)

Percentage of the

genome (%)

No.

elements

Total length

(bp)

Percentage of the

genome (%)

No.

elements

Total length

(bp)

Percentage of the

genome (%)

Copia 521 2692203 0.507 1097 7294492 1.02 1404 10055403 1.53

Gypsy 80 466654 0.088 267 1983455 0.277 423 3515110 0.535

Unknown

LTR

193 578105 0.109 407 1514753 0.212 445 1766078 0.269

CACTA 245 594115 0.112 329 822381 0.115 291 757423 0.115

hAT 215 211394 0.04 211 231880 0.032 263 274877 0.042

Helitron 156 1498699 0.282 151 1142623 0.16 152 1438982 0.219

Mutator 775 1001091 0.189 1025 1397305 0.195 892 864817 0.132

PIF

Harbinger

27 21975 0.004 56 100906 0.014 40 52275 0.008

Tc1 Mariner 28 40588 0.008 36 56626 0.008 32 43869 0.007

Total 2240 7104824 1.339 3579 14544421 2.033 3942 18768834 2.857

https://doi.org/10.1371/journal.pone.0259540.t001
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investigation, the 50 and 3’ LTR nucleotide substitutions were used to estimate the identified

intact LTR-RT insertion time across Cicer species.

For C. arietinum, the minimum and maximum assumed age after discarding outliers using

boxplot analysis ranged from 0 to 4.4 million years (MY) with an average of 0.94 MY. The

unknown elements were older than Copia and Gypsy (4.3, 4.2, and 2.9 MY, respectively). The

average insertion ages of the unknown, Copia and Gypsy elements are 1.3, 1.3, and 0.85 MY,

respectively (Fig 3). Interestingly, about 23.3% of Copia, 21.7% of Gypsy, and 23.4% of

unknown elements have estimated ages of< 0 MY, and they may still be active elements.

While the proportions of insertion times that are more than 1.2 MY were 56.5%, 53.1%, and

40% of Gypsy, unknown, and Copia, respectively (Fig 3).

For C. reticulatum, the estimated age ranged from 0 to 100 MY with an average of 33.7 MY.

The unknown elements are younger than Copia and Gypsy elements. The Copia, Gypsy, and

unknown elements’ average insertion times were 33.4, 40, and 28.7 MY, respectively. Overall,

about 10.5% of Copia, 8.9% of Gypsy, and 7.5% of unknown elements were estimated to have

an age of< 0 MY. While the proportions of insertion times that are more than 1.2 MY were

86%, 85.6%, and 81.9% of Gypsy, Copia, and unknown elements, respectively (Fig 3).

Fig 2. The distribution of intact TEs across eight chickpea chromosomes. The outermost circle in pink-colored

represents eight C. arietinum chromosomes (CA1 to CA8). The middle circle illustrates the distribution of TE types in

different colors, and the innermost circle shows the histogram of TE types in each chromosome.

https://doi.org/10.1371/journal.pone.0259540.g002
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For C. echinospermum, the estimated age ranged from 0 to 99.5 MY with an average of 25.8

MY. The unknown elements are younger than Copia and Gypsy elements. The average inser-

tion time of the Copia, Gypsy, and unknown elements were 30.3, 5.5, and 25.7 MY, respec-

tively. Overall, about 6.6% of Gypsy, 12.5% of Copia, and 21.7% of unknown elements had an

estimated age of< 0 MY. While the proportions of insertion times that are more than 1.2 MY

were 87.5%, 78.7%, and 62.6% of Gypsy, Copia, and unknown elements, respectively (Fig 3).

The chromosomes number of the C. arietinum, C. echinospermum, and C. reticulatum were

the same 2n = 16. Therefore C. reticulatum was in the primary gene pools and recognized as

the wild ancestor of the C. arietinum. In addition, genetic studies revealed that the C. echinos-
permum was closely and in secondary gene pools of C. arietinum [27, 89]. The estimation of

Cicer species LTR-RT insertion time revealed that the wild species C. echinospermum and C.

reticulatum were older than the cultivated species C. arietinum (Fig 3). Based on estimated

LTR-RT age, C. arietinum may be derived/split from their wild progenitor C. reticulatum ~

4.4–6 MY.

TEs length distribution

The lengths of C. arietinum intact TEs ranged from 80 bp to 19.7 kb for both DNA and LTR

transposons. The average sizes of various superfamilies were Gypsy 5.8 kb, Copia 5.1 kb,

unknown LTR 2.9 kb, Helitron 9.6 kb, CACTA 2.4 kb, Tc1 Mariner 1.4 kb, Mutator 1.2 kb,

hAT 0.9 kb, and PIF Harbinger 0.8 kb (Fig 4). For C. echinospermum TEs, lengths ranged from

Fig 3. Estimation of Cicer species LTR-RT insertion age in millions of years (My).

https://doi.org/10.1371/journal.pone.0259540.g003
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80 bp to 19.6 kb for DNA and LTR transposons. The average sizes of various superfamilies

were Gypsy 8.3 kb, Copia 7.1 kb, unknown LTR 3.9 kb, Helitron 9.4 kb, CACTA 2.6 kb, Tc1

Mariner 1.3 kb, PIF Harbinger 1.3 kb, hAT 1 kb, and Mutator 0.9 kb (S1 Fig). For C. reticula-
tum, TE lengths ranged from 80 bp to 21.7 kb for both DNA and LTR transposons. The aver-

age sizes of various superfamilies were Gypsy 7.4 kb, Copia 6.6 kb, unknown LTR 3.7 kb,

Helitron 7.5 kb, CACTA 2.4 kb, PIF Harbinger 1.8 kb, Tc1 Mariner 1.5 kb, Mutator 1.3 kb,

and hAT 1 kb (S2 Fig).

Identification of TEs positioned inside or nearby genes

The transposition of TEs across the genome may affect both nearby genes’ expression and

genes unlinked to the insertion. TEs can affect genes through the movement, duplication, and

recombination processes, creating new genes or altering the gene structure [86]. Furthermore,

they may alter the expression of nearby genes by inserting themself within cis-regulatory ele-

ments or by presenting a new cis-regulatory element that may act as gene enhancers or repres-

sors [90]. Due to the unavailability of annotation for C. reticulatum and C. echinospermum,

only TEs identified in C. arietinum were subject to further analysis to determine TEs that are

inside or nearby genes.

Overall, 1162 C. arietinum intact TEs (about 51.8%) were positioned inside (TE-gene chi-

meras) or nearby genes. Only 20 TEs were found within pseudo-genes (Table 2). From these

elements, 426 (approximately 36.6%) were LTR-RT, and 736 (approximately 63.3%) were

DNA transposons. For LTR-RT, the Copia superfamily was overrepresented, followed by

unknown elements and gypsy superfamilies with 250, 140, and 36 elements, respectively. How-

ever, DNA transposons included 326 Mutator, 173 hAT, 150 CACTA, 38 Helitron, 28 Tc1

Mariner, and 21 PIF Harbinger elements.

More evidence documented that TEs construct the chimeric genes (TE-gene chimeras) in

plants [8, 91]. Previous eukaryotic reports revealed that one thousand human proteins contain

Fig 4. The distribution of C. arietinum TEs superfamilies according to their length.

https://doi.org/10.1371/journal.pone.0259540.g004
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TEs [92, 93], and few expressed genes house TEs in Drosophila [94]. In addition, approxi-

mately 1.2% of Arabidopsis proteins were constructed from TE-gene chimeras [95]. Consistent

with our results, previous studies reported that Class I TEs favor transposition inside gene-

poor heterochromatic regions [96]. In comparison, euchromatin regions have more Class II

TEs that prefer to transposition inside or nearby genes [97–99]. The finding that TE elements

inside and nearby genes in C. arietinum are overrepresented by Copia than Gypsy is consistent

with previous studies in maize [100], Arabidopsis [95], and sugarcane [101].

Regarding class II TEs, Mutator was overrepresented, followed by hATs, while Helitrons

were underrepresented. Our results agree with Lockton et al. [95] and Leonardo et al. [73],

who found that hATs were overrepresented in Arabidopsis, while Helitrons were underrepre-

sented in flax. Interestingly, the Mutator superfamily was overrepresented inside and closely to

genes in C. arietinum. More evidence documented that the association between Mutator ele-

ments and genes supports TE-mediated gene transposition in rice [91] and Arabidopsis [102].

Finally, the distance between identified TEs near genes and genes ranged from 3 to 9.9 kb (S4

Table). From these TEs, 140 elements were located within 2kb near genes, among this 53

Mutator, 29 Copia, 28 hAT, 14 CACTA, ten Helitron, three Unknown_LTR, 1 Gypsy, 1 PIF_-

Harbinger, and 1 Tc1_Mariner.

Functional classification by gene ontology analyses

To determine whether the genes housing TEs in their sequence were disrupted or still have

functions, UniProtKB [75] was used to map and classify 441 TE-gene chimeras according to

their function (GO terms). Only 366 genes were successfully mapped to 482 UniProtKB IDs

and assigned to GO terms. These GO terms include 315 genes assigned to 486 molecular func-

tions GO terms (S3 Fig), 213 genes assigned to 393 biological processes GO terms (Fig 5), and

215 genes assigned to 325 cellular components GO terms (S4 Fig). The 393 GO terms assigned

to biological processes were distributed among 164 cellular process, 134 metabolic process, 41

biological regulation, 29 response to the stimulus, 19 localization, two reproductive processes,

two developmental processes, one flower development, and one response to another organism

(Fig 5). Molecular function analysis showed the overrepresented TE-gene chimeras were cata-

lytic activity, binding, and transporter activity. In contrast, the underrepresented TE-gene chi-

meras were DNA-binding transcription factor activity and Structural constituent of ribosome

(S3 Fig). Based on these results, we can infer that a high percentage of TE-gene chimeras are

still functional in various biological processes in C. arietinum. However, to determine their

level of activity, further experimental validation still needs to be performed.

Table 2. Summary of the C. arietinum TEs that are positioned inside or nearby genes.

TEs superfamily Number of elements

Inside genes (TE-gene chimeras) Inside pseudo-genes Near genes (0-2kb) Near genes (2-10kb) Other genomic regions

Copia 100 5 29 116 271

Gypsy 27 1 1 7 44

Unknown LTR 91 2 3 44 53

CACTA 54 5 14 77 95

hAT 70 3 28 72 42

Helitron 9 10 19 118

Mutator 92 4 53 177 449

PIF Harbinger 9 1 11 6

Tc1 Mariner 19 1 8

Total 471 20 140 531 1078

https://doi.org/10.1371/journal.pone.0259540.t002
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Protein-protein interaction analysis

Protein-protein interaction (PPI) analysis is an instrumental analysis tool. It can show how a

group of genes interact in the cellular system and their activity level, thus showing their biolog-

ical importance. Furthermore, it adds more information about the type of connection these

proteins have and the biological pathways that they control. We examined the protein interac-

tion activity of chickpea genes that contain or are close to TEs. The STRING database retrieved

the interaction information of 619 proteins, from which high interactive proteins could be

identified [76]. PPI analysis was carried out for genes that contain, or are close to, TEs, as well

as for all genes collectively (Fig 6, S5 and S6 Figs).

The most interactive gene was the DNA-directed RNA polymerase II subunit (RPB1),

which contains nearby TEs (Fig 6). The RPB1 gene is an essential component of the RNA poly-

merase transcription machinery, catalyzing the transcription of DNA into RNA using the four

ribonucleoside triphosphates as substrates [103]. Several research articles have discussed the

relationship between RPB1 and TEs [104]. The carboxy-terminal domain of eukaryotic RPB1

has a heptad-repeat structure that is intrinsically disordered. These repeats regulate the length

of the RPB1 C-terminal domain, which in turn controls transcription activation by influencing

transcription cycle coordination. Such a relationship could impact the regulator’s system of

essential cellular functions [105]. Phosphoglycerate kinase one gene (PGK1) also revealed

many nearby TEs compared to other chickpea genes (S5 Fig). The activity of TEs influences

polyploidization modifications in plant genomes, affecting the copy number and the content

of genes. Due to its single-copy status per diploid chromosome in several plant species, the

PGK1 gene has been widely used to reveal the evolutionary history of complex genomes [106,

107]. The String database offers the ability to analyze PPI networks depending on their biologi-

cal pathways. It has revealed that the most gene-enriched pathways are those linked to Neclo-

tide binding and metabolic pathways, and mostly, these genes are linked by lab experiments,

published articles (text mining), or their genome physical distance (neighborhood) (S6 Fig).

Fig 5. Gene ontology of 213 C. arietinum TE-gene chimeras assigned to 393 biological processes GO terms.

https://doi.org/10.1371/journal.pone.0259540.g005
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Out of these results, we can point out that TEs affect distinctive genes with high interplay activ-

ity and consequently impact a widespread biological process in the chickpea genome.

CicerSpTEdb web interface

The Cicer Transposable Elements database (CicerSpTEdb) is accessible through a user-friendly

portal (http://cicersptedb.easyomics.org/index.php). The website allows users to explore and

understand the Cicer transposable elements. The database offers comprehensive details of TEs

and their features in the genome, especially for chickpea. The CicerSpTEdb interface allows

users to search, browse, compare, and download TEs interactively. From the homepage, users

can capture the essential information about CicerSpTEdb and access relative external data-

bases and software. The navigation bar allows access to six sections for browsing and retrieving

data, including Home, Database Search, JBrowse, Statistics, Comparisons, and Bulk

Download.

The Database Search page

From anywhere on CicerSpTEdb’s interface, users can access the Database Search page

through the top bar that links to the main search page. The latter provides links to access two

separate Cicer arietinum pages. The first page allows a general search of TEs, while the second

option provides detailed information on TEs located within genes. In addition, links to access

Fig 6. Protein-protein interaction for TE-gene chimeras.

https://doi.org/10.1371/journal.pone.0259540.g006
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Cicer reticulatum and Cicer echinospermum TE general search pages are also available. The top

section of the TE general search page allows users to see a statistical chart of all identified TEs

by type. The main section is divided into four sub-sections. It allows users to 1) search by TE

type within a specific chromosome/scaffold or within the whole-genome, 2) search by TE type

in a specific chromosome/scaffold or whole-genome with specific TE length, 3) search by TE

type with a specific location inside the genome, 4) search by TE type with a specific length and

location in the genome. The search results appear on a new page and include NCBI chromo-

some/scaffold accession, transposon start, end, length, and corresponding strand in the

genome, TE structure details, download TE sequence, and a JBrowse link. The results can be

exported by clicking the download button (Fig 7).

On the page dedicated to TEs located within genes, the left section is used to select TE

types, and the top part of the page allows users to see a statistical chart of all identified TEs

located inside genes. The main section is divided into four sub-sections that allow searching by

different keys. Users can search using the gene ID and gene type (gene or pseudo-gene) or

using either the protein ID, protein family, or enzyme EC number. The results are displayed

on a separate page and include gene details (gene ID, symbol, location, type, and product),

JBrowse link, and link to gene ontology and protein information. The link will redirect the

user to a new page that contains all accessible protein information such as protein ID, names,

Fig 7. CicerSpTEdb’s TE general search page.

https://doi.org/10.1371/journal.pone.0259540.g007
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length, structure, family, EC number, externally linked databases, and gene ontology. All exter-

nal databases are cross-linked, and the results can be exported by clicking the download button

(Fig 8).

The JBrowse page

JBrowse is a powerfully interactive genome visualization tool established to illustrate the coor-

dinates of TEs in the genome. By clicking the JBrowse from the top bar of any page, a visualiza-

tion window will display all chickpea coordinates, including reference sequence, genes, and

identified transposons. Users can retrieve any TE’s data (name, position in the genome, length,

described information, and sequence) by clicking on it in the JBrowse graphic interface. In

addition, the JBrowse page offers an important function that allows users to browse all genes

around TEs and the genes that TEs are positioned inside. The latter visualization function is an

easy way to build a clear idea of each TE and understand the interaction between TEs and the

surrounding genes (Fig 9).

Other pages

The Statistics page was created to provide researchers with a visualization of several statistics

computed from the data in CicerSpTEdb. Users can access the Statistics page through a drop-

down menu that links to three pages, one for each studied genome (S7 Fig). The comparisons

page was created to provide researchers with a visual comparison of identified TEs between C.

arietinum, C. reticulatum, and C. echinospermum. Users can access the comparison page

through the top bar from any page (S8 Fig). The Bulk Download page was created to allow

researchers to download all stored data in CicerSpTEdb. The Bulk Download page allows

users to select the species, transposons, and data type (fasta or gff3 files) from organism name,

TE type, and data type drop-down menus (S9 Fig).

Fig 8. CicerSpTEdb’s search page for TEs located within genes.

https://doi.org/10.1371/journal.pone.0259540.g008
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Conclusion

CicerSpTEdb is the first comprehensive database designated to Cicer species transposable ele-

ments. This database contains 9761 TEs that combines DNA transposon and LTR retrotran-

sposons. Moreover, the proposed database is available through an easy-to-use interface to

allow researchers to search, browse, and download the identified TEs in C. echinospermum, C.

reticulatum, and C. arietinum. We propose to continuously update the database and improve

its applications to achieve its goals. We expect CicerSpTEdb to provide a valuable resource

that can be used to improve our knowledge of the origin, organization, structural variations,

and evolution of the Cicer species genomes and other related legume crops. CicerSpTEdb

should help researchers develop TEs target markers for molecular breeding and to answer any

related biological questions.
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104. Kunze R, Saedler H, Lönnig W-E. Plant Transposable Elements. In: Callow JA, editor. Classic Papers.

Academic Press; 1997. pp. 331–470. https://doi.org/10.1016/S0065-2296(08)60284-0

105. Sawicka A, Villamil G, Lidschreiber M, Darzacq X, Dugast-Darzacq C, Schwalb B, et al. Transcription

activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J. 2021; 40:

e107015. https://doi.org/10.15252/embj.2020107015 PMID: 33555055

106. Peng Y, Zhou P, Zhao J, Li J, Lai S, Tinker NA, et al. Phylogenetic relationships in the genus Avena

based on the nuclear Pgk1 gene. PLoS One. Public Library of Science; 2018; 13: 1–18. https://doi.org/

10.1371/journal.pone.0200047 PMID: 30408035

107. Tang C, Qi J, Chen N, Sha L-N, Wang Y, Zeng J, et al. Genome origin and phylogenetic relationships

of Elymus villosus (Triticeae: Poaceae) based on single-copy nuclear Acc1, Pgk1, DMC1 and chloro-

plast trnL-F sequences. Biochem Syst Ecol. 2017; 70: 168–176. https://doi.org/10.1016/j.bse.2016.

11.011

PLOS ONE Cicer species transposable elements database

PLOS ONE | https://doi.org/10.1371/journal.pone.0259540 November 11, 2021 21 / 21

https://doi.org/10.1093/genetics/140.1.315
https://doi.org/10.1093/genetics/140.1.315
http://www.ncbi.nlm.nih.gov/pubmed/7635296
https://doi.org/10.1126/science.274.5288.765
http://www.ncbi.nlm.nih.gov/pubmed/8864112
https://doi.org/10.1101/gr.091678.109
http://www.ncbi.nlm.nih.gov/pubmed/19478138
https://doi.org/10.1016/0966-842x%2896%2910042-1
http://www.ncbi.nlm.nih.gov/pubmed/8885169
https://doi.org/10.1590/S1415-47572001000100020
https://doi.org/10.1590/S1415-47572001000100020
https://doi.org/10.1093/molbev/msk015
https://doi.org/10.1093/molbev/msk015
http://www.ncbi.nlm.nih.gov/pubmed/16581939
https://doi.org/10.1016/s1047-8477%2802%2900547-6
https://doi.org/10.1016/s1047-8477%2802%2900547-6
http://www.ncbi.nlm.nih.gov/pubmed/12490164
https://doi.org/10.1016/S0065-2296(08)60284-0
https://doi.org/10.15252/embj.2020107015
http://www.ncbi.nlm.nih.gov/pubmed/33555055
https://doi.org/10.1371/journal.pone.0200047
https://doi.org/10.1371/journal.pone.0200047
http://www.ncbi.nlm.nih.gov/pubmed/30408035
https://doi.org/10.1016/j.bse.2016.11.011
https://doi.org/10.1016/j.bse.2016.11.011
https://doi.org/10.1371/journal.pone.0259540

