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ABSTRACT

Experiments that are planned using accurate pre-
diction algorithms will mitigate failures in re-
combinant protein production. We have devel-
oped TISIGNER (https://tisigner.com) with the aim
of addressing technical challenges to recombi-
nant protein production. We offer three web ser-
vices, TIsigner (Translation Initiation coding re-
gion designer), SoDoPE (Soluble Domain for Protein
Expression) and Razor, which are specialised in syn-
onymous optimisation of recombinant protein ex-
pression, solubility and signal peptide analysis, re-
spectively. Importantly, TIsigner, SoDoPE and Razor
are linked, which allows users to switch between the
tools when optimising genes of interest.

GRAPHICAL ABSTRACT

INTRODUCTION

Recombinant protein production is a key process for life
science research and the development of biotherapeutics.
However, low protein expression and aggregation are the

two major bottlenecks of recombinant protein production
(1–7). Since mRNA abundance alone is insufficient to ex-
plain protein abundance (8–12), several features of mRNA
sequence have been proposed to affect protein expression.
These features are mostly related to codon usage, such as
the codon adaptation index and tRNA adaptation index
(13–17), or measures of mRNA secondary structure, such
as G+C content, minimum free energy (MFE) of RNA sec-
ondary structure, and mRNA:ncRNA interaction avoid-
ance (18–23). Many of these features are not independent,
making it challenging to distinguish the impacts of indi-
vidual features (24). This, in turn, hinders the development
of accurate prediction/optimisation tools. Recent system-
atic studies suggest that MFE is the most important feature
in protein expression (24,25). However, more recent work
shows that the mRNA accessibility of translation initiation
sites outperforms MFE in predicting relative protein levels
from mRNA sequences (26,27). Accessibility is computed
by considering all possible structures for a region, weighted
by free energy, not just the single structure with the MFE
(28).

In addition to high protein expression level, high solubil-
ity is preferable for the purification and long-term storage of
recombinant proteins. However, almost half of the success-
fully expressed proteins are insoluble (http://targetdb.rcsb.
org/metrics), which makes the recombinant protein produc-
tion process challenging. A number of methods have been
suggested to improve protein solubility, for example, trun-
cation, mutagenesis, and the use of solubility-enhancing
tags (2,29–31). Nevertheless, accurate solubility prediction
could save resources and aid in designing soluble pro-
teins before the experiments. With these in mind, we have
recently formulated the solubility-weighted index (SWI),
which outperforms recent solubility prediction tools based
on machine-learning algorithms (32).

Besides, many recombinant proteins of interest are secre-
tory. The intracellular accumulation of heterologous secre-
tory proteins may be toxic to the host cells. Therefore, the
translocation efficiency of these proteins plays an impor-
tant role in the yield quantity and quality. Secretory pro-
teins usually have a short peptide at the N-terminus called
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signal peptide (SP), which is responsible for the transloca-
tion of secretory proteins via the Sec, signal recognition par-
ticle (SRP) or twin arginine transport (Tat) pathways (33–
36). Detection of SPs or fusion of a suitable SP at the N-
terminus is useful for optimising protein production (37–
40). In addition, different pathways have different advan-
tages, for example, the SRP dependent pathway can be used
for rapidly folding proteins (41). However, the Sec depen-
dent pathway, which is common across all forms of life,
has been widely used for recombinant protein expression
because of higher protein production capacity and quality
(41,42). In addition, the presence of SPs should almost al-
ways be checked when planning the expression experiments
for uncharacterised proteins.

Existing web tools predict or optimise either protein ex-
pression or solubility alone (43–51). Several web tools ex-
ist for predicting SPs (52–56). Only a very few tools can
detect toxic proteins, for example, SpiderP, ClanTox and
ToxinPred (57–59). These tools are either limited to pre-
dicting the venoms of certain organisms, such as spiders,
or they are not designed to predict the signal peptides of
toxins, rather to predict the toxicity of mature peptides.
Moreover, these tools are offered through different inde-
pendent services. We reasoned these functionalities should
be integrated in order to assist not only in choosing ap-
propriate expression systems, but also in optimising the ex-
pression and solubility levels of recombinant proteins. Here
we present TISIGNER.com that integrates the optimisa-
tion tools TIsigner (translation initiation coding region de-
signer), SoDoPE (soluble domain for protein expression)
for protein expression and solubility, respectively, and Ra-
zor for detecting SPs (26,32,60). Our web application pro-
vides easy, fast and interactive ways to assist users in plan-
ning and designing their experiments.

WEB SERVICES

TIsigner

TIsigner offers tunable protein expression by optimising the
mRNA accessibility of translation initiation sites (26). The
regions used to calculate accessibility (opening energy) are
specific to the expression hosts, which is calculated using
RNAplfold (28,61,62). For Escherichia coli, Saccharomyces
cerevisiae, and Mus musculus expression hosts, the opti-
mal regions relative to the start codon for optimisation are
−24:24, −7:89, −8:11, respectively. For other expression
hosts, we provide an option ‘Other’, which optimises the
accessibility of the region −24:89. Since E. coli is the most
popular expression host, the default settings aim to opti-
mise protein expression in E. coli with the T7 lac promoter
system (see below). In this case, only the protein coding se-
quence is required for input where the 5′UTR (5′ untrans-
lated region) sequence used as default is the most popular,
truncated version of the T7 promoter (63) (Figure 1). Oth-
erwise, the 5′UTR sequence is also required. For 5′UTRs
shorter than 71 nucleotides, upstream sequences can be
used to extend the UTRs.

The settings for TIsigner are grouped by complexity
(i.e. general, extra, and advanced). The general settings in-
clude the options to modify the expression host, promoter

and target expression score. The target expression score
ranges from 0 to 100 (i.e. from the minimum to maximum
predicted level), which is derived from a logistic regres-
sion of the opening energy distribution of 11 430 expres-
sion experiments in Escherichia coli from the ‘Protein Struc-
ture Initiative: Biology’ (PSI:Biology) (64,65). Hence, this
scoring system is only applicable to the E. coli T7 lac pro-
moter system. Since, there is a non-linear relationship be-
tween opening energy and expression score, an interactive
plot is also displayed along with the slider to set the tar-
get expression score. For other expression hosts and pro-
moters, the target expression level can be either maximised
or minimised (i.e. binary). The extra settings have the op-
tions to optimise sequence within the translation initia-
tion region or the full-length sequence. The AarI, BsaI,
BsmBI restriction modification sites are filtered by default,
whereas other sites can be manually supplied (e.g. a Shine-
Dalgarno motif or terminator U-tract). The advanced set-
tings allows users to tweak the random seed and sampling
options (i.e., quick or deep, which uses different numbers of
iterations and parallel processes). Here users can also cus-
tomise the region for optimisation or disable the terminator
checks.

Once the input sequence passes a sanity check, the opti-
misation task is rapid [O(1) time using RNAplfold v2.4.11
(using parameters -W 210 -u 210)] with our simulated an-
nealing algorithm. A list of optimized sequences are re-
turned after checking for terminators using cmsearch (In-
fernal v1.1.2) (66) with RMfam models (67,68). If termi-
nators are found, an option to use the full-length sequence
for optimisation will be prompted to users. In a default case
(E. coli T7 lac promoter system), the optimised sequence
closest to the chosen expression level is selected as the first
solution (Figure 2). For other expression hosts and/or pro-
moters, the optimised sequence with the minimum changes
in nucleotides is selected as the first solution. The altered
nucleotides are highlighted (Figure 2). The accessibility of
translation initiation sites for both the input and optimised
sequences is shown as opening energy (kcal/mol). The re-
sults can be exported as a PDF or CSV file. When the
default settings are used, the opening energy for each se-
quence is indicated on the distributions of the opening
energy of 8780 ‘success’ and 2650 ‘failure’ groups of the
PSI:Biology target genes. Furthermore, options for solubil-
ity and SP analyses using SoDoPE and Razor, respectively,
are available for each sequence on the same results page
(Figure 2).

SoDoPE

SoDoPE is our interactive solubility analysis and optimi-
sation tool based on the SWI (32). SoDoPE accepts either
a nucleotide or protein sequence (Figure 1). Upon submis-
sion, a query is sent to the HMMER web service for do-
main annotation (69). Successful annotations are displayed
as interactive graphics, in which the annotated domains are
represented as discorectangles, above a grey band that rep-
resents the input protein sequence (Figure 3). Information
about a protein domain is shown upon a mouse hover. The
domains can be selected for solubility analysis. For a com-



W656 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

Figure 1. Flow chart for optimising recombinant protein production using the TISIGNER web application. TIsigner, SoDoPE and Razor are linked so
that protein expression and solubility can be seamlessly optimised. TIsigner accepts a nucleotide sequence as input, whereas SoDoPE and Razor accept
either a nucleotide or protein sequence. SoDoPE, soluble domain for protein expression; TIsigner, translation initiation coding region designer.

plete domain annotation report, a link to the HMMER re-
sults page is also provided.

In addition, a two-way slider is available for navigation
through any region of interest (Figure 3). The probability
of solubility, flexibility and GRAVY (grand average of hy-
dropathicity) is shown in real-time according to the user-
selected region. The selected region is optimised for higher
solubility using simulated annealing. Only the regions with
extended boundaries and also higher probability of solubil-
ity is returned. SP analysis can also be done using Razor
(see below).

A profile plot of flexibility and/or hydrophilicity corre-
sponding to the user selected region is generated (Figure
3). This allows an estimation of rigid/flexible regions and
possible helices, that may be helpful for mutagenesis exper-
iments. The sequence of the selected region is shown, with
the option of sequence conversion between nucleotide and
amino acid sequence format. In particular, the nucleotide
sequence can be redirected to TIsigner for optimising pro-
tein expression (Figures 1 and 3, through the ‘view DNA |
optimise expression’ button).

The contributions of several solubility-enhancing tags to
user selected regions can be compared and shown in a bar
plot, including thioredoxin (TRX), maltose binding pro-
tein (MBP), small ubiquitin-related modifier (SUMO) and
glutathione-S-transferase (GST) tags (Figure 3). Users can
also input a fusion sequence of interest either in a nucleotide
or protein sequence format.

Razor

Razor is our SP prediction tool which is based upon ran-
dom forest models of protein features from the eukaryotic
SP sequences of the SignalP 5.0 dataset and the animal toxin
annotation project (52,60,70). Razor accepts either a pro-
tein or a nucleotide sequence (Figure 1). After validation,
the N-terminal region is checked for the presence of a SP
using five random forest models. This gives five SP scores
(S-scores) for a given sequence. For detecting the cleavage
site, we use a sliding window of 30 residues and our opti-
mised weight matrix for residues around the cleavage site.
The scored subsequences are scored by additional five ran-
dom forest models to give the cleavage site scores (C-scores)
along the sequence, which is displayed as a step plot (Fig-
ure 4). The Y-score, which is the geometric mean of S-scores
and the max of C-scores, is used to infer whether the given
sequence has a SP or not. The median of these five Y-scores
is displayed as the final score. The cleavage site from the
model with the median of max of C-scores is used to an-
notate the predicted region.

If any of the models detect a SP in the input sequence, we
further check whether the SP belongs to toxins, using five
random forests trained on toxin SPs. The final toxin score
is the median of scores from those random forest models.
Furthermore, since we noticed a lack of tools specialising
in predicting SPs from fungi, any detected signal peptide
is checked for such origin. Similarly, we use five random
forests for detecting fungal SPs, with the final fungal score
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Figure 2. The results of TIsigner shows a protein expression optimised nucleotide sequence. The highlighted nucleotides show changes made to the input
sequence. The opening energy of the input sequence before and after optimisation is annotated over the distributions of the opening energy for 8780
‘success’ and 2650 ‘failure’ experiments from PSI:Biology. Further optimised sequences, if found, are also displayed. The results can be downloaded in
either CSV or PDF format using the download icon on the bottom right. Each resulting sequence can be analysed for solubility or signal peptide.
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Figure 3. Exploring and optimizing protein solubility using SoDoPE interactive graphics. Upon clicking a protein domain or selecting a region of interest,
its solubility is optimised in real-time, and a list of regions with extended boundaries and higher probabilities of solubility is returned as green buttons
(clickable). The probabilities of solubility of the selected region with and without fusion tags can be visualized in a barplot. The flexibility and hydropho-
bicity profile plots for the selected region can also be selectively viewed. The sequence can also be checked for the presence of a signal peptide or optimized
for protein expression.
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Figure 4. Detection of signal peptides using Razor. The dotted annotation in the step plot for the cleavage site scores (C-scores) shows the most likely
position for proteolytic cleavage. The sequence can also be checked and optimised for protein solubility and expression.

being the median score of these models. Since we have five
random forest models in each step (eukaryotic, toxin and
fungal SP detection steps), stars are displayed as an indi-
cation of the number of models agreeing on the sequence
falling on either category (Figure 4).

Razor is linked with SoDoPE for checking and optimis-
ing protein solubility (Figure 4). If a nucleotide sequence
was submitted, this sequence can also be optimised for pro-
tein expression using TIsigner (Figure 1).

DISCUSSION

Low protein expression and solubility are the major hin-
drances to a successful recombinant protein production.
Based on our comprehensive studies on these two problems,
we have developed novel tools to optimise protein expres-
sion (TIsigner) and solubility (SoDoPE), and assessed their

predictive performance using independent datasets (Sup-
plementary Table S1). Our tools offer some unique features
in an interactive way. TIsigner allows tuning of protein ex-
pression from low to high levels, whereas SoDoPE allows
easy navigation of protein sequence/domains with real-time
solubility prediction. Based on our assessment of similar
tools, none of the publicly available tools provides these fea-
tures.

Our third tool, Razor, is designed to check the presence
of SPs. Compared to other related tools, Razor also pre-
dicts toxin and fungal SPs (Supplementary Table S2). These
would be helpful for users in choosing the expression and
purification systems that prevent the harmful intracellular
accumulation of recombinant secretory proteins/toxins.

Our tools are interactive, fast, and accurate. Importantly,
our tools are highly integrated, allowing a seamless transi-
tion between the optimisation tools. To make such transi-
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tion intuitive, our web services limits one input sequence at
a time and we aim to remove this input sequence limitation
in the future. For optimising a large number of sequence, we
provide the command-line version of each of our tools (see
below).

GENERAL INFORMATION

Demo input and results are available for new users to get
started. A list of frequently asked questions is also avail-
able for each tool. The frontend is written in React and uses
responsive web design principles. The backend is written
in Flask and Python v3.6. The website is hosted on a vir-
tual machine (Red Hat Enterprise Linux 8) running on Intel
Xeon (8 × 2.60 GHz) with 4GiB RAM, by the Information
Technology Services at the University of Otago.

DATA AVAILABILITY

The web server is available at https://tisigner.com. This
website is free and open to all users and there is no login
required. All our tools, and the website are open-sourced
(https://github.com/Gardner-BinfLab/TISIGNER-
ReactJS; https://github.com/Gardner-BinfLab/TIsigner/
tree/master/TIsigner cmd; https://github.com/Gardner-
BinfLab/SoDoPE paper 2020/tree/master/SWI;
https://github.com/Gardner-BinfLab/Razor) and pri-
vacy friendly (no data stored).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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