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SUMMARY
Lung development-associated diseases are major causes of morbidity and lethality in preterm infants and children. Access to the lung

progenitor/stem cell populations controlling pulmonary development during embryogenesis and early postnatal years is essential to un-

derstand the molecular basis of such diseases. Using a Nkx2-1mCherry reporter mouse, we have identified and capturedNkx2-1-expressing

lung progenitor cells from the proximal lung epitheliumduring fetal development. These cells formed clonal spheres in semisolid culture

that could be maintained in vitro and demonstrated self-renewal and expansion capabilities over multiple passages. In-vitro-derived

Nkx2-1-expressing clonal spheres differentiated into a polarized epithelium comprised of multiple cell lineages, including basal and

secretory cells, that could repopulate decellularized lung scaffolds. Nkx2-1 expression thus defines a fetal lung epithelial progenitor

cell population that can be used as a model system to study pulmonary development and associated pediatric diseases.
INTRODUCTION

The primitive trachea and two distal lung buds emerge

from the anterior foregut endoderm around embryonic

day 9.5 (E9.5) (Kimura andDeutsch, 2007). Already at stage

E10.5, the trachea comprises epithelial cells expressing the

basal cell marker P63, and they increase in number until

stage E15.5 (Que et al., 2007, 2009). Branching morpho-

genesis, characterized by SOX9 expression in the distal

lung epithelium, gives rise to the conducting airway and

the gas exchange regions throughout the prenatal period

(Alanis et al., 2014). Before E15.0, the proximal branches

downregulate SOX9, activate SOX2, and undergo con-

ducting airway differentiation (ending at E17.0) (Alanis

et al., 2014). ASCL1-expressing neuroendocrine cells

become detectable at E12.5 (Li and Linnoila, 2012). The

ciliated (Foxj1+, b-tubulin+) and club cell (SCGB1A1+)

markers are expressed around E14.5–E16.5 (Rawlins et al.,

2007, 2009b). In addition, the heterogeneous club cell pop-

ulation expresses early markers (Scgb3a2, Cyp2f2, and

others) and region-specific transcripts (Reg3g, Gabrp, Hp,

Upk3a, and others) (Guha et al., 2014). After the specifica-

tion of the bronchioalveolar duct junctions at stage

E17.0, alveolar type 1 (AT1) and 2 (AT2) cells differentiate

during the sacculation process and mature into functional

alveoli in the distal lung (Alanis et al., 2014; Desai et al.,

2014; Treutlein et al., 2014). Branching morphogenesis

and alveolar differentiation are oppositely regulated by

KRAS, SOX9, and others (Chang et al., 2013). Mature basal
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cells are found postnatally (P63+, KRT14+, KRT5+, BS-I-B4+)

(Daniely et al., 2004). Shortly after birth, submucosal

glands emerge underneath the proximal airway epithe-

lium, with acini comprised of secretory cells (e.g., mucous

and serous cells) and myoepithelial basal cells connected

to the surface by ducts made up of basal and ciliated cells

(Wansleeben et al., 2013, 2014). The submucosal glands

share expression of severalmarkers with surface epithelium

(e.g., P63, KRT5, MUC5AC, LTF, and others) but distinc-

tively comprise P63+ KRT5+ SMA+ myoepithelial basal cells

(Wansleeben et al., 2014).

In the adult mouse and human lungs, distinct region-

specific epithelial progenitor cells have been described

(Wansleeben et al., 2013), but their fetal counterparts

remain undercharacterized. At E10.5–E12.5, Id2-expressing

distal tip cells of the fetal lung buds are multipotent and

contribute to the conducting airways (e.g., club, ciliated,

neuroendocrine) and alveolar (AT1 andAT2) lineages (Raw-

lins et al., 2009a). Later at stage E15.0, AT1 and AT2 cells

derive from a bipotent progenitor (Desai et al., 2014).

Inducible lineage tracing regulated by the Cgrp promoter

(neuroendocrine cell marker) at E12.5–E14.5 labels neuro-

endocrine and alveolar (AT1 and AT2 cells) descendants

(Song et al., 2012). However, Ascl1-expressing cells are re-

ported to give rise to airway, AT2, and nonepithelial cells,

a finding to be clarified by clonal analysis (Li and Linnoila,

2012). Also, secretory cells contribute to club and ciliated

lineages postnatally (Guha et al., 2012). Although these

studies reveal the origin of intrapulmonary airways and
uthors
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alveoli lineages (i.e., distal lung), the progenitor relation-

ships in the proximal trachea and extrapulmonary bronchi

(i.e., proximal lung) remain mostly unresolved. Inducible

lineage tracing driven by the human SPC promoter sug-

gests a distinct origin for proximal and distal lungs (Perl

et al., 2002). Moreover, fetal human tracheal tissue can

mature into basal, mucociliary, and submucosal gland cells

after serial xenotransplantation, suggesting progenitor/

stem cell activity (Delplanque et al., 2000).

To better understand lineage relationships in fetal lung

development, we knocked an mCherry reporter gene into

the Nkx2-1 locus to isolate purified primary lung epithelial

cells that we submitted to in vitro clonogenic progenitor

assays. NKX2-1 is the earliest marker of pulmonary fate

and is broadly expressed in the proximal and distal fetal

lung epithelium (Kimura and Deutsch, 2007). Nkx2-1-defi-

cient mice are stillborn and show severe distal lung epithe-

lium branching and cytodifferentiation defects (Kimura

et al., 1996; Minoo et al., 1999). Also, their trachea epithe-

lium fails to separate from the esophagus and adopts an

esophagus-like phenotype, with high expression of SOX2

and P63 (Minoo et al., 1999; Que et al., 2007). Our molec-

ular characterization of Nkx2-1-expressing cells reveals an

underappreciated broad cellular diversity in the airways,

including progenitor cells with long-term clonogenic and

differentiation potential in vitro. These cells self-renew

and engraft when seeded onto decellularized lung scaf-

folds. Overall, these results suggest that the Nkx2-1-ex-

pressing population in the fetal proximal airways contains

cells that can act as self-renewing multilineage progenitors

in vitro.
RESULTS

In Vitro Colony-Forming Potential of Nkx2-1-

Expressing Cells

To capture mouse pulmonary cells expressing Nkx2-1, a

nondisruptive fluorescent mCherry knockin allele was

generated by gene targeting in embryonic stem cells

(ESCs) (Figure 1A; Figure S1A available online). Both het-

erozygous and homozygous animals generated were

normal and fertile and could be used for experiments.

mCherry was detected by fluorescent microscopy in

Nkx2-1-expressing tissues: the lung, brain, and thyroid

(Figures 1B and S1B) (Lazzaro et al., 1991). At the cellular

level, confocal imaging revealed coexpression of cyto-

plasmic mCherry and immunostained nuclear NKX2-1 in

fetal and adult lungs (Figures 1C and S1C). The percentage

of Nkx2-1-mCherry-positive (mC+) cells varied from 9% to

20% in total lung tissue isolated from E10.5 to E15.5 (Fig-

ures S1D and S1E). To better understand the cell diversity

expressing Nkx2-1 in the developing lung (E11.5–E15.5),
Stem Cell
pan-epithelial and lineage-specificmarkersweremonitored

by quantitative real-time PCR in Nkx2-1-mC+ and Nkx2-1-

mCherry-negative (mC�) sorted cells and by coimmunos-

taining at fetal and adult stages (Figures S1F and S2A–S2J;

data not shown). NKX2-1 was expressed in most of the

specialized airway cells (basal, club, and ciliated), in the

tracheal submucosal glands, and in distal AT2 cells (Figures

S2A–S2J). Therefore, NKX2-1 expression is not restricted

to club or AT2 cells, as generally assumed (Kimura and

Deutsch, 2007).

To assess whether Nkx2-1-expressing cells have progeni-

tor activity, an in vitro colony assay was optimized. The

stage E14.5 was initially selected for two reasons: (1) the

amount of material available and (2) the expression profile

of lineage-specific markers suggested that cytodifferentia-

tion started around this time (data not shown). Proximal

and distal lung epithelial cells were separately sorted based

on Nkx2-1-mCherry expression and embedded in a Matri-

gel-based semisolid medium supplemented with growth

factors, without supporting cells (Figures 1D and 1E).

Morphologically distinct colonies were derived at a higher

frequency in the mC+ fraction in contrast to the mC� frac-

tion (52-fold or 99-fold enrichment of mC+ over mC� col-

onies, from proximal or distal lung regions, respectively;

Figures 1E and 1F). Colonies derived from the proximal

epitheliumhad compact or spheroid shapes of various sizes

with cells tightly connected together (Figure 1E). Colonies

derived from the distal lung epithelium were small with

irregular morphologies (Figure 1E). Within the context of

the provided culture conditions, only the colonies derived

from the proximal lung could be propagated in long-term

culture (e.g., >150 days, 15 passages [p.15]), as illustrated

by cell numbers at first passage postsorting (Figure 1G).

Quantitative real-time PCR was used to assess gene expres-

sion in pooled populations of 12- to 13-day-old colonies

from the second passage (Figure 1H). Colonies derived

from both the proximal and distal lung expressed Nkx2-1,

Scgb3a2, Scgb1a1, Muc5ac, Id2, Pdpn, Aqp5, and Ltf (Fig-

ure 1H). However, expression of basal and ciliated cell

markers (e.g., Trp63, Krt5, and Foxj1) and the distal lung/

AT2 cell marker Sftpc was restricted to colonies derived

from the proximal or the distal lung, respectively (Fig-

ure 1H). Expression of several cell markers was higher in

cultured cells than in freshly sorted E14.5 mC+ parental

cells, a feature more reminiscent of later developmental

stages (Figure 1H). The neuroendocrine (Ascl1) cell marker

was expressed at low level in both colony types (Figure 1H).

Overall, at E14.5, the Nkx2-1-expressing cells gave rise to

colonies with distinct characteristics depending on their

region of origin. We focused on the characterization of

the putative progenitor cells derived from the fetal upper

airways because of their relevance for several pediatric dis-

eases, including cystic fibrosis, asthma, and others.
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Colony Propagation

Media formulation to derive colonies was based on pub-

lished protocols developed for maintaining primary pul-

monary cells/tissues and included fetal bovine serum

(FBS), insulin, modulators of membrane transporters or

cyclic AMP-dependent pathways (forskolin and 3-isobu-

tyl-1-methylxanthine), epidermal growth factor (EGF), he-

patocyte growth factor (HGF), and fibroblast growth factors

(FGFs) 1, 7, and 10 (Figure S3A) (McQualter et al., 2010;

Shannon et al., 1999). Media components were individu-

ally removed to assess their requirements on colony num-

ber, cellularity, and gene expression (Figures S3A–S3L).

Overall, removal of any media component, except the

FGFs, altered the tested parameters (Figures S3A–S3L). Of

note, basal, early ciliated, and mucosecretory cell pheno-

types were differently altered according to the culture con-

ditions (Figures S3D–S3L). Removal of FGFs, in presence of

all other components, caused minimal effect, and colonies

continued to proliferate (data not shown).

To understand the sequential molecular changes occur-

ring during colony propagation, expression analyses by

quantitative real-time PCR for selected gene markers were

conducted over a 12-day time course for two independent

populations of mC+ colonies (p.7 and p.15) (Figures S4A–

S4H). Overall, these results suggested that in established

cultures, basal and early secretory cells were stably present

throughout colony formation (days 2–12), whereas club

and mucociliary cells developed progressively between

each passage (day 6 and after) (Figures S4A–S4H). In addi-

tion, cells from each polyclonal population expressed re-

ceptors for EGF, HGF, and insulin (Figure S4C).

Comparison of In Vitro Progenitor Activity at

E12.5 and E14.5

Next, cell sorting was conducted at an earlier stage (i.e.,

E12.5) to determine whether progenitors with in vitro

potential could be detected prior to E14.5 when the epithe-

lium is less differentiated. Spheroid colonies could be
Figure 1. Colony-Formation Assay with E14.5 Proximal and Dista
(A) mCherry knockin in the Nkx2-1 locus. Gray boxes indicate exons 1
initiation or termination codon.
(B) mCherry fluorescence detected by microscopy in the lungs of an
(C) Cryosection immunostaining showing nuclear NKX2-1 correlating
E13.5 homozygous (homo) Nkx2-1mCherry mouse.
(D) Representative flow cytometry profiles of pulmonary cells harvest
(E) Twelve-day-old colonies derived from sorted cell populations (p.1
(F) Number of colonies observed for the indicated populations (scori
were performed in duplicate (dots). Significance was determined wit
(G) Cellularity monitored at p.2 for a selected experiment. Values rep
(H) Gene expression of selected markers monitored by quantitative rea
populations. Values are normalized to the average of Actb and Hprt1
proximal; dist., distal.
See also Figures S1–S4 and Tables S2 and S3.
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derived from the proximal region more efficiently at

E12.5 than at stage E14.5 (Figures 2A and 2B). E12.5-iso-

lated distal Nkx2-1-expressing cells gave rise to saccular

colonies similar to E14.5-derived samples but with reduced

frequency (Figures 2A and 2B). Immunostaining of prox-

imal polyclonal colonies isolated at stages E12.5 and

E14.5 revealed expression of NKX2-1, P63, and SCGB1A1

in both groups (Figure 2C). Individual E12.5 and E14.5

proximal colonies were isolated at day 20 (p.2) to evaluate

their common or unique expression characteristics by

quantitative real-time PCR (Figure 2D). At E12.5, parental

primary mC+ cells showed an absence or low levels of

most lineage markers tested except Nkx2-1, Sox2, and Krt8

(Figure 2D). At E14.5, parental primary cells expressed

higher levels of Trp63, Krt5, Scgb3a2, Cyp2f2, Muc5ac, and

low levels of other markers (Figure 2D). Colonies derived

from E12.5 stage generally expressed higher levels of Sox2,

Trp63, Krt5, and Ascl1 (Figure 2D). Colonies derived from

E14.5 stage generally expressed higher levels of Krt8,

Reg3g, Upk3a, and Foxj1 (Figure 2D). No differences were

observed for Nkx2-1, Scgb1a1, Scgb3a2, Cyp2f2, Gabrp,

Muc5b, Muc5ac, Ltf, and Aqp5 (Figure 2D). In fact, the

gene expression profile of one E12.5-derived colony (i.e.,

D12) clustered with the E14.5-derived colonies (Figure 2D).

The differentiation level of E12.5–E14.5 proximal lungswas

also verified by immunostaining (Figures 2E–2H). At stage

E12.5 compared to E14.5, fewer epithelial cells expressed

P63 (average frequency of 0.202 ± 0.139 at E12.5 and

0.563 ± 0.100 at E14.5; two-tailed Student’s t test, p =

0.00003, Figure 2E). FOXJ1 and MUC5AC proteins were

weakly detected at stage E14.5, but not at stage E12.5 (Fig-

ures 2F and 2G). The club cell marker SCGB1A1 was not

expressed yet at stage E14.5 (Figure 2H). Overall, spheroid

colonies were efficiently derived from the poorly differ-

entiated proximal lung epithelium at stage E12.5. Once

established, colonies derived from stage E12.5 had higher

expression of basal and neuroendocrine cell markers

compared to colonies derived from stage E14.5. Colonies
l Lung Cells
–3. UTR is shown in the open box. ATG or TGA indicates translation

E13.5 Nkx2-1mCherry mouse.
with cytoplasmic mCherry expression in the lung epithelium of an

ed from WT or heterozygote (het) Nkx2-1mCherry mice.
). BF, bright field.
ng between days 6 and 12). Three independent experiments (Exp.)
h a two-tailed Student’s t test (p value). t.l.c., total live cells.
resent average of duplicate samples with SD.
l-time PCR in the indicated primary sorted cells or polyclonal colony
genes (DCt). DCt >15 may represent low or no expression. prox.,
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derived from stage E14.5 expressed higher levels of selected

club cellmarkers and early ciliated cells. Expression levels of

severalmucosecretorymarkerswere similar for both groups.

Fractionation of Primary Cells with ITGB4

To get a better understanding of the colony-initiating cells,

we aimed to use a cell surface marker to further fractionate

mC+ cells by flow cytometry. First, we did a developmental

time course of basal cell maturation inmouse proximal air-

ways using immunostaining with a panel of known

markers, including cell surface markers (Figure S5A) (Rock

et al., 2009; Wansleeben et al., 2013). P63 was already

detectable at stage E10.5 (Figure S5A). Up to stage E14.5,

the markers of mature basal cells (i.e., PDPN, KRT5,

ITGA6, and NGFR) were either not expressed or not

restricted to P63-expressing cells (Figures S5A and S5B).

P63-expressing cells coexpressed KRT5, PDPN, and ITGA6

at E16.5 and NGFR postnatally (Figure S5A). Therefore, at

stages E12.5–E14.5, P63-expressing cellsmay be considered

as prebasal as suggested before (Daniely et al., 2004), and

classical basal cell surface markers are not useful to frac-

tionate the epithelium.

ITGB4 came to our attention as a candidate proximal

cell surfacemarker following region-specificmicroarray an-

alyses of fetal cells (M.B. and J.R., unpublished data). ITGB4

was previously shown to be a marker of adult basal cells

(Delplanque et al., 2000). Immunostaining of E14.5 wild-

type (WT) lungs revealed ITGB4 expression in the trachea

and conducting airways, but not in the distal acinar tubules

and buds (Figure S5C). ITGB4 was enriched at the basolat-

eral side of tracheal cells attached to the basement mem-

brane (Figure S5C). Using flow cytometry, a range of

ITGB4 expression was detected in proximal mC+ cells al-

lowing segregation according to high or low expression

level (i.e., ITGB4+Hi or ITGB4+Lo, respectively) (Figure S5D).

According to quantitative real-time PCR analysis, this frac-

tionation method significantly enriched prebasal cells

expressing Krt5 mRNA into the mC+ITGB4Hi fraction (p =

0.018), without segregating most mucosecretory cells (Fig-

ure S5E). Functionally, the morphology, expression profile,

and frequency of spheroid colonies were similar with both
Figure 2. Colony Formation of E12.5 and E14.5 Primary Cells
(A) Colony-formation assay with Nkx2-1-mC+ or Nkx2-1-mC� cells sor
E14.5. The left panel shows the colony number from two experiments
cellularity for experiment number 1 (average from two wells with SD)
(B) Images of colonies at 17 days (p.1).
(C) Immunostaining of mC+ colonies derived at E12.5 and E14.5 (16
(D) Quantitative real-time PCR performed with RNA extracted from ind
nonsorted (n.-s.) cells (n = 1 experiment). DCt heatmap with normali
Hprt1 genes. The cutoff was set to a DCt of 10 (Ct 25–34 for referenc
(E–H) Immunostaining of proximal lung epithelial cells from WT mice
See also Figure S5 for fractionation of proximal cells and Tables S2 a
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sorted cell fractions (Figures S5F and S5G; data not shown).

Overall, these data suggested that at stage E14.5, the col-

ony-forming ability did not correlate with the expression

levels of ITGB4 or basal cell markers.

Clonogenicity of Colonies Derived from Stage E14.5

To determinewhether proximal colonieswere derived from

single cells or from aggregation/migration events, a cell-

mixing experiment was performed with sorted mC+ cells

and EpCAM+-stained cells from mice expressing EGFP

ubiquitously (Figure 3A). EpCAM is a marker of epithelial

cells that can also separate fetal lung epithelium from sur-

rounding mesenchyme. The frequency of colony forma-

tion was similar for both mC+ and EpCAM+ populations

sorted individually, suggesting that this ability is similarly

locatedwithin both cell compartments at E14.5 (Figure 3B).

When both differentially labeled cell populations were

mixed together, most colonies were monochromatic mC+

or EGFP+ as monitored with fluorescence microscopy,

suggesting a clonal origin (Figures 3C and 3D). Individual

colonies were confirmed to share similar gene expression

profiles by quantitative real-time PCR (data not shown).

Immunofluorescence of colonies (14–22 days old)

derived from mC+ cells confirmed their multicellularity,

implying proliferation of the initial single cells (Figures

3E–3I). Staining of colonies with NKX2-1 showed wide-

spread cellular expression, but only a fraction of the cells

expressed P63 (Figure 3E). Some colonies expressed MU-

C5AC, whereas SCGB3A2 expression was more widespread

(Figure 3F). In addition, some NKX2-1+ cells expressed

SCGB1A1, FOXJ1, and AQP5 (Figures 3G and 3H). Myoepi-

thelial basal cells expressing KRT5 and SMA could be de-

tected in some colonies, suggesting a submucosal gland

phenotype (Figure 3I). Overall, the mC+ cells produce

clonal colonies able to proliferate and differentiate, demon-

strating progenitor activity.

Clonal Self-Renewal of Colonies

To assess self-renewal capacity, serial passaging of pri-

mary (parental) and secondary (daughter) colonies was

performed to obtain tertiary (granddaughter) colonies
ted from proximal (Prox.) or distal (Dist.) lung regions at E12.5 or
performed in duplicate (average and SD). The right panel shows the
.

days old, p.6).
ividual day 20 (p.2) mC+ colonies (col.) or primary sorted (mC+) or
zation of Ct values of indicated target genes to average of Actb and
e genes). For the lineage marker legend, refer to Figure 1H.
. Ctl+, positive control.
nd S3.
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Figure 3. Clonogenicity and Differentiation of the Colonies Derived from E14.5 Proximal Lungs
(A) Cell-mixing experiment performed with colonies derived from proximal lungs of E14.5 Nkx2-1mCherry or B5/EGFP mice (mCherry and
EpCAM cell sorting, respectively). mC, mCherry.

(legend continued on next page)
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(Figure 4A). When 16- or 20-day-old primary colonies from

E12.5 or E14.5 were isolated and tested for their ability to

give rise to secondary colonies, their clonogenic potential

varied (i.e., 0–1,372 secondary colonies) (Figure 4B). Of

53 tested colonies, 8 (15%) did not give rise to secondary

colonies (Figure 4B). The clonogenic capacity did not corre-

late with the diameter of the primary colonies (Pearson cor-

relation coefficient, 0.26; Figure 4B). During serial

passaging of 14 different series of primary and secondary

colonies derived from mC+ cells at stage E12.5 or E14.5 or

WT E14.5 cells, most secondary colonies tested gave rise

to at least two tertiary colonies (n = 61 out of 76 secondary

colonies tested, i.e., 80%). The number of tertiary colonies

derived from secondary colonies ranged from 0 to 693,

suggesting functional heterogeneity at the cellular level

in parental colonies (Figures 4C and 4D). Overall, the self-

renewal capacity of cells present in most series led to

expansion of the primary colony through two serial pas-

sages (Figures 4C and 4D). Histological analyses confirmed

similar morphology and expression in two selected clonal

culture series (Figure 4E).

To further evaluate the expression characteristics and

heterogeneity, RNA was extracted from individual serial

colonies derived from E12.5 mC+ primary cells at the

time of passaging (Figures 5A–5C). Expression profiling

by quantitative real-time PCR of individual colonies from

three independent series revealed that most of them

show common gene expression (e.g., Nkx2-1, Sox2, Krt5,

Ltf, etc.), but expression of other genes varied (Figure 5D).

For example, in the series initiated with the primary colony

2-D5, two secondary and three tertiary colonies shared a

similar expression pattern of Scgb3a2, Scgb1a1, and other

gene markers (Figure 5D). However, one of the tertiary col-

onies (i.e., 2-D5-3-2) did not express Ltf (Figure 5D). Also,

the expression profile of primary colonies 2-D7 and 2-E1

was similar to 2-D5, although with higher levels of Muc5ac

(Figure 5D). Each of these gave rise to one secondary colony

expressing a low level of both Scgb3a2 and Scgb1a1 (i.e., 2-

D7-1 and 2-E1-1, respectively) and one expressing a higher

level of single or both Scgb3a2 and Scgb1a1 (i.e., 2-D7-3 and

2-E1-2, respectively) (Figure 5D). These expression patterns

were conserved in their daughter-tertiary colonies (Fig-

ure 5D). Overall, these results suggest that a subset of pri-

mary cells derived from fetal proximal lungs can self-renew

and expand in culture and give rise to serial colonies, which

preserve similar expression characteristics. All colonies
(B) Total colony number for each well (average and SD of duplicate w
(C) Representative colonies at day 12.
(D) Scoring of colonies (8–12 days old) based on fluorescence at p.1
(E–I) Immunostaining with indicated antibodies of colonies derived f
p.2–p.6).
See also Table S3.
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tested showed expression of two or more conducting

airway-lineage markers, suggesting that the colony-initi-

ating cells are multipotent progenitors. However, cellular

heterogeneity is also created among colonies, and the

ability to give rise to daughter colonies and/or the differen-

tiation potential may vary. Therefore, the multipotent pro-

genitor cells are functionally heterogeneous.

Multilineage Differentiation Potential of Fetal

Primary Cells and Clonal Progenitor Colonies

To further characterize the differentiation potential of fetal

primary and cultured cells, a repopulation assay of decellu-

larized lung scaffolds was employed. Decellularized adult

rat lung scaffold cultures were maintained for 2–3 weeks

at the air-liquid interface in a defined, serum-free basal me-

dia. First, the potential of E12.5 and E14.5 freshly sorted

primary cells (i.e., mC+ or mC� cells) was tested (see Fig-

ure S6A for initial gene expression). Culture of E14.5 prox-

imal mC+ primary cells on scaffolds led to the formation of

an epithelium constituted of cells expressing markers of

basal, club, and ciliated cells, reminiscent of native tracheal

epithelium (Figure 6A; Table S1). Transmission and scan-

ning electron microscopy (TEM and SEM, respectively)

revealed a polarized epithelium (i.e., apicalmicrovilli, junc-

tional complexes, and basement membrane) with cells of

various morphologies (stages E12.5 and E14.5: Figures 6B

and S7A; Table S1). This included ciliated cells and

glycogen-abundant secretory cells, characteristic of embry-

onic and postnatal respiratory epithelium (El-Gawad and

Westfall, 2000; Massaro et al., 1984). The E12.5 and E14.5

distal mC+ primary cells also gave rise, but less efficiently,

to a polarized epithelium comprised of cells with club, cili-

ated, and basal cell characteristics (Figures S6B and S6C;

Table S1; data not shown). Under these conditions, expres-

sion of SFTPC (i.e., early distal epithelium and/or AT2 cells)

was detected at low levels in scaffolds seededwith distal pri-

mary cells, whereas it was absentwith seeded proximal cells

(Figures 6A and S6B; Table S1). Also, PDPN-expressing cells

that were negative for P63 (i.e., AT1 cells) were sparse or ab-

sent (Figures 6A and S6B; Table S1). In fact, most primary

cells repopulating the scaffolds, either derived from prox-

imal or distal lung regions, expressed SOX2, suggesting

that an airway phenotype predominated (Figures 6A and

S6B; Table S1). Decellularized scaffolds were comprised

mainly of distal lung regions with some areas of main

stem bronchi. Both regions of scaffolds repopulated and
ells; n = 1 experiment).

and p.2 in three independent wells.
rom the proximal lung of E14.5 Nkx2-1mCherry mice (14–22 days old,
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promoted similar airway-lineage differentiation. E14.5

proximal or distal mC� cells repopulated the scaffolds in

a scattered matter, with most cells negative for NKX2-1 or

other epithelial markers (Figure S6D; Table S1; data not

shown).

Next, the potential of polyclonal cultured cells and seven

clones was assessed (see Figure S6A for initial gene expres-

sion and summary in Table S1). Each of these cultures

gave rise to a polarized epithelium comprised of at least

two to three distinct proximal cell types characterized by

immunostaining and/or electron microscopy (Figures 6C,

7A, 7B, and S7B–S7D; data not shown; summary in Table

S1). Basal and secretory cells predominated, and the poly-

clonal and clonal cultured cells had variable/lower potential

to generate ciliated cells (Figures 6C, 7A, 7B, and S7B–S7D;

data not shown; Table S1). The engraftment phenotypes of

cultured cells were consistent with quantitative real-time

PCR and immunostaining analysis of the spheres (Figures

2C, 3E–3H, 4E, 5D, and S6A). Aside from airway surface

epithelial markers, immunostaining analyses suggested

the presence of myoepithelial basal cells in the colonies

(Figure 3I). In agreement with these results, SEM imaging

revealed the presence of pits reminiscent of the formation

of submucosal glands in the clonal cultures (Figure 7B)

(Smolich et al., 1978). As expected, expression of NKX2-1

or mCherry was associated with all cell types repopulating

the scaffolds (Figures 6A, 6C, 7A, S6B, S7B, and S7C; data

not shown). Repopulation with colony cultures led to

extensive SOX2 expression and absence of SFTPC expres-

sion (Figures 6C, 7A, S7B, and S7C; Table S1; data not

shown). Overall, primary and cultured cells isolated from

proximal lungs could engraft when seeded onto decellular-

ized lung scaffolds, generating a polarized epithelium

comprising at least two different airway cell types.
DISCUSSION

In this study, we demonstrated that a subset of Nkx2-1-ex-

pressing cells, derived from the mouse fetal proximal

airways, has in vitro clonogenic and multilineage differen-

tiation potential toward airway surface epithelium and
Figure 4. In Vitro Self-Renewal of Primary Fetal Lung Cells
(A) Serial passaging of colonies to assess in vitro self-renewal.
(B) The capacity of isolated primary colonies to give rise to secondar
primary colonies were isolated at p.2–p.3 from two independent expe
(C and D) Serial passaging of isolated primary and secondary colonies
expansion. For colonies derived from stage E12.5 (C) or E14.5 (D), prim
colonies at p.3 or p.4 (16 days old), respectively. Each dot represent
colony. For each clonal series, daughter colonies from four to five pri
(E) Paraffin section immunostaining of primary clones 3-G5 and 3-H5
See also Table S3.
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submucosal gland cells. Nkx2-1-expressing cells from

E12.5–E14.5 lungs could generate single-cell-derived

epithelial spheres that could be propagated and passaged

for an extended period of time in culture due to their

self-renewal capacity. These spheres contained differenti-

ated cells predominantly expressing markers of basal and

secretory lineages, with less efficient generation of ciliated

and submucosal gland cells. Our findings are in agreement

with published work suggesting that the submucosal

glands are derived from the tracheal epithelium postna-

tally (Engelhardt et al., 1995). Moreover, our data extend

the observations that the early lung anlage has the poten-

tial to generate both tissues (Péault et al., 1994) and sug-

gest that the tissues arise from clonogenic multipotent

progenitors already present in the proximal region at stage

E14.5.

An additional feature of our system compared to other

in vitro methods to maintain clonal adult proximal pro-

genitors/stem cells (Hegab et al., 2011; Rock et al., 2009)

is the enhanced ability to capture precursors that will

differentiate into mature secretory club cells. Not only

could we readily detect SCGB1A1 expression by immuno-

staining, but also ultrastructural analysis revealed the pres-

ence of cells coveredwithmicrovilli and actively producing

secretory granules. Moreover, our culture conditions allow

the obtainment of a diversity of club cells according to the

expression of region-specific markers such as Reg3g, Gabrp,

and Upk3a (Guha et al., 2014).

The relationships of the proximal fetal lung progenitor

pool characterized in this study to other epithelial cell

types remain to be investigated. In the proximal lung of

adult animals, either club cells expressing SCGB1A1 or

basal cells expressing KRT5, ITGA6, and NGFR (and others)

acts as multipotent progenitor/stem cells (Rawlins et al.,

2009b; Rock et al., 2009; Tata et al., 2013). However, at

the stage of fetal development that we studied (i.e.,

E12.5–E14.5), the mature cells characterized by these

markers are not detectable yet. These early proximal pro-

genitors are also distinct fromother populations previously

characterized in murine fetal lungs. For example, they

functionally differ from early secretory cells expressing

Scgb3a2 and Upk3a (Guha et al., 2012) because they give
y colonies did not correlate with their sizes. Sixteen- to 20-day-old
riments (exp.) (sorting day = p.1).
resulted in the formation of tertiary colonies through self-renewal
ary colonies were isolated at p.2 or p.3 (16 days old) and secondary
s the number of daughter colonies derived from a unique parental
mary or from four to six secondary colonies were scored.
, and two daughter cultures for each (15–17 days old, p.6–p8).
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Figure 5. Self-Renewal Assessed with Individual Serial Colonies
(A) In vitro self-renewal assay with serial single colonies and RNA extraction.
(B) Number of secondary colonies derived from half of 18-day-old primary colonies (n = 4 primary colony series, p.1) and number of tertiary
colonies derived from half of 23-day-old secondary colonies (n = 4–8 secondary colonies tested per series, p.2).

(legend continued on next page)
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rise to basal and submucosal gland cells in addition to club

and ciliated cells. Also, their proximal location and lineage

contribution differ from the distal multipotent tip cells or

bipotent alveolar progenitors (Desai et al., 2014; Rawlins

et al., 2009a). Therefore, we believe that our characteriza-

tion of early proximal lung progenitors extends our knowl-

edge of the cellular mechanisms of fetal pulmonary

development.

Postnatal basal cells are multipotent stem cells in the

mouse and human upper airways and, perhaps, in the hu-

man lower airways where they are also found (Rock et al.,

2009). Prebasal cells expressing P63 were found as early as

E10.5 in mouse proximal lungs. Fractionation of E14.5

mC+ cells with ITGB4 revealed that the colony-formation

frequency did not correlate with the enrichment of pre-

basal cells in the ITGB4+Hi fraction. Therefore, our results

suggest either that nonbasal epithelial cells adopt a basal-

progenitor fate when isolated from other cells, as observed

with adult lungs (Tata et al., 2013), or a nonbasal or undif-

ferentiated cell population(s) of the fetal trachea is

endowed with in vitro clonogenic self-renewal and differ-

entiation potential. Supporting the latter possibility, a

tracheal epithelium comprised of ciliated and other

columnar cells does develop in fetal mice lacking basal cells

(Daniely et al., 2004), and we efficiently derived more col-

onies at E12.5 when P63+ cell numbers were lower than at

E14.5. Therefore, additional clonal and functional analyses

will be required to distinguish whether the progenitor

activity is a property of a specific cell subpopulation(s) or

whether all earlyNkx2-1+ cells act as facultative progenitors

depending on the environmental context.

Our findings are likely relevant to human biology. In hu-

man lungs, basal cells are detectable at gestational age

25 weeks and later (KRT14+) (Broers et al., 1989). Up to

gestational age 10 weeks, the lung epithelium comprises

unspecialized columnar cells (Broers et al., 1989). Undiffer-

entiated fetal human lung bud tissues or cell suspensions

(stage 5–8 weeks) can reconstitute a pseudostratifiedmuco-

ciliary epithelium in vivo in denuded trachea explants

(Delplanque et al., 2000). In comparison to our study, 8-

week-old fetal human lungs correlate with E12.0 murine

lungs (Kimura and Deutsch, 2007). Here, we show that

some E12.5 mouse cells isolated from the poorly differenti-

ated proximal airway epithelium are multipotent and self-

renewing. Identification of this same progenitor popula-

tion during differentiation of human pluripotent stem cells
(C) Images of colonies isolated in assay described in (B). Primary (1ary)
and 22 days old (p.3), respectively. The number of daughter colonies
(D) Quantitative real-time PCR with RNA isolated from colonies depict
mC+ proximal (prox.) cells and nonsorted (n.-s.) adult proximal tissue
indicated target genes to Actb (DCt). The cutoff was set to a DCt of
See also Table S2.
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to lung cells could provide a renewable resource of lung

progenitors for disease modeling and lung repair.

Finally, our Nkx2-1mCherry reporter mouse line, pheno-

typically normal in a homozygous state, is a practical al-

ternative to the Nkx2-1EGFP reporter mouse previously

reported, which has to be maintained in a heterozygous

state because one allele of the gene is disrupted (Longmire

et al., 2012). Ourmouse line is advantageous for in vivo ex-

periments because heterozygous or homozygous Nkx2-1

mutations are haploinsufficient or lethal, respectively (Ki-

mura et al., 1996; Pohlenz et al., 2002).

In conclusion, this manuscript describes a progenitor

population derived from the fetal proximal lungs that

show long-term proliferation in vitro due to their self-

renewal capacity. These early cells give rise to basal and

secretory cells either inside clonogenic colonies or upon

engraftment onto decellularized lung scaffolds. Overall,

this study identifies a discrete population of primary fetal

proximal airway cells acting as regional progenitor cells

that can be maintained, expanded, and used as an

in vitromodeling system to study pulmonary development

and associated pediatric diseases.
EXPERIMENTAL PROCEDURES

Gene Targeting
The Nkx2-1 knockin vector comprised an internal ribosomal entry

site (IRES) coupled to anmCherry reporter gene (Clontech Labora-

tories), twohomology arms spanning chromosome 12 (57630246–

57637428; National Center for Biotechnology Information

37/mm9, 2007), a Flp recombination target-flanked Pgk-puro-tk

(van der Weyden et al., 2005), and a diphtheria toxin fragment A

counterselection cassette. The targeting vector was sequenced,

linearized, and electroporated in 107 R1 ESCs maintained as

described by Nagy et al. (1993). Following puromycin selection

(1.5 mg/ml; Sigma-Aldrich), genomic DNA of isolated ESC clones

was extracted with DNAzol (Invitrogen). Additional details are

described in the Supplemental Experimental Procedures, Figure S1,

and Table S2. The Pgk-puro-tk cassette was removed by transient

expression of a FlpO plasmid (Raymond and Soriano, 2007).

Generation of the Nkx2-1mCherry Mouse Line
Two targeted ESC clones (i.e., F4-6 and H1-2), confirmed euploid,

were aggregated with CD1 morulae. Chimeric males were crossed

with WT Institute for Cancer Research (ICR) females. Germline

transmission was confirmed for the line H1-2. Nkx2-1mCherry

mouse line was maintained in a mixed 129 3 ICR genetic
, secondary (2ary), and tertiary (3ary) colonies are 18 (p.1), 23 (p.2),
is indicated in parentheses.
ed in (C) from three serial series, as well as the initial sorted E12.5
control. DCt heatmap is shown with normalization of Ct values of

8 (Ct 24.5–36.9 for Actb).
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Figure 6. Repopulation of Decellularized Lung Scaffolds with E14.5 Primary or Polyclonal Cultured Cells
(A) Immunostaining of scaffolds repopulated with primary E14.5 Nkx2-1-mC+ cells freshly sorted from proximal lungs.
(B) TEM showing secretory, ciliated, and basal cells in addition to epithelial polarization. Asterisk (*) indicates glycogen lakes.
(C) Immunostaining (top) and electron microscopy (bottom) of scaffolds repopulated with polyclonal E14.5 mC+ cultured cells. The single
asterisk (*) indicates that the matrix is representative of compact electron opaque and loosely associated filamentous material. The double
asterisks (**) indicate that the cytoplasm contains endoplasmic reticulum- and Golgi-derived membranes typical of a secretory cell.
See also Figures S6 and S7 and Tables S1 and S3.
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background. Refer to the Supplemental Experimental Procedures

for genotyping.

Mouse Husbandry
Mouse husbandry and manipulations were done in agreement

with Canadian Council for Animal Care guidelines at the Toronto

Centre for Phenogenomics. The day of the vaginal plug was

considered as E0.5.
646 Stem Cell Reports j Vol. 3 j 634–649 j October 14, 2014 j ª2014 The A
Flow Cytometry
Fetal tissues were microdissected with tweezers under a stereomi-

croscope. The trachea and two primary extrapulmonary bronchi

(i.e., proximal lung region) were separated from the branching

distal lung region (Figure 1B). Tissue pools were trypsinized at

37�C (0.25% trypsin-EDTA; Invitrogen). For E16.5 and older distal

lungs, red blood cells were lysed with a commercial buffer (Sigma-

Aldrich). Cells were resuspended at %5 3 106/ml in 1% FBS-PBS
uthors



Figure 7. Repopulation of Decellularized Lung Scaffolds with Serial Clonal Cultures Derived from E14.5 Proximal Lungs
(A) Section immunostaining of scaffolds repopulated with indicated Nkx2-1-mC+ clonal cultures.
(B) SEM and TEM showing the epithelial morphology of clonal cultures in scaffolds. Overall, clonal cultures give rise to at least two to three
distinct proximal cell types. Ø, decellularized lung matrix.
See also Figures S6 and S7 and Tables S1 and S3.
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with propidium iodide to exclude dead cells (Sigma-Aldrich;

P4864, 1:3,000) and sorted with a MoFlo (Beckman Coulter) ap-

paratus. For cell-mixing experiments, E14.5 proximal lung cells

were sorted either from the Nkx2-1mCherry mouse line (mCherry

expression) or EGFP mice (B5/EGFP: STOCK Tg(CMV-GFP)

1Nagy) (EpCAM-PECy7 staining; Table S3) (Hadjantonakis et al.,

1998). For staining protocols, refer to the Supplemental Experi-

mental Procedures. Results were analyzed with FACSDiva (BD Bio-

sciences) and FlowJo (TreeStar) software.
Culture of Primary Colonies
Control media 1 (Figure S3A) was prepared with the following re-

agents: Dulbecco’s modified Eagle’s medium/F12 (Invitrogen), 3%

FBS (Invitrogen), 10mg/ml insulin (Sigma-Aldrich), 10mMforskolin

(Sigma-Aldrich), 10 mMIBMX (Sigma-Aldrich), 25 ng/ml EGF (R&D

Systems), 10 ng/ml HGF (R&D Systems), 25 ng/ml FGF7 (R&D

Systems), 100 ng/ml FGF1 (R&D Systems), 30 ng/ml FGF10

(R&D Systems), 100 U/ml penicillin/streptomycin (Invitrogen),
Stem Cell
2 mM GlutaMAX (Invitrogen), and 0.15 mM a-thioglycerol

(Sigma-Aldrich). Medium was mixed 1:1 with growth factor-

reduced Matrigel (BD Biosciences; #356231) and solidified in in-

serts (0.4 mmpores; BD Biosciences; #353180 and #353095). Liquid

media were added to the bottom chamber and changed every

2–3 days. Cells weremaintained at 37�Cwith 10%CO2. Additional

details are included in the Supplemental Experimental Procedures.

Fluorescence Imaging
Macroscopic imaging of tissues or fetuses was done with a stereo-

microscope (Leica MZ16F). Imaging of colonies was done with

the stereomicroscope or a Leica DMI6000B inverted microscope.

Both systems are described in the Supplemental Experimental

Procedures.

Quantitative Real-Time PCR
RNA was extracted with TRIzol (Ambion), and cDNA was synthe-

sized with the QuantiTect Kit (QIAGEN). Gene expression was
Reports j Vol. 3 j 634–649 j October 14, 2014 j ª2014 The Authors 647
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assessed using the Roche LightCycler 480with custom SYBRGreen

assays described in Table S2 and the Supplemental Experimental

Procedures. Threshold cycle (Ct) values were determined using

the advanced relative quantification algorithm for each target

gene (Cttarget) as well as Actb andHprt1 reference genes (Ctreference).

DCt heatmaps (i.e., DCt = Cttarget � average Ctreference) were pro-

duced in part using MeV, with or without the hierarchical clus-

tering function (Saeed et al., 2006). The comparative Ct method

was employed (2�DDCt; DDCt = DCtsample � DCtcalibrator) for Figures

S3D–S3L, S4B–S4H, and S5E. Relative gene expression values for

calibrators were set to one (1), and values of target genes were

represented as fold changes.

Repopulation of Decellularized Rat Lung Scaffolds
Optimized procedures to decellularize the distal lungs of rats were

adapted from previously published protocols by Petersen et al.

(2010) and will be described elsewhere (S.S. andM.P., unpublished

data). Dissociated primary and cultured cells, 50,000–100,000 cells

or 10–20 colonies, were seeded onto 300- to 400-mm-thick sections

of decellularized scaffolds. Cultures were maintained for 14–

21 days on floating membranes (Nuclepore Track-Etched mem-

branes, 8.0 mmpores) in a serum-free basal differentiationmedium

changed every other day (S.S. and M.P., unpublished data). Cul-

tures were maintained at 37�C with 5% CO2.

Histology and Immunostaining
For cryosections, samples were fixed with 4% formaldehyde, incu-

bated in 30% sucrose, embedded in optimum cutting temperature

compound (Tissue-Tek), and sectioned at 10 mM. For paraffin sec-

tions, primary tissues were fixed as described above, dehydrated,

and embedded in paraffin wax. Colonies or lung scaffolds were

embedded in HistoGel (Thermo Scientific) prior to fixation.

Samples were processed according to standard conditions and

sectioned at 4 mM. Standard immunostaining techniques and

confocal microscopy are described in the Supplemental Experi-

mental Procedures. Antibodies are listed in Table S3.

Electron Microscopy
Cell cultureswere fixed in 2.5%glutaraldehyde in 0.1Mphosphate

buffer (pH 7.4). Details for TEM and SEM are described in the Sup-

plemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and three tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.07.010.
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Yuan at the SickKids-UHN Flow Cytometry Facility as well as Lily
648 Stem Cell Reports j Vol. 3 j 634–649 j October 14, 2014 j ª2014 The A
Morikawa and Patricia Feugas at the TCP histology core. We thank

MichaelWoodside and Paul Paroutis at the SickKids Imaging Facil-

ity. The pFlexible plasmid was a gift from Dr. Allan Bradley. This

research was supported by a grant from the Canadian Institutes

of Health Research (CIHR; grant RMF-92088).M.B. received fellow-

ships from a CIHR/Canadian Lung Association/GlaxoSmithKline

partnership and from the Fonds de la Recherche en Santé du
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