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A B S T R A C T   

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS- 
CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The 
cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID- 
19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control 
group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute 
COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in 
relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 
WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontopar-
ietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by 
chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with 
cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and 
multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID- 
19, with the potential for long-term consequences on cognitive function and mental wellbeing.   

1. Introduction 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
causes human coronavirus disease 2019 (COVID-19) with multi-system 
effects that include neurological, vascular and neurovascular injury. 
Acute neurological sequelae are common, ranging from mild dizziness, 
headaches and anosmia to severe encephalitis, stroke and delirium 
(Chen et al., 2021; Hensley et al., 2022; Paterson et al., 2020; Zubair 
et al., 2020). These sequelae may arise from systemic physiological in-
sults (e.g. hypoxia, hypotension, dysautonomia), coagulation dysfunc-
tion, large vessel occlusion, arterial stiffness, impaired vasoreactivity, 
neurotropic infection, parenchymal haemorrhage, or autoimmune re-
sponses against diverse antigens (Chen et al., 2021; Marcic et al., 2021; 
Mohkhedkar et al., 2021; Schnaubelt et al., 2021). Acute COVID-19 has 
also been associated with microvascular injury from vasculitis or 
endotheliitis (McGonagle et al., 2021a; McGonagle et al., 2021b), with 
endotheliopathy (Kakarla et al., 2021), vasogenic oedema and micro-
thrombosis in the acute phase (Iba et al., 2020; Levi et al., 2020) and 
hypoperfusion in the subacute phase (Hosp et al., 2021). While this 
acute pathophysiology is detectable using neuroimaging (Hanafi et al., 
2020; Lersy et al., 2021; Newcombe et al., 2021), the persistence and 
effects of cerebrovascular dysfunction over the medium- and long-term 
remain unknown. 

An important aspect of cerebrovascular function is the capacity of 
cerebral vessels to constrict or dilate in response to physiological con-
ditions such as alterations in carbon dioxide (CO2) and oxygen tension. 
This cerebrovascular reactivity (Willie et al., 2014) regulates regional 
blood flow via pH-dependent modulation of vascular smooth muscle 
tone (Ainslie et al., 2005; Jensen et al., 1988; Lambertsen et al., 1961; 
Lassen, 1968), but is compromised by arterial stiffness, compromised 
endothelial function (Brandes et al., 2005), or disorders including hy-
pertension, traumatic brain injury and dementia. Poor cerebrovascular 
reactivity may also increase the risk of neurodegeneration (Gao et al., 
2013). 

We therefore assessed the impact of COVID-19 on chronic cerebro-
vascular reactivity after hospitalisation. We used a well-established non- 
invasive imaging method, exploiting naturally occurring fluctuations in 
arterial CO2 induced by variations in cardiac and respiratory cycles, 
which moderate the blood oxygenation level-dependent (BOLD) signal 
underlying functional magnetic resonance imaging (Birn et al., 2006; 
Glover et al., 2007). The BOLD signal variability at rest, known as 
resting state fluctuation amplitudes (RSFA), is a safe, scalable and robust 
alternative to the gold standard approaches of measuring cerebrovas-
cular reactivity with MRI (Golestani et al., 2016; Kannurpatti and 
Biswal, 2008; Liu et al., 2017; Tsvetanov et al., 2021b; Tsvetanov et al., 
2021c; Tsvetanov et al., 2015). It is easier and safer to apply in clinical 
cohorts than experimental hypercapnia, breath-holding and drug 

interventions (Keyeux et al., 1995; Rostrup et al., 1996, 1994; Wagerle 
and Mishra, 1988). RSFA is sensitive to cerebrovascular and cardio-
vascular differences in ageing (Tsvetanov et al., 2021b), cerebrovascular 
disorders (Liu et al., 2021; Secchinato et al., 2019; Taneja et al., 2019), 
small vessel disease (Makedonov et al., 2013a), stroke (Nair et al., 
2017), Alzheimer’s disease (Millar et al., 2020a), cognitive performance 
(Liu et al., 2022; Millar et al., 2020b; Millar et al., 2021; Millar et al., 
2021) and the presence of brain tumours (Agarwal et al., 2019). 

Combining acute and convalescent assessments with serology diag-
nosis, we report on the chronic effect of COVID-19 on RSFA as a marker 
of cerebral microvascular function, in relation to acute severity and in 
contrast to control group data. Acute disease severity was quantified by 
the COVID-19 WHO Progression Scale and blood biomarkers in patients 
hospitalised for COVID-19. We predicted that acute COVID-19 changes 
regional RSFA at follow up, in proportion to acute disease severity, over 
and above the effects of residual systemic cardiorespiratory impairment. 
A secondary hypothesis was that the level of RSFA abnormality would 
relate to worse functional, cognitive and mental dysfunction months 
after hospitalisation. We further examined the spatial correspondence 
between regional differences in RSFA and normative regional variations 
in neurotransmitters/receptors, brain energy consumption and cell-type 
distributions. We hypothesised that the physiological and genetic 
signature of COVID-19-related cerebrovascular impairment shapes the 
composition of cell-types, metabolism and vasoreactivity essential for 
neuronal homeostasis. 

2. Methods 

2.1. Participants 

Patients were recruited through the NIHR COVID-19 BioResource, 
which received ethical approval from East of England – Cambridge 
Central Research Ethics Committee (REC 17/EE/0025), and provided 
written informed consent. Eligibility was based on admission to 
Addenbrooke’s Hospital, Cambridge UK with a serological diagnosis of 
COVID-19 between 10th March 2020 and 31st July 2020, aged 18 years 
or older, attended for outpatient visits following discharge, and no 
contraindications to MRI. 489 patients were potentially eligible. Clinical 
data were obtained from inpatient electronic medical records, and from 
cardiorespiratory and neurological assessments at follow-up clinical and 
research visits at least 6 weeks following symptom onset. 45 patients 
consented to participate and had clinical, structural magnetic resonance 
imaging (MRI) and resting state functional MRI (fMRI) data of appro-
priate quality (see below). Age and sex matched, non-hospitalised, non- 
COVID-19 controls (n = 42) were recruited by word of mouth and 
through the Cambridge NIHR BioResource (https://bioresource.nihr.ac. 
uk/centres-programmes/bioresource-centre-cambridge/). Controls 
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were scanned with the same sequences, with data pooled over protocol- 
optimisation cohorts to match demographics (Cambridgeshire Research 
Ethics Committee 97/290 and REC 17/EE/0025, and Norfolk EE/0395 
and a protocol approved by the Human Biology Ethics Committee of the 
Council of the School of Biological Sciences, University of Cambridge). 

The study design and the principal data processing pipelines are 
summarised in Fig. 1. 

2.2. Inpatient data: COVID-19 severity 

The WHO COVID-19 11-point Progression scale was used during 
hospitalisation to provide a measure of disease severity with scores from 
0 (non-infected) to 10 (dead) (Marshall et al., 2020). We also used blood 
biomarkers previously associated with COVID-19 severity including the 
most extreme values during hospitalisation on the following routine 
clinical blood tests: haematological cell counts (lowest platelets) (Wool 
and Miller, 2021); inflammatory and acute phase proteins (C-reactive 
protein, CRP, serum ferritin) (Luan et al., 2021) (interleukin-6, IL-6) 
(Group and Sterne, 2021; Ulhaq and Soraya, 2020); liver function 
tests (bilirubin) (Bangash et al., 2020); and blood coagulation markers 
(D-dimer, prothrombin time (PT) and activated partial thromboplastin 
time (APTT)) (Asakura and Ogawa, 2021; Iba et al., 2020; Levi et al., 
2020). All blood-based measurements were positively skewed on natural 
scales and were log-transformed for closer approximation to Normal 
distributions before statistical analysis. For consistency in interpreting 
scores across blood assays, platelet counts were inverted (iPlatelets) so 
that higher scores represent lower counts. All variables were normalised 
to a mean of 0 and standard deviation of 1. 

2.3. Clinical outpatient visit: Cardiorespiratory assessments 

Cardiorespiratory measurements were collected during a clinical 
assessment at least 12 weeks after discharge from initial hospitalization 
with COVID-19 using Care Fusion Micro Spirometer (Care Fusion, San 
Diego, CA). Systolic and diastolic blood pressure (BPS and BPD) were 
measured in lying (or seated) and standing positions by automated 
sphygmomanometry. We calculated pulse pressure (BPS-BPD) and 
orthostatic intolerance (BPS lying – BPS standing). Lying and standing 
pulse pressure values were log-transformed for Normality prior to sta-
tistical analysis. Lung function test determined peak expiratory flow 
(PEF), forced expiratory volume in 1 s (FEV1), forced vital capacity 
(FVC) and FEV1/FVC ratio. Measurements were repeated in triplicate, 
with one minute rest between measurements and log-transformed for 
Normality prior to statistical analysis. Pulse oximetry was used to 
determine the heart rate and arterial oxygen saturation before and 
following a 6-minute walk test (du Bois et al., 2012; Crapo et al., 2012; 
Enright et al., 2003). 

2.4. Research visit: neurological assessment 

2.4.1. Image acquisition and pre-processing 
Imaging data were acquired using a 3T Siemens Prismafit System 

with a 32–/20-channel head-coil at the Wolfson Brain Imaging Centre 
(WBIC; https://www.wbic.cam.ac.uk). A 3D-structural MRI was ac-
quired on each participant using a T1-weighted sequence (3D 
Magenetisation-Prepared Rapid Gradient-Echo, 3D MPRAGE) with the 
following parameters: repetition time (TR) = 2 ms; echo time (TE) =

Fig. 1. Schematic representation of various modality datasets in the study, their processing pipelines on a within-subject level, as well as data-reduction techniques 
and analytical strategy on between-subject level to test for associations between acute COVID-19 Severity and chronic cerebrovascular impairment. WHO-PS, COVID- 
19 WHO progression scale; BP, blood pressure; SpO2, blood oxygen saturation; fMRI, functional magnetic resonance imaging; RSFA, resting state fluctuation am-
plitudes; PCA, principal component analysis; ICA, independent component analysis; Covs, covariates of no interest; GLM, general linear model; PLS, partial least 
squares; LV, latent variable from PLS analysis; CRD, cardiorespiratory dysfunction component; CVB, cerebrovascular burden; 
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2.99 ms; inversion time (TI) = 880 ms; flip angle α = 9◦; field of view 
(FOV) = 208×256×256 mm3; resolution = 1 mm isotropic; accelerated 
factor (in-plane acceleration iPAT) = 2; acquisition time, 5 min. T1 
images were pre-processed using SPM12. The T1 image was rigid-body 
coregistered to the MNI template, and segmented to extract probabilistic 
maps of five tissue classes: gray matter (GM), white matter (WM), CSF, 
bone, soft tissue and residual noise. 

RSFA was estimated from resting state Echo-Planar Imaging (EPI) of 
477 volumes acquired with 64 slices for whole brain coverage (TR =
735 ms; TE = 30 ms; FOV = 210 mm × 210mm; resolution = 2.38 ×
2.38x2.4 mm) during 5 min and 51 s. Participants were instructed to lie 
still, to stay awake and keep their eyes open, looking at a fixation cross. 
EPI data preprocessing included the following steps: (1) temporal 
realignment of slices to (0,0,0) Montreal Neurological Institute (MNI) 
co-ordinates; (2) spatial realignment to adjust for linear head motion; 
(3) identification and censoring (scrubbing) of outlier scans using Arti-
fact detection tools (ART, https://www.nitrc.org/projects/artifact_detec 
t/); (4) rigid-body coregistration to the T1 anatomical image; and (5) 
application of the normalization parameters derived from T1 image 
coregistration to warp the functional images into MNI space. We applied 
whole-brain independent component analysis for single subject time 
series denoising to minimise motion artefacts using a priori heuristics 
implemented in the ICA-based Automatic Removal of Motion Artifact 
toolbox (Pruim et al., 2015b; Pruim et al., 2015a) after smoothing with a 
6 mm FWHM Gaussian kernel. 

RSFA maps were estimates using previously reported procedure 
(Tsvetanov et al., 2021b; Tsvetanov et al., 2015).To facilitate integrative 
multivariate analyses (see below), the RSFA maps were parcellated by a 
prior cortical template into 360 bilaterally symmetric regions (Glasser 
et al., 2016). Regional RSFA values were estimated by averaging over all 
voxels in each parcel. 

2.4.2. Physical, cognitive and mental dysfunction (PMC) 
Quality of life, cognition and mental health were assessed using a set 

of questionnaires: Generalised Anxiety Disorder-7 (GAD-7) (Spitzer 
et al., 2006; Swinson, 2006), Patient Health Questionnaire-9 (PHQ-9) 
(Kroenke et al., 2001), Patient Health Questionnaire-15 (PHQ-15) 
(Kroenke et al., 2002), Posttraumatic Stress Disorder Checklist-5 (PCL-5) 
(Blevins et al., 2015) and subscores from the Short Form-36 (SF-36) 
(Ware and Sherbourne, 1992). SF36 subscores were defined as physical 
functioning (SF36-PF), role limitation physical (SF36-RLP), role limita-
tion emotional (SF36-RLE), energy dimension (SF36-ED), emotional 
wellbeing (SF36-EW), social functioning (SF36-SF), pain (SF36-P) and 
general health (SF36-GH). 

Cognitive function and functional independence were evaluated 
using Montreal Cognitive Assessment (MOCA) (Nasreddine et al., 2005), 
inverted Modified Ranking Scale (iMRS) (Eriksson et al., 2007) and 
Barthel Index (BI) (Mahoney and Barthel, 1965). For consistency in 
interpreting scores across questionnaires, scores for mental health 
questionnaires were inverted (iGAD-7, iPHQ-9, iPHQ-15 and iPCL-5) so 
that lower values represent greater mental health problems. 

2.5. Analytical approach 

2.5.1. Group differences in cerebral microvascular health 
To study differences in cerebral microvascular health between 

COVID-19 cases and controls, we performed independent component 
analysis on the imaging-based RSFA data to separate spatially over-
lapping sources of signal with different aetiologies (Xu et al., 2013), as it 
is known that cardiovascular versus cerebrovascular signals may vary 
across individuals and brain region in RSFA (Tsvetanov et al., 2021b). 
The independent component analysis was performed across participants 
to determine spatially non-overlapping RSFA maps without using group 
information, termed Source-Based Cerebrovasculometry (Tsvetanov 
et al., 2021b; Tsvetanov et al., 2015) with ICASSO (software for inves-
tigating the reliability of ICA estimates by clustering and visualisation; 

Himberg and Hyvarinen, 2003) across 128 iterations using the Group 
ICA of fMRI Toolbox (https://mialab.mrn.org/software/gift/index. 
html; Calhoun et al., 2001). In brief, the fastICA algorithm was 
applied after the optimal number of sources explaining the variance in 
the data was identified using PCA with Minimum Description Length 
(MDL) criterion (Hui et al., 2011; Li et al., 2007; Rissanen, 1978). By 
combining the PCA and ICA, the concatenated RSFA maps in a n-by-m 
matrix of participants-to-voxels are decomposed into: (i) a set of maxi-
mally independent components, each characterized by a different, cer-
ebrovasculometry source map, showing the spatial projection of the 
component to each brain voxel (termed RSFAIC maps), and (ii) the de-
gree to which each participant expresses the spatial map of the corre-
sponding component (RSFAIC map), termed subject scores. Subject 
scores for each component were predicted by diagnostic status (COVID- 
19 cases vs controls), age, and sex in a subsequent robust multiple linear 
regression. The regression model was specified by Wilkinson’s notation, 
‘RSFAIC ~ 1 + group*age + sex’ and fitted for each component sepa-
rately. Models were corrected for multiple comparisons at p < 0.05 
(FDR-corrected). To confirm the validity of the results a univariate 
voxel-wise analyses was performed. 

2.5.2. Linking COVID-19 severity to cerebrovascular impairment and their 
correlates 

Rate of missing inpatient, outpatient and research visit data varied 
between 0 and 38 % (see Table 1); hence, to increase statistical power 
and efficiency, missing data were imputed before further statistical an-
alyses (see below). Incomplete variables were imputed under fully 
conditional specification, using the default settings of the multivariate 
imputation by chained equations (MICE) in R (van Buuren and 
Groothuis-Oudshoorn, 2011). Multiple versions of each dataset were 
created (m = 5). Instead of accounting for variability in the parameter 
estimates between imputed datasets, we report any differences in the 
significance of parameters input to the multiple linear regression. 

Statistical analyses used Matlab 2020b calling the packages as 
described below. Datasets of interest stemmed from a range of modal-
ities and different time-points: i) inpatient blood samples, ii) outpatient 
cardiorespiratory dysfunction, iii) mental health and RSFA measures 
during a research visit. To make these datasets tractable for univariate 
stages of the two-level analytical procedure (Passamonti et al., 2019; 
Tsvetanov et al., 2021a; Tsvetanov et al., 2018; Tsvetanov et al., 2016). 
In the first-level analysis, the link between COVID-19 severity and RSFA 
data was identified using a multivariate approach (see below). In the 
second-level analysis, we tested whether the COVID-19-RSFA link can be 
explained by other variables of interest or potential covariates of no 
interest using regression-based analyses (see below). We therefore 
constructed a set of summary measures for each non-imaging modality 
(i.e. components, Fig. 1). This had two advantages. First, it reduced the 
number of statistical comparisons. Second, it improved interpretability 
of the signals in each modality data by means of denoising and simpli-
fication given; low-dimensional data representations remove noise but 
retain signal of interest that can be instrumental in understanding hid-
den structures and patterns of multivariate data. We performed principal 
component analysis as a widely used dimensionality reducing approach 
(Hotelling, 1933; Pearson, 1901; van der Maaten et al., 2009) on each 
set of non-imaging variables from clinical and research assessments data 
before integrating them with MRI data as described below. For this 
purpose, we used Matlab’s function pca.m with default settings, where 
the number of components was determined using Horn’s parallel anal-
ysis (Dobriban, 2020; Horn, 1965) using 10,000 permutations. All var-
iables were normalised to a mean of 0 and standard deviation of 1 prior 
principal component analysis. 

2.5.2.1. Chronic cardiorespiratory dysfunction. Cardiorespiratory 
dysfunction was represented by the first two principal components 
(CRDPC1 and CRDPC2) constructed from blood pressure (lying and 
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standing pulse pressure, and orthostatic systolic and diastolic blood 
pressure), differences in heart rate and blood oxygenation during a 6- 
minute walk test, and a spirometry pulmonary function component. 

2.5.2.2. Chronic physical, cognitive, and mental dysfunction (PCM). 
Chronic physical, cognitive and mental dysfunction (PCM) was repre-
sented by the first two principal components (PCMPC1 and PCMPC2) 
constructed from mental health scores (GAD-7, PHQ-9, PHQ-15, and SF- 
36 sub-scores), cognitive function (MoCA) and functional independence 
measures (Barthel Index and imRS). 

2.5.2.3. Two-level approach linking COVID-19 severity to cerebrovascular 
impairment and their correlates. The prediction of RSFA abnormality by 
prior clinical assessment of COVID-19 severity was tested using a 
multivariate approach using a two-level procedure (Passamonti et al., 

2019; Tsvetanov et al., 2021a; Tsvetanov et al., 2018; Tsvetanov et al., 
2016). First, the relationships between COVID-19 severity and RSFA 
data were identified using partial least squares (Krishnan et al., 2011) of 
RSFA maps and COVID-19 Severity data, by providing pairs of latent 
variables (RSFALV) and (COVID-19 SeverityLV). Data set 1 consisted of 
parcellated RSFA maps across all patients (45 cases × 360 brain regions; 
RSFA dataset). Data set 2 included the COVID-19 WHO Progression scale 
and inpatient blood assay results (45 cases × 9 clinical severity mea-
sures; COVID-19 Severity dataset). All variables were Z-scored (mean of 
0 and standard deviation of 1) before PLS with 10,000 random permu-
tations of dataset 2 to determine the significance of the latent variables. 
To confirm the validity of the results, a univariate voxel-wise analyses 
was performed. 

Second, we tested whether the identified relationship between 
COVID-19 SeverityLV and RSFALV could be explained by other variables 
of interest or potential confounding variables of no interest useing 
robust multiple linear regression and commonality analysis (Kraha et al., 
2012; Nimon et al., 2008). Commonality analysis partitions the variance 
explained by all predictors in a multiple linear regression model into 
variance unique to each predictor and variance shared between each 
combination of predictors. Therefore, unique effects indicate the 
(orthogonal) variance explained by one predictor over and above that 
explained by other predictors in the model, while common effects 
indicate the variance shared between correlated predictors. Notably, the 
sum of variances, also known as commonality coefficients, equals the 
total proportion of variance explained R2 by the regression model. We 
adapted a commonality analysis algorithm (Nimon et al., 2008) imple-
mented in Matlab (Wu et al., 2023). This model tested whether the 
relationship between COVID-19 SeverityLV and RSFALV can be explained 
partly or fully by systemic cardiorespiratory dysfunction or other 
covariates of no interest. The regression model was specified by Wil-
kinson’s notation RSFALV ~ 1 + COVID-19 SeverityLV + CRDPC1 +

CRDPC2 + Age + Sex. The model can therefore identify unique variance 
explained by each of the predictors, i.e.,whether COVID-19 SeverityLV 
predicts RSFALV over and above other predictors. Common effects of 
interest were the cardiorespiratory-related effects, defined by the com-
mon variance between COVID-19 SeverityLV and CRDPC1 and CRDPC2. 
Significant effects were identified by nonparametric testing using 
10,000 permutations using commonality analysis implementation in 
Matlab (Wu et al., 2023). 

2.5.2.4. COVID-19-related cerebrovascular impairment associations with 
physical, cognitive, and mental dysfunction. COVID-19-related abnor-
malities in RSFA identified in the first-level analysis, were related to the 
two principal components of physical, cognitive, and mental functioning 
(PCMPC1 and PCMPC2) using robust regression. The PCM components 
were defined as dependent variables in separate models. RSFALV, age 
and sex were entered as predictors. The model formulas were specified 
by Wilkinson’s notation, ‘PCM ~ 1 + RSFALV + age + sex’ and fitted for 
the two PCM components separately. To confirm the validity of the re-
sults for the significant models, a univariate voxel-wise analyses was 
performed. 

2.5.2.5. Spatial covariance of COVID-19-related cerebrovascular impair-
ment with regional neurotransmitter, metabolic and cell-type distribution. 
We further assessed the spatial overlap between COVID-19-related ce-
rebrovascular burden map and a range of brain metabolic, neurotrans-
mitter, gene expression and cell-type parameters, including i) existing 
receptor/metabolic templates and ii) gene transcription profiling maps. 
Templates of interest included metabolic rates of glucose, oxygen, and 
aerobic glycolysis (Vaishnavi et al., 2010) and receptor and transmitter 
maps across nine different neurotransmitter systems (Hansen et al., 
2021b), all measured by positron emission tomography (PET). Gene 
expression maps (Hawrylycz et al., 2012) were based on key proteins 
implicated in SARS-Cov-2 cellular attachment (angiotensin converting 

Table 1 
Characteristics of 45 cases hospitalised with COVID-19. n – indicates number of 
patients and the percentage of patients from the patient cohort (%), SD – stan-
dard deviation, IQR – interquartile range, kg – weight in kilograms, m – height in 
meters.  

Variable Patients 

n (%) Mean(SD)/Median(IQR)* 

Age (years) 45 (100) 52 (14) 
Education (years) 45 (100) 16 (4) 
Female 26 (58) – 
Right-handed 40 (89) –  

Pre-existing comorbidies (n > 1)    
Cardiovascular 11 (24) –  
Respiraroty 8 (18) –  
Type-2 Diabetes 4 (9) –  
Hypothyroidism 4 (9) –  
Neurological 2 (4) –  

Inpatient data    
Vasopressors 10 (22) –  
Dialysis 4 (9) –  
BMI (kg/m2) 36 (80) 29 (4)  
Mechanical Ventilation (days) 13 (29) 20 (15)  
CRP 42 (93) 149 (147)  
D Dimer 37 (82) 1125 (2071)  
Ferritin 32 (71) 1225 (1700)  
IL-6 28 (62) 39 (80)  
PT 32 (71) 26 (54)  
APTT 33 (73) 42 (36)  
Bilirubin 43 (96) 14 (8)  
Platelets 44 (98) 230 (102)  

Clinical Visit    
HR (bpm) 38 (84) 76 (14)  
RR (cpm) 38 (84) 16 (2)  
SBP lying (mmHg) 38 (84) 134 (23)  
SBP standing (mmHg) 33 (73) 130 (20)  
DBP lying (mmHg) 38 (84) 74 (12)  
DBP standing (mmHg) 33 (73) 79 (11)  

Research Visit    
GAD-7 (0–21) 44 (98) 4 (8)*  
PHQ-9 (0–27) 44 (98) 7 (9)*  
PHHQ-15 (0–30) 39 (87) 9 (8)*  
PCL-5 (0–80) 44 (98) 16 (22)*  
MoCA 39 (87) 28 (3)*  
mRS 39 (87) 1 (1)*  
BI 37 (82) 20 (0)*  

Initial symptoms to Admission (days) 40 (89) 14 (14) 
Hospitalisation Duration (days) 40 (89) 19 (31) 
Intial symptoms to Clinic visit (days) 39 (87) 169 (35) 
Intial symptoms to Research visit (days) 45 (100) 180 (58)  
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enzyme-2, ACE2; neuropilin-1, NRP1; neuropilin-2, NRP2), proteolytic 
processing (cathepsin-B, CTSB; cathepsin-L, CTSL) and viral defence 
(interferon type 2 receptors, IFNAR2; lymphocyte antigen 6-family 
member E, LY6E) (Iadecola et al., 2020; Yang et al., 2021). Spatial 
correlations were evaluated using 10,000 spin-based permutation tests 
(p-spin) preserving spatial autocorrelation (Alexander-Bloch et al., 
2018; Fulcher et al., 2021). 

Spatial covariance between the cerebrovascular burden map and 
gene expression across 9394 genes expressed in the human brain 
(Hawrylycz et al., 2012) was based on PLS association using spin- 
premutation-based 10-fold cross-validations (Tsvetanov et al., 2021a). 
The latent variable represented a spatial pattern of gene expression that 
covaried significantly with the cerebrovascular burden pattern associ-
ated with COVID-19 severity. Full details about the processed tran-
scriptomic data are available elsewhere (Arnatkevic̆iūtė et al., 2019). 
Genes highly expressing this pattern (i.e. high loadings) were tested 
against a molecular atlas of human brain vasculature of 17 control and 
Alzheimer’s disease patients (Yang et al., 2021) using cell-type decom-
position (Hansen et al., 2021). This enabled us to test whether the ce-
rebrovascular burden-relevant genes were preferentially expressed in 
specific cell types, i.e., testing for gene sets specific to eleven major 
canonical cortical cell classes: astrocytes (Astro); brain endothelial cells 
(BEC); ependymal cells (Epend); macrophage/microglia (MacMic); 
meningeal fibroblasts (MFibro); neurons (Neuro); oligodendrocyte pre-
cursors (Opc); oligodendrocytes (Oligo); pericytes (Peri); perivascular 
fibroblasts (PFibro); and smooth muscle cells (SMC). To this end, we 
calculated the ratio of genes in each set preferentially expressed by each 
cell type (e.g. ratio for pericytes is calculated from the number of genes 
preferentially expressed in pericytes divided by the total number of 
genes). Gene sets were thresholded to include the top n% of genes with 
greatest loadings, where n varied from 10 % to 100 % (all genes). Sta-
tistical significance was determined using a null distribution of ratios 
based on 10,000 sets of random genes (Hansen et al., 2021). 

2.6. Data availability and code 

Code and composite data to reproduce manuscript figures and sta-
tistical analyses are available at https://github.com/kamentsvetanov/ 
covid19_cerebrovascularburden. Resting-state fMRI data were pre- 
processed using SPM12 and post-processed using a GLM-like approach 
(Geerligs et al., 2017) available at https://github.com/MRC-CBU/ri 
ksneurotools/blob/master/GLM/. MATLAB-based commonality anal-
ysis for neuroimaging (Wu et al., 2021) is available at https://github. 
com/kamentsvetanov/CommonalityAnalysis/. Visualisation of neuro-
imaging results was in MRIcroGL and BrainSpace. Neurotransmitter 
receptor and transporter maps were available at https://github.com/ 
netneurolab/hansen_receptors. Spin permutations used code available 
at https://github.com/frantisekvasa/rotate_parcellation. Fully-pre- 
processed transcriptomic data were available at https://figshare. 
com/articles/dataset/AHBAdata/6852911 and https://github.com/BM 
HLab/AHBAprocessing. The molecular atlas of the human brain vascu-
lature was available at https://www.biorxiv.org/content/https://doi. 
org/10.1101/2021.04.26.441262v1. Code for cell-type decomposition 
analysis was available at https://github.com/netneurolab/hansen_gen 
escognition. 

3. Results 

3.1. Participants 

Characteristics of the 45 cases hospitalized with COVID-19 are 
detailed in Table 1. At hospitalisation, 30 % of the patients required 
mechanical ventilation (n = 13) for an average of 20 days; 22 % of 
patients required vasopressors (n = 10), and 9 % required renal 
replacement therapy with continuous veno-venous haemodiafiltration 
(n = 4). Most common pre-existing comorbidities at admission with 

Covid-19 were cardiovascular dysfunction (n = 11, 24.4 %; hyperten-
sion, n = 10; Von Willbrand disease type 1, n = 1), respiratory disorders 
(n = 8, 17.8 %), type-2 diabetes (n = 4, 8.9 %), hypothyroidism (n = 4, 
8.9 %), migraine (n = 2, 4,4%). Other single case conditions included 
obesity, type-1 diabetes, rheumatoid arthritis, dyslipidaemia, De Quer-
vain’s thyroiditis, ulcerative colitis, prostatic arthritis, acute lympho-
blastic leukaemia, osteoarthritis, hysterectomy, appendicectomy, acute 
kidney disease, and non-alcoholic fatty liver disease. The average 
number of days from initial symptoms to clinical out-patient and 
research assessments was 169 ± 35 and 180 ± 58, respectively. The 
percentage of missing values across the inpatient, clinical visit and 
research visit variables varied between 0 and 38 %. In total 69 out of 405 
records (17 %) were incomplete for impatient data; 71 out of 360 re-
cords (20 %) were incomplete for clinical visit data; and 121 out of 675 
records (18 %) were incomplete for cognitive and mental health data. 

3.2. Group differences in cerebrovascular components 

The decomposition of RSFA with source-based cerebrovasculometry 
resulted in 10 spatially independent components according to the MDL 
criterion with near perfect stability indices across 128 ICASSO iterations 
(mean of 0.97 and standard deviation of 0.01). One component showed 
significant difference between the patient and control groups in terms of 
their subject scores (RSFAIC4, t = 3.12, p = 0.003, Fig. 2), while con-
trolling for age and sex in a robust linear regression. The spatial map of 
this component, labelled RSFAIC4, included voxels with high values in 
temporo-parietal regions, indicating that individuals with higher 
loading values, in this case the patient group, had lower RSFA values in 
these regions, relative to the control group (Fig. 2). The other compo-
nents did not differentiate patients from controls. 

The spatial pattern of RSFAIC4 was consistent with the univariate 
voxel-wise approach (r = 0.46, p < 0.001, Fig. 3A). In addition, the 
univariate approach revealed that the spatial pattern in RSFA associated 
with age was highly consistent with the one reported on large-scale 
population-based cohorts, r = 0.42, p < 0.001 (Tsvetanov et al., 
2021b; Tsvetanov et al., 2015). This suggests that RSFA can detect 
reliably differences in cerebrovascular health across various phenotypes 
in smaller samples. Though age is a risk factor for COVID-19 severity 
(Verity et al., 2020) and RSFA (Tsvetanov et al., 2021b; Tsvetanov et al., 
2015), the COVID-19 group effect was not explained by individual’s age, 
and showed only a partial overlap with the effects of age on RSFA in 
parietal regions (Fig. 3B) (Tsvetanov et al., 2021b; Tsvetanov et al., 
2015). 

3.3. COVID-19 severity predicts cerebrovascular impairment 

Using PLS analysis, we identified one significant pair of latent vari-
ables (r = 0.595, p = 0.011, based on a null distribution of 10,000 
permutations). Variable loadings and subject scores reflecting the strong 
relationship between acute COVID-19 Severity and chronic RSFA ab-
normalities are shown in Fig. 4. 

The RSFA latent variable (RSFALV) expressed negative loadings in 
frontal (superior frontal gyrus, middle frontal gyrus, inferior frontal 
gyrus and portions of the anterior cingulate) and parieto-temporal 
(angular gyrus, supramarginal gyrus, superior temporal gurus, middle 
temporal gyrus) regions. This pattern of COVID-19 Severity-related 
reduction in RSFA values was mirrored in a voxel-wise analysis of RSFA 
maps and the only significant COVID-19 Severity component (p <
0.001) in the inpatient data (Fig. 3C and Fig. 5A, respectively). Positive 
loadings in the RSFA data appeared to be in postcentral gyrus, calcarine 
sulcus, cuneus, and lingual gyrus. Increase in the RSFA signal in these 
regions may reflect increased pulsatility in neighbouring vascular and 
white matter territories as reported previously (Makedonov et al., 2016; 
Makedonov et al., 2013b; Tsvetanov et al., 2021b; Tsvetanov et al., 
2015). This pair of latent variables suggested that patients with higher 
COVID-19 Severity at the acute stage have sustained changes in 
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cerebrovascular function in frontal and temporo-parietal regions after 
discharge from hospital. For visualisation purposes we inverted the 
loading values in Fig. 4A so that higher values reflect poorer cerebro-
vascular function, i.e. higher cerebrovascular burden. 

To understand whether the relationship between regional RSFA 
impairment and COVID-19 Severity can be explained by the components 
of chronic systemic cardiorespiratory dysfunction or covariates of no 
interest, we performed a second level robust regression analysis. 
Cardiorespiratory dysfunction was represented by two significant com-
ponents (p < 0.001 and p < 0.001; Fig. 5C and D). The first component, 
CRDPC1, represented overall cardiorespiratory dysfunction in terms of 
poor lung function, poor oxygen saturation coupled with high pulse 
pressure. The second component, CRDPC2, represented a more specific 
component of cardiorespiratory dysfunction in terms of oxygen desa-
turation and orthostatic hypotension. CRDPC2 likely reflects patient 
differences in sympathetic failure, which is associated with orthostatic 
fall in blood pressure and oxygenation (Jakobsen et al., 2017). Overall, 
the two CRD components are consistent with the idea of cardiovascular 
health being multifactorial, where autonomic nervous system response 
is clearly dissociated from the two components of blood pressure (King 
et al., 2022; Tsvetanov et al., 2021b). The regression model specification 
was based on the following syntax using Wilkinson notation: RSFALV ~ 1 
+ COVID-19SeverityLV + CRDPCA1 + CRDPCA2 + Age + Sex. COVID-19 
Severity was the only significant predictor of RSFALV in the model (r 
= 0.490, p < 0.001), suggesting that chronic cardiorespiratory 
dysfunction, age and sex cannot explain fully the relationship between 
COVID-19 Severity and RSFA abnormality. None of the pre-existing 
comorbidity conditions explained this relationship (e.g. by adding co-
morbidity categories as covariates of no interest, COVID-19 Severity 
remained highliy significant predictor, r = 0.451, p < 0.001; noting that 
having a respiratory condition was independently associated with 
RSFALV, r = 0.336, p = 0.004). Interestingly, the unique variance 
explained by COVID-19 Severity in the regression model was weaker 
than the variance identified by the PLS analysis (r = 0.595 vs r = 0.490 
for PLS and MLR analyses) suggesting that one or more of the predictors 
in the model explain some of the covariance between COVID-19 Severity 
and RSFA. Permutation-based commonality analysis with 10,000 

permutations confirmed that a portion of the variance between COVID- 
19 SeverityLV and RSFALV was explained uniquely by age (13 % total, p 
< 0.001) or cardiorespiratory dysfunction component 2 (CRDPC2, 4 % 
total, p = 0.002), or by shared effects of age and cardiorespiratory 
dysfunction component 1 (Age, CRDPC1, 18 % total, p < 0.001), SI 
Table 1. COVID-19 SeverityLV remained as the largest unique predictor 
of variance in RSFALV (40 % total, p = 0.004). 

3.4. COVID-19-related cerebrovascular burden association with physical, 
cognitive, and mental functioning 

The level of RSFA abnormalities (RSFALV) was related to physical, 
cognitive and mental dysfunction represented by two significant com-
ponents (p < 0.001 and p < 0.001). The first component, PCMPC1, 
expressed highly mental health variables (GAD-7, PCL-5, PHQ-9, PHQ- 
15 and SF-36 sub-scores), thus reflecting overall mental health 
(PCMPC1, Fig. 5E). The second component, PCMPC2, expressed highly 
cognitive function and functional independence variables (Barthel 
Index, MoCA and iMRS, Fig. 5F). RSFALV, age and sex were entered as 
predictors, while PCM components were used as dependent variables in 
separate robust regression model (Model 1: PCMPCA1 ~ 1 + RSFALV +

age + sex; Model 2: PCMPCA2 ~ 1 + RSFALV + age + sex). Model 1 was not 
significant (p = 0.447), while Model 2 was significant (R2 = 0.303, p =
0.002) with RSFA significantly related to PCMPC2 (r = -0.362, p =
0.010). This indicates that patients with higher RSFA abnormality have 
worse cognitive function and less functional independence. None of the 
pre-existing comorbidity conditions explained this relationship (e.g. by 
adding comorbidity categories as covariates of no interest), RSFA 
remained significant predictor of PCMPC2, r = -0.550, p = 0.001. The 
findings in Model 2 were confirmed using voxel-wise analysis on RSFA 
maps, instead of RSFALV (Fig. 3D). 

3.5. Spatial overlap of COVID-19-related cerebrovascular impairment 
with brain neurotransmitter and metabolic distribution 

We next assessed the spatial overlap between COVID-19-related ce-
rebrovascular burden maps with existing neurotransmitter and 

Fig. 2. Group differences in RSFA. Source-based cerebrovasculometry for the component differentially expressed between groups: (a) independent component 
spatial map reflecting decrease in RSFA values in temporo-parietal regions. (b) Box plots of subject scores for patients hospitalised for COVID-19 (red) and control 
group (green, each circle represents an individual) indicating higher loading values for patients than controls as informed by two-sample unpaired permutation test (a 
robust regression was used to down-weight the effects of extreme data points). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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metabolic maps using spatial autocorrelation-preserving permutation 
testing (Alexander-Bloch et al., 2018). Across 21 candidate maps, we 
show that the cerebrovascular burden map overlaps with the distribu-
tion of serotonin’s vasoactive receptor 5-HT1b (r = 0.52, p-spin <
0.001), aerobic glycolysis (r = 0.51, p-spin < 0.001) and to a weaker 
extent cerebral metabolic rate of glucose in the brain (r = 0.38, p-spinone- 

sided = 0.041). However, the regional distribution of RSFA abnormality 
showed little correlation with the expression of key proteins implicated 
in SARS-CoV-2 cellular attachment, processing and viral defence 
(Fig. 6). Collectively, these results demonstrate that the distribution of 
cerebrovascular impairment related to COVID-19 severity is aligned 
with the spatial distribution of receptors and processes involved in the 

Fig. 3. Voxel-wise association in RSFA data. Association between RSFA and group identity (patient vs control) (a) To confirm the validity of results from the source- 
based cerebrovasculometry, we performed a second-level univariate analysis in SPM12 with RSFA as dependent variable. Group identity, age and sex were defined as 
predictors. The spatial pattern of group effects was highly consistent with the pattern identified using ICA (IC4), r = 0.46, p-spin < 0.001. (b) The spatial pattern 
associated with age effect was highly consistent with the pattern derived from a previous study using a large population-based cohort (n = 226, Tsvetanov et al., 
2021b), r = 0.42, p-spin < 0.001. (c) Association between COVID-19 Severity PC1 (see Fig. 5A) and RSFA on voxel level showing a negative association between 
COVID-19 Severity and RSFA values in frontal and temporoparietal regions confirming the validity of the results in the partial-least squares analysis capturing the 
multivariate relationship between COVID-19 severity and cerebrovascular impairment. This was based on a second-level univariate analysis in SPM12 with RSFA as 
dependent variable. COVID-19 severity component, age and sex were defined as predictors. The nine measures constructing the COVID-19 severity component 
(COVID-19 SeverityPC1) included COVID-19 WHO Progression Scale and blood markers (CRP, ferritin, IL-6, bilirubin, D-dimer, PT, APTT and iPlatelets), see Fig. 5A. 
The model can be represented using Wilkinson’s notation as follows: RSFA ~ 1 + COVID-19 SeverityPC1 + Age + Sex. (d) Association between the second physical, 
cognitive, and mental functioning component (PCMPC2) and RSFA on voxel level showing a positive association between phsycial and cognitive functioning with 
RSFA values in frontal and temporall regions. Maps are thresholded at uncorrected p-values of 0.05 for more complete description of the spatial representation. 

Fig. 4. Link between COVID-19 severity and RSFA. Partial least squares analysis of COVID-19 severity data at acute stage and RSFA-based cerebrovascular burden 
(CVB) at chronic stage. (a) Spatial distribution of parcellated RSFA values where dark to light colours are used for the strength of positive and negative correlations 
with the COVID-19 Severity profile (c). Note that regions with high cerebrovascular burden have low values in RSFA. (b) The scatter plot in the middle panel 
represents the relationship between subjects scores of RSFA-latent variable and COVID-19 Severity-latent variable identified by partial least squares analysis. 
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coordination of metabolic and vasoreactive responses. 
As a final step, we used normative transcriptomics to identify genes 

that are normally preferentially expressed in the regions associated with 
COVID-19-induced cerebrovascular impairment. Regularised-PLS iden-
tified one latent component (r = 0.64, p = 0.001, Fig. 7A). Using cell- 
type decomposition analysis on vascular cell-type specific gene sets, 
we determined the ratio of genes in each gene set preferentially 
expressed across eleven cortical cell types. Gene-sets were thresholded 
to include the top 70 % of genes with the highest loadings (Fig. 7B). 
While the 70 % threshold was arbitrary, that results were consistent 
across thresholds ranging from 10 to no threshold. Highly ranking genes 

were significantly more expressed in pericytes, brain endothelial cells 
and neurons, and significantly less expressed in oligodendrocytes. 
Broadly, we find evidence that areas associated with cerebrovascular 
impairment are enriched for expression of genes related to neuron 
support (pericytes, endothelial cells and perineuronal oligodendrocytes) 
and neurons themselves. This dichotomy is consistent with the obser-
vations from the spatial overlap analysis i.e. cerebrovascular impair-
ment spatially covaries with expression of genes, receptors and 
processes involved in the coordination of metabolic and vasoreactive 
responses essential for neuronal homeostasis. 

Fig. 5. Data reduction of inpatient, clinical and research visit non-neuroimaging data using principal component analysis (separately on each dataset). (a) COVID-19 
Severity component explaining 40% of the total variance loading most strongly on WHO COVID-19 11-point Progression scale (WHO-scale), C-reactive protein (CRP), 
D-dimer, ferritin, followed by bilirubin and activated partial thromboplastin time (APTT). Other biomarkers [interleukin-6, prothrombin time (PT), platelets 
(iPlatelets, counts so that higher scores represent lower counts)] loaded in the expected direction, but to a lesser extent. Scatter plots of subject scores for the 
corresponding components versus chronological age, where each circle is one patient. (b) Reduction of spirometry measures to a single variable to balance the 
representativeness of each data type for cardiorespiratory dysfunction dimensionality reduction (Hastie et al., 2009). Of the 12 spirometry measures the first 
principal component expressed FEV1 and FVC values explaining 45% of the spirometry data. FEV1 – forced expiratory volume in 1 s; PEF – peak expiratory flow; FVC 
– forced vital capacity. (c) First cardiorespiratory dysfunction component (CRD1) constructed from chronic cardiorespiratory data, explaining 37% and loading 
highly on lung function, oxygen saturation and pulse pressure. (d) The second component, explaining 22%, loaded on oxygen saturation and orthostatic hypotension. 
SpiroLogPCA1 – first principal component across 12 log-transformed spirometry variables (see panel b); DiffSpO2 and DiffHR – difference in arterial oxygen 
saturation and heart rate before and after a 6-minute walk test; BPdiaOrth and BPsysOrth – orthostatic intolerance in diastolic and systolic blood pressure, 
respectively; BPppStandLog and BPppLyingLog – pulse pressure while standing and lying, respectively. (e) The first component of physical, cognitive and mental 
dysfunction (PCM1) explaining 33% and loading highly on mental health variables. (f) PCM2 explaining 14% and loading positively on cognitive function and 
functional independence. SF36-PF – physical functioning; SF36-RLP – role limitation physical, SF36-RLE – role limitation emotional, SF36-ED – energy dimension, 
SF36-EW – emotional wellbeing, SF36-SF – social functioning, SF-P – pain; SF36-GH – general health; iGAD7 – Generalised Anxiety Disorder-7; PCL5 – Posttraumatic 
Stress Disorder Checklist-5; PHQ15 – Patient Health Questionnaire-15; PHQ9 – Patient Health Questionnaire-9; BARTHEL – Barthel Index; MOCA – Montreal 
Cognitive Assesment; iMRS – inverted Modified Ranking Scale; 
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Fig. 6. Spatial correspondence between COVID-19-related cerebrovascular burden map with neurotransmitter and brain distributions. Spatial correlation between 
Covid19 severity-induced cerebrovascular burden map and spatial patterns associated with a range of neurotransmitter receptor/transporters (Hansen et al., 2021b), 
selected genes relevant to SARS-CoV-2 brain entry (Iadecola et al., 2020) and brain metabolism parameters (Vaishnavi et al., 2010). Neurotransmitter receptors and 
transporters were selective to serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT), norepinephrine (NET), histamine (H3), acetylcholine (ACh, A4B2, M1, 
VAChT), cannabinoid (CB1), opioid (MOR), glutamate (mGluR5), GABA (GABAa/bz) and dopamine (D1, D2, DAT). Metabolic maps were based on cerebal blood flow 
(CBF), cerebral blood volume (CBV), cerebral metabolic rate of glucose and oxygen (CMRGlu, CMRO2) and glycemic index (GI). Selective genes relevant to SARS- 
CoV-2 brain entry included angiotensin converting enzyme-2, ACE2; neuropilin-1, NRP1; neuropilin-2, NRP2, cathepsin-B, CTSB; cathepsin-L, CTSL, interferon type 2 
receptors, IFNAR2; lymphocyte antigen 6-family member E, LY6E. The spatial maps of 5-HT1b, CMRGlu and Glycemic Index (GI) were significantly correlated with 
Covid19 severity-induced cerebrovascular burden map (* p-spin < 0.05 (one-sided), *** p-spin < 0.001). See text for more information. 

Fig. 7. Spatial correspondence between COVID-19-related cerebrovascular burden and cell-type decomposition. (a) Spatial map of the weighted whole genome 
expression profile correlated with the COVID-19-induced cerebrovascular burden map (CVB). (b) Cell-type decomposition was used to identify cell-type enrichment 
based on extent to which genes expressed the transcriptome map in a. Gene sets for each cell-type was constructed by thresholding the top 70 % of genes with greatest 
loadings. Note that results were consistent across a range of thresholds, ranging from 10 % to no threshold. The ratio of genes in each gene set preferentially 
expressed in eleven distinct cell-types (circles) is shown against their null distribution of a model with random selection of all genes (10,000 permutations, *p-value 
< 0.05). For example, pericyte’s ratio is calculated from the number of genes preferentially expressed in pericytes divided by the total number of genes. Cell type- 
specificity of genes is described elsewhere (Yang et al., 2021) Astro – astrocytes, BEC – brain endothelial cells, Epend – ependymal, MacMic – macrophage/microglia, 
Mfibro – meningeal fibroblast, Neuron – neuron, OPC – oligodendrocyte precursor cells, Oligo – oligodendrocytes, Peri – pericytes, Pfibro – perivascular fibroblast, 
SMC – smooth muscle cells. 
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4. Discussion 

We show that abnormalities in cerebral microvascular function, 
measured using resting state fluctuation amplitudes, RSFA, persist many 
months (on average six months in our sample) after hospitalisation for 
acute COVID-19. The location of these abnormalities in lateral frontal 
and temporoparietal regions aligns partly with cerebrovascular 
dysfunction reported in association with ageing (Tsvetanov et al., 
2021b; Tsvetanov et al., 2015) preclinical Alzheimer’s disease (Millar 
et al., 2020a) and systemic cardiovascular health (Tsvetanov et al., 
2021b).These post-COVID-19 effects were observed over and above age. 
These effects are related to severity of the acute illness and the host 
response in the acute stage. These effects also relate to the post-COVID- 
19 cognitive function, common indices of mental health, and quality of 
life at an average of six months after hospitalisation. 

In spatial covariance analyses, we found overlap between the 
regional distribution of this cerebrovascular impairment and spatial 
distribution of the vasoreactive receptor 5-HT1b and regions with high 
metabolic demands. 5-HT1b receptor is the dominant contractile 5-HT 
receptor in cerebral arteries (Barnes and Hoyer, 2021; Nilsson et al., 
1999), stimulating vasoconstriction by contracting smooth muscle 
directly or as a moderator of other vasoconstrictors. Distinct from its 
effects on vascular tone, the presynaptic 5-HT1b receptor also has an 
important microvascular anti-inflammatory role, both in the cerebro-
vascular bed and more generally. Further, its loss has been implicated in 
progressive cognitive loss and abnormal modulation through descend-
ing serotoninergic outputs (Gharishvandi et al., 2020; Heijmans et al., 
2021; Mitsikostas et al., 2002; Sibille et al., 2007), which may be rele-
vant for chronic sequelae after COVID-19. 

The overlap of cerebrovascular impairment with the regional dis-
tribution of aerobic glycolysis and glucose metabolism is spatially 
concordant with previous reports of hypometabolism in the subacute 
phase of COVID-19 (Hosp et al., 2021) and neurodegeneration (Vlas-
senko et al., 2010). This indicates a potential link between cerebrovas-
cular impairment and metabolic dysfunction in frontoparietal regions, 
which could provide important insights regarding the mechanisms of 
late neurocognitive dysfunction following COVID-19 infection. Future 
work should establish whether changes to the microvasculature lead to 
hypometabolism (Shi et al., 2016) or whether the vulnerability of brain 
physiology in the chronic phase is due to hypoxic and hypometabolic 
exposure in the subacute phase (Vestergaard et al., 2020). Collectively, 
these results demonstrate that the distribution of chronic cerebrovas-
cular impairments related to COVID-19 severity maps to the spatial 
distribution of processes involved in coordinating metabolic and vaso-
regulatory responses associated with changes in brain function and 
cognition. 

We also tested whether genes highly expressed in regions with 
COVID-19-induced cerebrovascular change are preferentially expressed 
in specific cell types using a molecular atlas of human brain vasculature 
(Yang et al., 2021). Dominant genes were overexpressed in pericytes, 
brain endothelial cells and neurons, but underexpressed in oligoden-
drocytes. The evidence that genes implicated are enriched in pericytes 
and endothelial cells is particularly interesting. Brain endothelial cells 
are susceptible to direct SARS-CoV-2 infection through flow-dependent 
expression of ACE2. The SARS-CoV-2 S protein binding triggers a gene 
expression profile that may compromise the neurovascular interface 
(Kaneko et al., 2021). On the abluminal aspect of the neurovascular 
interface, pericytes express abundantly the angiotensin-converting 
enzyme-2 (ACE2) receptor (He et al., 2020). The expression can be 
increased by exposure to the viral S protein, and importantly, potenti-
ated in combination with hypoxia (Khaddaj-Mallat et al., 2021), a 
mechanism that could account for the modulation of RSFA abnormality 
by disease severity in our cohort. 

Given this biological context the correlation of RSFA abnormalities 
with disease severity is open to two potential interpretations. One pos-
sibility is that these changes in cerebrovascular regulatory integrity are 

the consequence of direct viral invasion; while the other is that these 
abnormalities are a consequence of the inflammatory host response, 
which is a consequence of, but may not scale precisely with, viral 
infection. Spatial correlation of RSFA abnormality with the expression of 
ACE2 and Neuropilin-1, or of genes involved in cellular responses to 
viral infection would have provided supportive evidence of a role for 
direct viral infection as a mechanism, but we were unable to demon-
strate such correlations. These negative findings favour the explanation 
that host inflammatory responses may be drivers in this context, and 
merit further investigation as mechanisms of late cerebrovascular reg-
ulatory dysfunction, consistent with the hypothesis of long COVID 
endotheliopathy (Ahamed and Laurence, 2022). It is important to 
acknowledge that our correlations with regional gene expression are 
based on expression patterns in normal brain, and that these expression 
patterns may be substantially altered by the inflammatory milieu that 
prevails in the context of COVID-19. Consequently, direct examination 
of peripheral blood gene expression profiling in late COVID-19 survivors 
would provide additional insights. 

Our study has several limitations. We are limited (i) by the relatively 
small sample size with incomplete data across modalities and patients 
(Jakobsen et al., 2017), (ii) by sensitivity to domain-specific cognitive 
impairment (Coen et al., 2016) and (iii) by the absence of longitudinal 
imaging data in patients and physiological data in controls. We also can 
not draw any causal inferences from the associations we observe. 
However, the demonstration of functional microvascular abnormalities 
following COVID-19 is important to understand the potential mecha-
nisms of persistent cognitive and mental health problems. The associa-
tion of microvascular abnormalities with late outcomes of relevance to 
patients, and the fact that they represent an easily accessible biomarker, 
suggest both a potential therapeutic target and/or a biomarker of 
treatment effect in interventional studies. It remains to be shown 
whether the localisation of RSFA abnormalities to regions rich in 5HT-1b 
receptors is a consequence of overactivity of these receptors (resulting in 
low cerebral blood flow), underactivity or loss of these receptors 
(resulting in vasoparalysis and/or inflammation), or a manifestation of 
flow-metabolism mismatching with inadequate substrate and oxygen 
delivery. This is relevant as potential therapeutic agents are available to 
modulate both 5HT-1b function (Barnes et al 2021) and inflammatory 
response (Group and Sterne, 2021; Zhang et al., 2020). 

In summary, we demonstrate that the severity of acute COVID-19 
predicts cerebrovascular impairment six months later. The cerebrovas-
cular abnormality was associated with worse cognitive function, mental 
health, functional recovery, and quality of life months after hospital-
isation. Localised across lateral frontotemporoparietal regions, we show 
that the physiological and genetic signature of this cerebrovascular 
impairment shapes the composition of cell-types, metabolism and vas-
oreactivity essential for neuronal homeostasis. Collectively, these results 
implicate long-lasting COVID-19-related vulnerability of brain systems 
differentially relying on metabolic physiology and cell biology in sup-
port of their functional specialisation. 
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