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The neuroprotective effect of
melatonin in glutamate
excitotoxicity of R28 cells and
mouse retinal ganglion cells
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of Ophthalmology, Central South University, Changsha, China, 3National Clinical Research Center
for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 4Department
of Social Medicine and Health Management, Xiangya School of Public Health, Central South
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Glaucoma is the leading cause of irreversible blindness. The progressive

degeneration of retinal ganglion cells (RGCs) is the major characteristic of

glaucoma. Even though the control of intraocular pressure could delay the loss

of RGCs, current clinical treatments cannot protect them directly. The

overactivation of N-methyl-D-aspartic acid (NMDA) receptors by excess

glutamate (Glu) is among the important mechanisms of RGC death in

glaucoma progression. Melatonin (MT) is an indole neuroendocrine hormone

mainly secreted by the pineal gland. This study aimed to investigate the

therapeutic effect of MT on glutamate excitotoxicity of mouse RGCs and R28

cells. The Glu-induced R28 cell excitotoxicity model and NMDA-induced

retinal injury model were established. MT was applied to R28 cells and the

vitreous cavity of mice by intravitreal injection. Cell counting kit-8 assay and

propidium iodide/Hoechst were performed to evaluate cell viability. Reactive

oxygen species and glutathione synthesis assays were used to detect the

oxidative stress state of R28 cells. Retina immunofluorescence and

hematoxylin and eosin staining were applied to assess RGC counts and

retinal structure. Flash visual-evoked potential was performed to evaluate

visual function in mice. RNA sequencing of the retina was performed to

explore the underlying mechanisms of MT protection. Our results found that

MT treatment could successfully protect R28 cells from Glu excitotoxicity and

decrease reactive oxygen species. Also, MT rescued RGCs from NMDA-

induced injury and protected visual function in mice. This study enriches the

indications of MT in the treatment of glaucoma, providing practical research

ideas for its comprehensive prevention and treatment.
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Introduction

Glaucoma is the leading cause of irreversible blindness in the

world, and it is characterized by progressive degeneration of

retinal ganglion cells (RGCs) and their axons, accompanied by

visual field defects (1). The global prevalence of glaucoma in the

40- to 80-year-old population is estimated to be 3.5%. With the

number and proportion of the elderly population increasing,

111.8 million people are expected to suffer from glaucoma by

2040 (2). At present, the management of glaucoma mainly

focuses on the regulation of intraocular pressure (IOP) and

slowing its progress (3). Many studies have shown that even

controlling the increase in IOP cannot prevent the death of

RGCs and progressive visual field defects (4–6). For patients

with end-stage glaucoma, there is no effective neuroprotective

method. Therefore, seeking effective optic neuroprotective

medication for the treatment of glaucoma is necessary.

As an excitatory neurotransmitter, glutamate (Glu) exists

widely in retinal neurons and is involved in the signal

transmission between photoreceptors, bipolar cells, and RGCs

through N-methyl-D-aspartic acid (NMDA) receptors (7, 8). In

the pathological state of glaucoma, excess Glu between synapses

cannot be effectively removed and can cause NMDA receptor

overactivation, calcium overload in nerve cells, and oxidative

stress damage, leading to the death of RCGs and degeneration,

which is called glutamate excitotoxicity (8). Many studies have

confirmed glutamate excitotoxicity to be among the important

mechanisms of RGC death in glaucoma progression (9–11).

Melatonin (N-acetyl-5-methoxytryptamine, C13N2H16O2) is

an indole neuroendocrine hormone mainly secreted by the

pineal gland (12). The secretion of MT has a circadian

rhythm. After night falls, the synthesize of MT increases, and

the secretion level of MT in the body also increases accordingly,

reaching a peak at 2-3 am in the morning. The level of MT at

night directly affects the quality of sleep. As a classic antioxidant,

MT can protect against oxidative stress damage through

different mechanisms, including direct scavenging of reactive

oxygen species (ROS), regulation of signaling pathways against

oxidative stress, and upregulation of glutathione synthesis

(GSH). In addition to MT, many of its metabolites also

function as ROS scavengers (13). Through different

mechanisms, MT can attenuate oxidative stress damage in

lipids, proteins, DNA, and many tissues. Besides being

secreted from the pineal gland, MT has also been found to be

synthesized and released by many ocular structures, including

the retina, ciliary body, lens, and Harderian gland in chickens

(13, 14). Studies have shown that MT can exert neuroprotective

effects through its anti-oxidative stress effect (15–17),, although

its role in neuroprotective effects in glaucoma is still unclear.

In this study, we found that MT showed an effective

neuroprotective effect against neuronal glutamate toxicity, and

it significantly reduced NMDA-induced loss of RGCs. Moreover,
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MT treatment significantly reversed changes in the retinal

transcriptome caused by NMDA. All these results highlight

the potential value of MT as a potential medication for

neuroprotection treatment in glaucoma.
Materials and methods

Cell culture and glutamate
excitotoxicity model

Immortalized R28 cells (Key Laboratory of Ophthalmology,

Xiangya Hospital, Central South University, Changsha, China)

were maintained in low-glucose Dulbecco’s modified Eagle’s

medium (11885084, Gibco, Carlsbad, USA) supplemented with

10% fetal bovine serum (FSP500, ExCell Bio, Jiangsu, China) and

1% penicillin-streptomycin (C100C5, NCM Biotech; Zhejiang,

China) at 37°C with 5% CO2. In the glutamate excitotoxicity

model, cells were treated with L-Glutamate (ab120049, Abcam,

Cambridge, UK) and incubated for 24 h.
Cell viability assay

Cell viability was measured by cell counting kit-8 (CCK-8;

C6005, NCM Biotech). R28 cells were seeded in 96-well plates at

a density of 5000 cells/well and cultured in a medium containing

various concentrations of Glu (5, 10, 15, 20, 25 mM). After 24 h

incubation, 10% CCK-8 was added and incubated at 37°C for 3h,

as per the manufacturer’s instructions. Absorbance was

measured at 450 nm using a microplate reader. Meanwhile,

propidium iodide (PI)/Hoechst was applied to calculate the R28

cell survival rate after Glu and MT (M5250, Sigma-Aldrich, St.

Louis, MO, USA) were treated for 24 h; cells were stained using

apoptosis and necrosis assay kit (C1056, Beyotime, Shanghai,

China) and pictured using an optical microscope (Eclipse C1,

Nikon, Tokyo, Japan).
ROS assay

Intracellular ROS were detected using a cellular ROS assay

kit (ab113851; Abcam). The collected cells were digested with

trypsin and then stained in culture media with 20 µM DCFDA

and incubated for 30 minutes at 37°C. The cells were washed

with 1× buffer after incubation and analyzed immediately with a

flow cytometer. Forward and side scatter gates were established

to exclude debris and cellular aggregates from the analysis. DCF

was excited by the 488 nm laser and detected at 535 nm

(typically FL1). The mean florescence intensity (MFI) were

analyzed by Flowjo software version 10.0.7.
frontiersin.org

https://doi.org/10.3389/fendo.2022.986131
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.986131
Reduced glutathione assay

A micro reduced GSH assay kit (BC1175, Solarbio, Beijing,

China) was used to detect reduced GSH. A total of 5 million cells

were collected and cleaned twice with PBS. The GSH extract was

then added twice for repeated freeze–thaw (frozen in liquid

nitrogen and dissolved in a 37°C water bath) and centrifuged at

8000 g for 10 min, and the supernatant was collected at 4°C. The

GSH content was detected according to the instructions and

standardized according to the number of cells.

Animals and NMDA-induced retinopathy
mouse model

C57BL/6 mice (8 weeks old; Slaccas, Changsha, China) were fed

with standard laboratory food and water in a comfortable

environment with a 12 h light–dark cycle. All the experimental

procedures were approved by the Institutional Animal Care andUse

Committee (IACUC) of Central South University (Changsha,

China). All mice were divided into Three groups: Sham (only

acupuncture without injection), NMDA (20 mM), and MT (20

mM NMDA + 400 mM MT). All the mice were anesthetized with

pentobarbital (1%, 80 mg/kg, intraperitoneal injection; Beijing

Sanshu, China) and then operated on under a stereomicroscope.

Oxybuprocaine hydrochloride (Santen Pharmaceuticals, Tokyo,

Japan) was used to induce ocular surface anesthesia, and

tropicamide phenylephrine (Santen Pharmaceuticals) was used to

dilate the pupils. A 30 G needle was inserted into the vitreous cavity

along the limbus and injected at a volume of 1 µL per eye.

Tobramycin dexamethasone eye ointment (Alcon Inc, Geneva,

Switzerland) was used to prevent infection after injection. The mice

were euthanized 5 d after the injection, and their eyeballs were

removed with tweezers for the follow-up research.

Flash visual-evoked potential analysis

Visual function was assessed by flash visual-evoked potential

analysis (FVEP) 5 d after intravitreal injection, all after anesthesia.

After 15minof dark adaptation, the following3 electrodeswerefixed

separately and inserted under the skin: ground electrode (ack),

cathode (anterior bregma), and anode (occipital bone). After

covering the contralateral eye, the images of both eyes were

measured by a multifocal electroretinography recorder (GT-

2008V-VI, Gotec, Chongqing, China) and recorded by Ganzfeld

electrodiagnostic system (Gotec). The timeof theflash is 100ms. The

first negative wave amplitude and first positive wave latencies were

used to assess the visual function in mice.
Hematoxylin and eosin staining

The mice were euthanized 5 days after modeling, and their

eyeballs were removed and fixed with an FAS eyeball fixator
Frontiers in Endocrinology 03
(G1109, Servicebio, Wuhan, China). The eyeballs were embedded

in paraffin and cut into 4 mm vertical sections. Sections were

stained with hematoxylin and eosin (H&E; G1120, Servicebio)

according to the manufacturer’s instructions and visualized using

an optical microscope (Eclipse C1). CaseViewer software

(3DHISTEC, Sysmex, Switzerland) was used to measure the

thickness of the ganglion cell layer at distances of 300, 600, 900,

1200, and 1500 mm from the optic nerve center.
Retina immunofluorescence and
RBPMS staining

The mice were euthanized 5 days after modeling, and their

eyeballswere removed andfixedwith 4%paraformaldehyde (G1101,

Servicebio) fixation for 1 h, and the retinas were detached under a

stereomicroscope. The retinas were sealed with 5% bovine serum

albuminand0.5%Triton-X100 inPBS for1.5hat roomtemperature,

followed by incubation with primary antibody RBPMS (ab152101,

Abcam) at 4°C overnight. They was cleaned with 0.5% Triton-X100

in PBS 4 times for 5 min each were then incubated with fluorescent-

labeled secondary antibody away from light for 2 h at ambient

temperature. The retinas were then viewed and pictured by optical

microscope (Eclipse C1).
RNA sequencing

The mouse retinas were collected 5 days after NMDA

intervention. Three individual retinas were treated as one

sample, and each group contained 3 samples. RNA was isolated

by total RNA kit (R6834-01, Omega Bio-Tek),. Total amounts and

integrity of RNA were assessed using the RNA Nano 6000 assay

kit of the Bioanalyzer 2100 system (Agilent Technologies, CA,

USA). After RNA was converted to cDNA, the samples were

sequenced by the Illumina NovaSeq 6000 at Novogene (Beijing,

China). Genes with a fold-change ≥1.5 identified by edgeR and a

false discovery rate <0.05 were considered differentially expressed

(BMKCloud, http://www.biocloud.net/). Gene functional

annotations were based on the Kyoto Encyclopedia of Genes

and Genomes (KEGG, https://www.genome.jp/kegg/) and Gene

Ontology (GO, http://www.geneontology.org/) databases.
Statistical analysis

SPSS 26.0 statistical software (IBM Corp., Armonk, NY,

USA) was used for statistical analysis of all data. All data were

presented as the mean ± standard deviation (SD). One-way

analysis of variance (ANOVA) was used to assess the

significance differences of cell viability, ROS, GSH, RGCs

survival and FVEP results between groups. Repeated measures

ANOVA was used to assess thickness of retinal ganglion cell
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complex (GCC). Charts were built using GraphPad Prism 6.0

(GraphPad Inc., La Jolla, CA, USA). P value <0.05 was

statistically significant.
Results

MT protects R28 cells from Glu-
induced excitotoxicity

To investigate the appropriate concentration of Glu, R28

cells were treated with 5-25mM Glu at different concentrations

for 24 h. CCK-8 assay results showed that cell viability decreased

gradually with increasing Glu concentration in a concentration-

dependent manner. Compared with the control group, 10 mM

(47.90 ± 15.50%), 15 mM (26.41 ± 5.48%), 20 mM (5.41 ±

3.86%), 25 mM (4.73 ± 1.43%) significant decreased cell viability

with Glu treatment for 24 h. (P <0.001, n = 4) (Figure 1A). In

subsequent experiments, R28 cells were treated with 10 mM Glu

for 24 h as the immobilization condition. Subsequently, we

investigated the protective effect of different concentrations of

MT on glutamate-induced excitotoxicity injury. The results

showed that compared with the Glu group, the cell viability of

the MT group was significantly increased with the increasing
Frontiers in Endocrinology 04
MT concentration. The cell viability reached 109.1 ± 6.9% when

the concentration of MT was at 400 mM (P <0.001, n = 6)

(Figure 1B), suggesting that MT has a protective effect on Glu-

induced R28 cell damage, and the MT at concentration of 600

mM, 800 mM and 1000 mM also showed good protective effect

(P <0.001, n = 6). Meanwhile, PI/Hoechst staining was used to

confirm this view, and it was observed that R28 cells died more

after 24 h of glutamate treatment, while MT saved this damage

(Figure 1C). These results suggest that MT can protect R28 cells

from glutamate-induced excitotoxicity.
MT protects R28 cells from Glu-induced
oxidative stress

To investigate the effects of MT on Glu-induced oxidative

stress in R28 cells, intracellular ROS and reduced GSH levels

were detected. The results showed that ROS levels increased

gradually over time after Glu treatment and peaked at 12 h

(7.42 ± 0.52), and MT treatment could ameliorate the changes

induced by Glu (3.67 ± 0.30, P <0.001, n = 3) (Figures 2A, B). At

24 h, MT was still protective (5.14 ± 0.43, P <0.01, n = 3), but this

was not as significant as at 12 h (Figures 2A, B). Meanwhile, with

the increase in Glu treatment time, the intracellular GSH level
A

B

C

FIGURE 1

MT protects R28 cells from glutamate-induced excitotoxicity. (A) Effects of different concentrations of Glu on R28 cell viability after 24 h treatment.
(n = 4) (B) Protective effect of different concentrations of MT on R28 cells treated with 10 mM glutamate for 24h. (n=6) (C) Pictures of R28 cells
stained by PI and Hoechst. Red arrows: glutamate-induced excitotoxicity of R28 cells. Data are the mean ± SD; ***p < 0.001. Scale bar = 50 µm.
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gradually decreased and reached its lowest at 24 h (0.20 ± 0.01,

P <0.001, n = 3) (Figure 2C). However, the GSH level of the MT

group was not significantly improved when compared with the

Glu group (0.16 ± 0.02, P >0.05, n = 3) (Figure 2C).
MT protects against NMDA-induced
retinal damage in mice

To further determine the protective effect of MT on retinal

excitotoxicity, the thickness of GCC was measured after H&E

staining, and RGCs were counted and quantitatively analyzed

after being labeled with RBPMS by retinal immunofluorescence.

H&E staining showed that the retinal GCC thickness of mice in

the NMDA group was significantly thinner than that in the

control group 5 days after intravitreal injection of NMDA (P

<0.001, n = 4) (Figures 3A, B). MT treatment could effectively

inhibit the thinning of the GCC layer caused by NMDA at 300,

600 and 900 mm from the optic nerve center (P <0.05, n = 4).

Retinal immunofluorescence showed that the density of RGCs in
Frontiers in Endocrinology 05
the NMDA group was significantly lower than that in the control

group, while the number of surviving RGCs in the MT group

(1883.10 ± 124.63) was significantly better than that in the NMDA

group (849.30 ± 47.10) but still lower than that in the control

group (2694.60 ± 145.85, P <0.001, n = 4) (Figure 3C). These

results suggest that MT has a protective effect on NMDA-induced

retinal injury in mice.
MT protects visual function in mice

We also studied the effect of MT on electrophysiological

activity of the retina and its protective effect on visual function in

mice. The amplitude of N1 wave was decreased NMDA

treatment (1.98 ± 0.76 µV) compared with control group

(4.87 ± 1.10 µV), and MT increase amplitude of N1(4.85 ±

0.82 µV, P <0.001, n = 6).The latencies of P2 wave were

prolonged 5 days after intravitreal injection in the NMDA

group (115.42 ± 5.45 ms) compared with control group

(84.83 ± 3.52 ms), and MT ameliorated this change (103.91 ±
A

B

C

FIGURE 2

MT protects R28 cells from Glu-induced oxidative stress. (A, B) ROS levels increased gradually over time after glutamate treatment, and MT
could ameliorate this change. (n = 3) (C) GSH levels decreased over time, but MT treatment could not rescue this change. (n = 3) Data are the
mean ± SD; NS, No Significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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5.28, P <0.005, n = 6) (Figure 4). These results suggest that

NMDA causes retinal dysfunction in mice, and MT can improve

the visual conduction dysfunction induced by excitotoxicity.
MT ameliorated transcriptome
abnormalities in NMDA-induced
retinal injury

To investigate further the mechanism of the neuroprotective

effects of MT on the retina, RNA sequencing analysis was

performed. Compared with the control group, the NMDA-
Frontiers in Endocrinology 06
treated group had 1519 upregulated genes and 1663

downregulated genes. With the intervention of the MT, 139

genes were upregulated and 227 genes downregulated

(Figure 5A). MT treatment mitigated the expression of

approximately 49 upregulated genes and 57 downregulated

genes induced by NMDA (Figure 5B). These genes included 5

neuroactive ligand-receptor interaction-related genes (Oprl1/

Ptafr/Adcyap1r1/Lpar6/Crhr1), 3 PI3K-Akt signaling pathway-

related genes (Col6a3/Lpar6/Gng4), and 3 calcium signaling

pathway-related genes (Ptafr/Prkcg/Orai3). These results suggest

that MT exhibits its neuroprotective effect by ameliorating retinal

transcriptome abnormalities (Figure 5C).
A

B

C

FIGURE 3

MT protects against NMDA-induced retinal damage in mice. (A) Images of H&E staining sections of mice retina at 5 days after intravitreal injection (Scale
bar = 50 mm). Red arrows: RGCs. (B) At 5 days after intravitreal injection of NMDA, the GCC thickness of mice was measured ±300, ± 600, ± 900,
±1200, and ±1500 mm away from the optic nerve. (n=4) (C) Labeling of RGCs with RBPMS 5 days after intravitreal injection of NMDA. MT improved the
density reduction of NMDA-induced RGC injury in mice (Scale bar = 100 mm). (n=4) Data are the mean ± SD; *p < 0.05, ***p < 0.001.
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Analysis of differentially expressed genes
in NMDA-treated and MT-treated
mice retinas

KEGG and GO analyses were performed to densify the

signaling pathway and biological process changes in the retina.

We performed KEGG analysis on the differentially expressed

genes in the control, NMDA, and MT groups. This indicated

that the PI3K-Akt and MAPK signaling pathways were both

crucial after NMDA intervention. After MT treatment, the

PI3K-Akt and JAK-STAT pathways were involved in rescuing

the injury induced by NMDA (Figure 6A). GO analysis results

showed that the retinal biological process, cellular component,

and molecular function were all altered by MT intervention. The

differentially expressed genes were enriched in the biological

process (Figure 6B).
Discussion

The characteristic death of RGCs is one of the most

important features of glaucoma, which can cause irreversible

visual field defects and seriously affect the life quality of patients

(18, 19). Although many glaucoma medications have been

applied in clinical treatment, their use for glaucomatous

neuroprotection is still very limited, and there are no clear

clinical outcomes (20, 21).

Many studies have shown a potential relationship between

MT and glaucoma. Patients with glaucoma are often

accompanied by sleep disturbances, anxiety, and depression,

and studies have shown that glaucoma is also associated with
Frontiers in Endocrinology 07
disturbances in the rhythm of MT secretion (22, 23). Recent

studies showed that urinary 6-sulfatoxymelatonin, the main

metabolite of serum MT in glaucoma patients, is significantly

lower than normal, suggesting the possibility of a circadian

rhythm disturbance in glaucoma patients, which MT can

restore (24).

Focusing on the eye, although MT can be secreted by various

eye structures, and the aqueous humor also contains a certain

concentration of MT (25), the role of MT in the eye is still

unclear. Concentrations of MT have been shown to be 3 times

higher in aqueous humor in patients with elevated IOP than in

normal patients, and the same was also observed in a mouse

model of glaucoma (26). Preoperative treatment with oral MT

has been shown to reduce IOP in patients who have undergone

cataract surgery (27). Animal models and clinical trials have also

shown that MT and its analogs can reduce IOP (28, 29). Some

studies have demonstrated that MT exerts antiapoptotic and

neuroprotective effects on retinal neurons after hypoxia-

ischemia and acute intraocular hypertension (30, 31). In our

study, we established the classical NMDA-induced retinal injury

model, which imitated the different mechanisms of RGC death

in the pathogenesis of glaucoma. We found that MT has a

significant protective effect on cellular Glu excitotoxicity both in

vivo and in vitro and provides a supplement to the protective role

of melatonin in the pathogenesis of different glaucoma.

We found that MT at a concentration of 400 mM had a 100%

protective effect on Glu-induced cell excitotoxicity in R28 cells,

and a high concentration of 1000 mM had no toxic effect on cells,

confirming that MT is effective and safe. MT also showed a good

neuroprotective effect in vivo. MT rescued NMDA-induced RGC

loss and GCC thinning, and through the detection of FVEP, it was
A B

FIGURE 4

MT protects visual function in mice. (A) FVEP images of mice after intravitreal injection of NMDA 5 days. (B) The amplitude of N1 waves and the
latencies of P2 waves of FVEPs in mice at 5 days after injection. (n = 6) Data are the mean ± SD; **p < 0.01, ***p < 0.001. Scale bar = 10.0 mV and 50
ms.
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confirmed that melatonin can restore partial visual function in

mice. As an endocrine hormone with strong anti-oxidative stress

ability, MT has strong potential for the neuroprotection

of glaucoma.

As a classic antioxidant, MT can effectively scavenge ROS and

increase the content of intracellular GSH to resist oxidative stress

injury (32). In our study, we found that after glutamate

excitotoxicity injury, although MT had a significant protective

effect on R28 and RGCs and a significant recovery of visual

function in mice, it did not increase the content of GSH. As a

common antioxidative product, its depletion is much greater than

its synthesis in the glutamate excitotoxicity process. ROS was

significantly higher than that in the Glu group at 24 h, but it still

had a 5.16-fold increase compared to the control group.

Therefore, we speculate that, in addition to the scavenging effect

of MT on ROS, other mechanisms also play a key role in the

process of neuroprotective effect.

To explore the mechanism of action of the neuroprotective

effect of MT, we conducted RNA sequencing of the retina, and

the sequencing results of this study found that MT rescued

abnormal retinal transcriptome expression induced by NMDA.

Through further gene enrichment, we found significant
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changes in the PI3K-AKT and MAPK signaling pathways in

NMDA-induced retinal injury, and after MT treatment,

different genes were enriched to the P13K-AKT and JAK-

STAT signaling pathways. This is consistent with many of

the studies that showed PI3K-AKT and MAPK to be involved

in the occurrence and development of glaucoma and play an

important role in the death of RGCs (33–36). Studies have also

shown that RGCs are protected by intervening PI3K-AKT and

JAK-STAT signaling pathways through regulating apoptosis,

autophagy, and oxidative stress processes (37–41). In our

study, sequencing results showed a neuroprotective effect,

suggesting that MT may depend on the above pathways.

However, the specific mechanism of action needs to be

studied further.
Conclusion

This study explored the neuroprotective effects of MT on

NMDA-reduced RGC death and Glu-induced R28 cell

excitotoxicity. It found that MT successfully rescues RGCs

from NMDA-reduced injury and protects visual function in
A

B

C

FIGURE 5

MT ameliorates retinal transcriptome abnormalities in NMDA-induced retinal injury. (A) Volcano plot of differentially expressed genes between
control, NMDA, and MT groups. (B) Venn diagram shows the differentially expressed genes among the control, NMDA, and MT group. (C) The
heat map shows MT-restored top 20 genes.
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mice. MT also protects R28 cells from Glu excitotoxicity and

decreases ROS. RNA sequencing indicated that MT treatment

repairs the abnormal transcriptome caused by NMDA, and

PI3K-AKT and JAK-STAT signaling pathways may play an

important role in this process. This study provides practical

research ideas for the comprehensive prevention and treatment

of glaucoma.
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