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Cerumenogram: a new frontier in 
cancer diagnosis in humans
João Marcos Gonçalves Barbosa   1, Naiara Zedes Pereira1, Lurian Caetano David   1,  
Camilla Gabriela de Oliveira   2, Marina Ferraz Gontijo Soares2, Melissa Ameloti Gomes Avelino2, 
Anselmo Elcana de Oliveira3, Engy Shokry   1 & Nelson Roberto Antoniosi Filho   1,4

Cancer is the deadliest human disease and the development of new diagnosis methods is important to 
increase the chances of a cure. In this work it was developed a new method, named here for the first 
time as cerumenogram, using cerumen (earwax) as a new biomatrix for diagnosis. Earwax samples 
collected from cancer patients (cancer group) and cancer-free patients (control group) were analyzed 
by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS), following with multivariate 
analysis steps to process the raw data generated. In total, 158 volatile organic metabolites (VOMs) were 
identified in the cerumen samples. The 27 selected as potential VOMs biomarkers for cancer provided 
100% discrimination between the cancer and control groups. This new test can thus be routinely 
employed for cancer diagnoses that is non-invasive, fast, cheap, and highly accurate.

Cancer is a disease characterized by the uncontrollable rise of abnormal cells in the body that extend through 
organs and tissues and can spread all over an organism. One in three sudden deaths from non-communicable 
diseases is due to cancer1. The International Agency for Research on Cancer (IARC) estimated that there will be 
18.1 million new cancer cases and 9.6 million cancer deaths in 2018 across 20 world regions2. Cancer incidences 
in humans are attributed to many factors, such as age, lifestyle behavior, hormones, and the exposure to environ-
mental carcinogens3,4. Due to the many factors responsible for cancer diseases, and its huge ratio of incidence and 
mortality, early cancer diagnoses are urgently needed.

In a clinical routine, many conventional diagnostics tests depend on the suspected type of cancer in the 
patient, which include cytology, biopsy, blood tests, and physical exam. These tests are limited and often use pain-
ful and invasive methods; moreover, some types of cancer are not detected due the limitations of the tests. The 
existing non-invasive methods such as computed tomography (CT) and magnetic resonance imaging (MRI), are 
associated with high false-positive rates and harmful for patients, due to the risk of radiation exposure5.

Alternative approaches to these traditional diagnostics tools have been developed involving screening bio-
markers in biological samples (biomatrices) using analytical methods. However, the search for biomarkers to 
develop a clinical diagnosis in early stages are widely associated with an invasive biomatrix, such as serum tests6–8 
and clinical tumor samples9–11.

Many researchers in the bioanalytical field have focused attention on the development of new non-invasive 
techniques for cancer diagnoses12, which has led to the study of volatile organic metabolites (VOMs) present in 
human and animals biomatrices, as biomarkers for a wide range of diseases13,14. VOMs are a part of the metab-
olomics field that can also reflect the status of the body, and serve as a potential alternative to diagnose several 
diseases, because they can provide tests that are non-invasive, painless, cheap, fast, and easy15. VOMs are ther-
mostable molecules that extend to a vast class of chemical compounds with a boiling point that goes from <0 °C 
(e.g. methane) to about 250 °C (e.g. limonene)14,16. VOMs are produced mainly for specific routes of a biochemical 
pathway (endogenous VOMs), or by exposure to an exogenous source (exogenous VOMs).

Endogenous VOMs are the aim in the studies to develop new diagnoses, because they are produced by reac-
tive oxygen species (ROS) and free radicals excreted from the mitochondria in an oxidative stress process. ROS 
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and liberated free radical attack many cellular structures (including RNA and DNA), and when accumulated in 
tissues, ROS destroys many different molecules, generating a wide range of VOMs classes14. ROS production is 
associated with the most inflammatory condition in cells, such as cancer diseases; therefore, ROS products are 
manifested at different levels in abnormal cell conditions and are accumulated in several biomatrices, such as 
urine, feces, sweat, tears, saliva, breath, and cerumen15,17,18.

Moreover, in the early stages of cancer, cancerous cells proliferate rapidly; consequently, adenosine monophos-
phate (AMP)-activated protein kinase is activated to accelerate the breakdown of lipids, for energy production 
to meet the energy requirement of cell proliferation and thus change the VOMs composition in body fluids19. 
Several studies have been conducted in recent years exploring the use of VOMs as biomarkers to identify cancer.

For this purpose, some diagnostic exams for cancer using blood, saliva, breath, fecal extract, and urine have 
been tested20–24, with some disadvantages such as affected by nutritional factors; low quantity and liability to diur-
nal variations of the VOMs composition; discriminations for polar or nonpolar VOMs depending on the polarity 
of the biomatrix; require time consuming pre-concentration steps; and effect of pH on composition25.

Nevertheless, despite the advantages of cerumen in relation to other biomatrices, such as no need for sample prepa-
ration, easy collect (painless), and less liability to external contamination (due to the location inside the auditory 
canal)25, it has been a neglected body secretion. Although cerumen is a concentrated form of excretion of polar and 
nonpolar metabolites, suitable for tracking long-term changes26. Only recently, has cerumen been used as a source of 
information about race, ethnicity and gender for individuals from East Asian, African, and Caucasian descent27,28. 
Recently, our research group successfully used cerumen VOMs to diagnose diabetes mellitus (DM) and differentiate 
between DM type I and II29. We have also investigated the viability of cerumen to diagnose intoxications and meta-
bolic alterations in animals25,30, as well as for forensic applications as a monitoring biomatrix for drug abuse analysis31.

However, to date, cerumen has never been tested with the purpose of identifying and selecting potential vol-
atile biomarkers for cancer. Thus, our work purposes the use of cerumen as a new biomatrix to diagnosis cancer 
in a new method named here, for the first time, as cerumenogram, with the principal objective to increase the 
accessibility to an accurate cancer diagnosis test, improving the chances of a cure. This identification is extremely 
important to advance the frontier for the development of new clinical diagnosis methods, allowing identification 
of cancer in a fast and conclusive way, using a non-invasive and easily collected biomatrix rich in both polar and 
nonpolar components. Thus, using Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) - a com-
mon technique found in many analytical laboratories around the world - analysis of cerumen volatile compounds, 
cerumenogram emerges as a new approach for cancer diagnosis.

Results
We collected samples from healthy subjects (control group) and a cancer group within different ranges of first 
cancer diagnostic. The cancer patients were either in early (0–6 months), medium (6–12 months), and later 
(between 1 and 5 years or more) intervals of diagnostic. The cancer patients had been diagnosed with either 
Lymphoma (n = 11), Carcinoma (n = 28) or Leukemia (n = 13). Cancer samples were collected from individ-
uals that have been in cancer treatment (chemotherapy, radiotherapy or both), and from patients that have not 
received any type of cancer treatment. Information about the date of samples’ collection, order of analysis and 
type of cancer of each sample is provided in the Supplementary Table 1 (Table S1). In addition, all information 
collected about the subjects from all groups in this study is summarized in Supplementary Table 2 (Table S2).

Cerumen VOMs profile.  The 102 cerumen samples collected from the cancer (n = 52) and control group 
(n = 50, healthy subjects, cancer free), were analyzed by HS/GC-MS. The 158 VOMs identified including orga-
nooxygen, carboxylic acids, organosulfur, hydrocarbons, and organonitrogen compounds. These compounds are 
summarized in Table S3 enumerate by the sequence of elution, absolute, and relative to the Internal Standard (IS) 
retention time. The fingerprint signals, of cerumen metabolomic profile, from GC-MS Total Ion Chromatograms 
(TIC) of the cancer group (divided into Carcinoma, Lymphoma, and Leukemia) contrasted with the control 
group are shown in Supplementary Fig. 1 (Fig. S1), where a wide range of compounds were identified, and the 
different TIC profile for each group is notable. Among the 158 VOMs, the largest group was the ketones with 36 
compounds; followed by 24 hydrocarbons; 17 amines and amides derivatives; 14 esters and/or ethers; 14 alde-
hydes; 14 carboxylic acid; 13 furanic, lactones, and derivatives; 13 alcohols and derivatives; 8 pyran; 3 organosul-
fur; and 2 epoxides/oxabicyclo compounds.

Statistical analysis.  Using the data matrix of the 158 VOMs identified, we run a Hierarchical Cluster 
Analysis (HCA) labelling ethnicity/race as parameters and, as shown in Supplementary Fig. 2 (Fig. S2), there is no 
ethnicity/race effect on cerumen’s VOMs expression. Since the ethnicity/racial of the individuals has low influence 
in the types of the VOMs produced in cerumen, but influencing only in the VOMs concentration27,28, it was applied 
the binary model (VOMs absence/presence) aiming to avoid the effect of this factor in cancer detection. Besides 
that, the influence of gender on VOMs produced in cerumen was verified using gender’s parameters in the HCA. 
As shown in Supplementary Figs 3 and 4 (Figs S3 and S4), also cerumen samples from males and females are not 
discriminated by its VOMs profile. Thus, a binary model was constructed aiming to visualize and explore similari-
ties and dissimilarities in the data. In this model, we utilized a Genetic Algorithm for a Partial Least Squares regres-
sion (GA-PLS) to select the most informative VOMs. This method is commonly used in very large data matrices 
and produces good improvement of the data32. In this case, the GA-PLS selected 27 out of 158 VOMs identified in 
cerumen analysis as a fingerprint for cancer diagnoses: 3 ketones; 3 ester and/or ether compounds; 1 aldehyde; 4 
pyran compounds; 2 furanic, lactones, and derivatives; 1 epoxides/oxabicyclo; 3 hydrocarbons; 3 carboxylic acid; 3 
alcohols and derivatives; 3 amines and amides derivatives; and 1 organosulfur compound.

Using these 27 selected VOMs, we run a HCA and observed that all samples were correctly discriminated 
between cancer and control group, as shown in circular dendrogram in Fig. 1. However, there was no separation 
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between the cancer types analyzed (Carcinoma, Lymphoma, and Leukemia), or between the type of treatment 
that the patients were previous submitted. Moreover, to verify the effect of the gender in the cancer samples 
discrimination, we run a HCA using these 27 potential biomarkers to observe any type of over-classification by 
gender on cancer identification. As shown in the Supplementary Figs 5 and 6 (Figs S5 and S6), there is no gender 
discrimination in the samples by these 27 cerumen VOMs profile, and the only factor in the discrimination of 
the samples according to the current cerumen/VOMs biomarkers data is cancer. These results indicate that the 
27 VOMs selected by GA-PLS are promising biomarkers in cerumen for cancer diseases since the discrimination 
pattern shown in Fig. 1 is an excellent result when considering that the data set is of intermediate size. The 27 
VOMs selected are shown in Table S4 with their respective chemical structure.

Discussion
The cerumen analysis provides a TIC with many peaks and different profiles for each cancer type leading to the 
identification of a wide range of compounds (Fig. S1). A previous compendium published in 2014 presented 
the VOMs composition of breath, saliva, blood, milk, skin secretions, feces, and urine, but cerumen was not 
included mainly due to the lack of studies that explore this biomatrix33. However, the cerumenogram can identify 
158 VOMs, which is an excellent number of compounds compared to 130 found in urine34 and 120 in saliva of 
humans35, using the same analytical technique, GC-MS. Therefore, cerumen is a potential source of biomarkers 
for many metabolomic changes, due to the wide variety of VOMs.

Using the binary data approach, 27 VOMs were selected by GA-PLS, which are 2,5-Dihydrofuran 
(VOM 3), 2-Butanone (VOM 5), 2-Methyl-3-buten-2-ol (VOM 6), 3-Methylhexane (VOM 10), 
2-Pentanone (VOM 11), 1-Methylcyclooctene (VOM 40), 6-Methyl-7-oxabicyclo[4.1.0]heptan-2-one 
(VOM 42), 5-Ethyldihydro-2(3 H)-furanone (VOM 43), 6-Methyltetrahydro-2H-pyran-2-one (VOM 47), 
2,5-Dimethylaniline (VOM 58), 1-Decanol (VOM 59), 6-Propyltetrahydro-2H-pyran-2-one (VOM 72), 
6-Butyltetrahydro-2H-pyran-2-one (VOM 85), 3-Phenylthiophene (VOM 88), N-(3-Acetylphenyl)aceta-
mide (VOM 99), 2,3-Dimethylquinoline (VOM 102), 1-Dodecanol (VOM 103), Dodecanoic acid (VOM 105), 
1-(Decyloxy)decane (VOM 120), Eicosane (VOM 126), 6-Heptyltetrahydro-2H-pyran-2-one (VOM 128), 
n-Tetradecanoic acid (VOM 130), 7-Octadecanone (VOM 134), n-Octadecanoic acid (VOM 141), n-Octadecanal 
(VOM 142), Diisobutyl phthalate (VOM 147), and Bis(2-ethylhexyl) phthalate (VOM 157).

These data set were submitted in multivariate analysis, HCA, to visualize if the samples from cancer and con-
trol group could be discriminated. Precisely, these 27 compounds demonstrated a 100% accurate discrimination 
between cancer and control group samples (Fig. 1). These produced VOMs are distinct in each organism due to 
the cell process of cancer development in the human organism, which includes tumor-promotion inflammation 

Figure 1.  Circular dendrogram of the 102 cerumen samples using the 27 VOMs peak signals selected by GA-
PLS from the 158 VOMs analyzed by HS/GC-MS. The circular dendrogram illustrates successful separation 
between the samples from the control (blue number) and cancer groups (red number). Samples from patients 
with different types of cancer are represented by different colors, and the oncological treatments are represented 
by different geometric symbols. Numbers on the branches in the HCA correspond to the order of samples 
analysis.
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and genome instability and mutation17,36. However, even in these different clinical cases of the patients in the 
cancer group, such as treatment and cancer type, these 27 VOMs selected by GA-PLS successfully discriminate 
all samples from cancer and control group without over-classification by ethnicity/race or gender, and they are 
definitely potential cancer biomarkers in cerumen.

To construct a database with a large number of individuals in healthy and cancer conditions, all varia-
bles selected by GA-PLS were maintained, although some variables, such as 1-Methylcyclooctene (VOM 40), 
2,5-Dimethylaniline (VOM 58), 1-Decanol (VOM 59), 3-Phenylthiophene (VOM 88), and 1-Dodecanol (VOM 
103) (Table S3), are not important for the discrimination process, and their exclusion does not change the dis-
crimination obtained by the model until. The 1-Methylcyclooctene (VOM 40), 2,5-Dimethylaniline (VOM 58), 
1-Decanol (VOM 59), 3-Phenylthiophene (VOM 88), and 1-Dodecanol (VOM 103) selected by GA-PLS are not 
discussed here since they are not important for discriminating the samples by multivariate analysis, but metabo-
lites 5-Butyldihydro-2(3 H)-furanone (VOM 69) and n-Nonadecanoic acid (VOM 145) are discussed to empha-
size their changes in the frequency of occurrence between cancer and control group, although they were not 
selected by GA-PLS. These 27 biomarkers selected by GA-PLS are from different organic class, such as organoo-
xygen (ketones, aldehydes, furans, esters and ethers, pyrans, epoxides, and alcohols), organic acids (carboxylic 
acids), organonitrogen (amines and amides derivatives), organosulfur (dialkyldisulfides and thioethers), and 
hydrocarbons (alkanes, alkenes, benzene, and substituted derivative). Some of them are associated for the first 
time as expression of cancer cells.

Among the polar VOMs, the most numerous class found in cerumen were the ketones. The ketones are 
abundantly found in urine, breath, saliva, and tissue samples34,35,37,38. These compounds are produced in the 
human organism from many different metabolic pathways, mainly endogenous decarboxylation of acetyl-CoA, 
β-oxidation of fatty acids, and exogenous pathways (air contaminants, diet, smoking). The increase of some 
ketone bodies in the organism were associated with the growth of cancer cells36,39,40. As seen in Table S4, in our 
analysis the GA-PLS selected three ketones as cancer biomarkers in cerumen: 2-Butanone, 2-Pentanone, and 
7-Octadecanone.

The 2-Butanone (VOM 5) was found in 96.2% in cancer samples, while in the control group it was found in 
58% samples (38.2% difference) (Table S3). This biomarker was already detected in abnormal concentration in 
feces of adults with Crohn’s disease41, in the saliva of children with celiac disease42, and in the urinary profile of 
breast cancer patients43. Another ketone biomarker in cerumen, 2-Pentanone (VOM 11), when found in high 
levels in feces, has been associated with inflammatory bowel diseases44. In addition, 7-Octadecanone (VOM 134), 
a ketone of high molecular weight, was selected as a cancer biomarker in this biomatrix; however, this is the first 
time that this compound has been associated with some pathology.

In addition to the polar VOMs identified here, fourteen aldehydes were detected in cerumen analysis. Several 
sources, exogenous and endogenous, are responsible for a presence of aldehydes in an organism. In endogenous 
pathways, these carbonyl compounds arise in the body, mainly by a mechanism involving process of metabolized 
alcohols and reduction of hydroperoxide by cytochrome P450 as a secondary product of lipid peroxidation. For 
the exogenous route, tobacco smoke, the products utilized in detoxification process of tobacco, and dietary life-
style are the main sources of aldehydes in the body14. Aldehydes are also commonly found in the urinary biosig-
nature34, salivary profile35, and in gastric tissue samples38.

Among fourteen aldehydes identified here, only one, n-Octadecanal (VOM 142), was selected by GA-PLS as a 
cancer biomarker. The n-Octadecanal has been found in the plasma of patients with Sjogren-Larsson syndrome 
(SLS) and can also be found in feces from healthy subjects45,46. However, this is the first time that n-Octadecanal 
has been associated with cancer diseases.

Some cyclic compounds containing oxygen as a heteroatom, such as furanic, lactones, and derivatives, were 
identified in our analysis. In the human organism, these compounds are produced by the dehydration of mono-
saccharides, also as a result of the catalysis reaction of fatty acid oxidation by lipoxygenases47. The VOMs formed 
by the fatty acid peroxidation maybe liberated as a consequence of oxidative stress into the inflammatory cells by 
general blood circulation48. Otherwise, studies have suggested that these compounds have higher production in 
patients with colorectal cancer than in healthy individuals47, and high levels of these compounds are also associ-
ated with breast and lung cancer43,49.

The GA-PLS selected two furanic compounds as cancer biomarkers: 2,5-Dihydrofuran (VOM 3) and 
5-Ethyldihydro-2(3 H)-furanone (VOM 43). The 5-Butyldihydro-2(3 H)-furanone (VOM 69) was not selected by 
GA-PLS; however, it seems to be a very important VOM due to its presence in 40% more samples from the cancer 
group than the control group (Table S3). This is the first time that 2,5-Dihydrofuran (VOM 3) has been associated 
with cancer diseases. In addition, the other furanic derivative compound selected as cancer biomarker in ceru-
men, 5-Ethyldihydro-2(3 H)-furanone (VOM 43), when presents in abnormal levels in feces, has been correlated 
with some gastrointestinal diseases, such as Campylobacter jejuni infection50.

Esters and ethers are commonly found in cerumen due to the formation processing of this biomatrix. 
Cerumen is formed by the combination of ceruminous glands with sebaceous glands, resulting in a mixture of 
fatty material and sweat secretions51. Thus, cerumen contains many heavy molecular weight compounds, such 
as wax esters, triacyclglycerols, and cholesterol52,53. In our bioanalytical analysis, we identified fourteen ester and 
ether compounds, and among them, three were selected as cancer biomarkers: 1-(Decyloxy)decane (VOM 120), 
Diisobutyl phthalate (VOM 147), and Bis(2-ethylhexyl) phthalate (VOM 157). This is the first time that these 
compounds have been indicated as biomarkers for cancer diseases. On the other hand, the phthalate compounds 
are known endocrine disruptors, dermal adsorption and urine secretions of these compounds has been widely 
study54,55.

In addition, the two-last classes of heterocyclic compounds, with oxygen as a heteroatom, found in ceru-
men samples were the Pyran and the Epoxide/Oxabicyclo compounds. We detected in cerumen samples 
eight Pyran and two Epoxide/Oxabicyclo compounds. The GA-PLS selected four Pyran compounds as cancer 
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biomarkers: 6-Methyltetrahydro-2H-pyran-2-one (VOM 47), 6-Propyltetrahydro-2H-pyran-2-one (VOM 72), 
6-Butyltetrahydro-2H-pyran-2-one (VOM 85), and 6-Heptyltetrahydro-2H-pyran-2-one (VOM 128). In addi-
tion, one Epoxide/Oxabicyclo compound was selected: 6-Methyl-7-oxabicyclo[4.1.0]heptan-2-one (VOM 42).

However, only 6-Methyltetrahydro-2H-pyran-2-one has already been detected in abnormal conditions in 
feces of patients with colorectal cancer56. The other three Pyran compounds related here are being described as 
cancer biomarkers for the first time. The epoxide compounds are produced in the human organism by the iso-
prene metabolization in liver microsomes by cytochrome P450 (CYP2E1 and CYPB6) to mono and di-epoxides 
compounds57,58. The Epoxide selected here as cancer biomarker in cerumen is also being related for the first time 
as an expression of cancer cells.

The analysis of cerumen identified thirteen alcohols and derivatives. Alcohols have exogenous and endoge-
nous routes that can explain their presence in the human organism. In the endogenous ways, alcohols are a sec-
ondary product of lipid peroxidation, and low-weight alcohols are produced in pyruvate metabolism by intestinal 
bacteria37,59. For the exogenous routes, alcohols are release in the gastrointestinal tract into the blood, following 
enzyme metabolization (such as alcohol dehydrogenases), concomitantly with the reduction of nicotinamide 
adenine dinucleotide (NAD+ to NADH), and by cytochrome P450 (CYP2E1)14.

Alcohols have many routes of body-scape, mainly through urine, sweat, feces, breath, saliva, and breast milk17. 
Three alcohols were selected by GA-PLS as cancer biomarker in cerumen: 2-Methyl-3-buten-2-ol (VOM 6), 
1-Decanol (VOM 59), and 1-Dodecanol (VOM 103). However, the 1-Decanol only appeared in 10% of the con-
trol samples, while this compound was not found in the cancer group (Table S3). The 1-Dodecanol only changed 
0.6% between cancer and control group (Table S3). The 2-Methyl-3-buten-2-ol was the main biomarker found in 
this class, and it is being reported here as a cancer biomarker for the first time.

We identified fourteen carboxylic acids in the cerumen biomatrix. Carboxylic acids are produced in the organ-
ism and mainly released through oxidation of cytotoxic aldehydes dehydrogenase (ALDH) enzymes60. Studies 
identify volatile organic acids as important intermediates in different biological processes usually due to bacterial 
activity, such as degradation of carbohydrates in the intestine by bacterial anaerobic process61. These organic 
compounds are commonly found in urine34, saliva35, and human tissue38.

This analysis separated three organic acids as cancer biomarker in cerumen by GA-PLS. They are Dodecanoic 
acid (VOM 105), n-Tetradecanoic acid (VOM 130), n-Octadecanoic acid (VOM 141). The n-Nonadecanoic acid 
(VOM 145) was not selected by GA-PLS; however, this compound appears 53.4% more in cancer group than 
in control group samples (Table S3). These compounds, when present in abnormal concentration in many bio-
matrices, are widely associated with advanced or immature cancer pathology. Dodecanoic acid (VOM 105) has 
been found at high levels in saliva of patients with oral squamous cell carcinoma (OSCC), in patients with oral 
leukemia (OLK)62, colorectal patients56, and patients with metastatic melanoma63.

The n-Tetradecanoic acid (VOM 130), when detected in high levels in urine, has been associated with OLK 
and OSCC62, and detected in abnormal concentration in blood samples for an oesophageal cancer group64, and in 
feces and urine of colorectal patients65,66. In addition, high levels of n-Octadecanoic acid (VOM 141) has already 
been associated as a biomarker for breast cancer in blood analysis67, and in feces for colorectal cancer24. Finally, the 
n-Nonadecanoic acid (VOM 145) has also been detected in high levels in feces of patients with colorectal cancer68.

We have identified seventeen organic compounds in cerumen that has nitrogen as a heteroatom. 
Organonitrogen compounds, such as pyrrole, pyridine, amides, and derivatives were found in cerumen, and 
they can be related as natural products of the organism or associated to pollutants of exogenous sources (e.g. 
diet, air pollution, and cigarette smoke)69,70. Furthermore, some higher volatile organonitrogen emission from 
tissue samples have been associated with gastric, and lung tissue cancer38,71. In this analysis, three organonitro-
gen compounds were selected by GA-PLS as a cancer biomarker in cerumen: 2.5-Dimethylaniline (VOM 58), 
N-(3-Acetylphenyl)acetamide (VOM 99), and 2,3-Dimethylquinoline (VOM 102). This is the first time that these 
compounds have been found as an expression of some pathology.

The incomplete metabolism of cysteine and methionine by the transamination pathway are responsible for 
the expression of volatile organosulfur72. We detected three organosulfur compounds in the cerumen samples, 
among them, the Dimethyl disulfide (VOM 16), which was produced through the oxidation of methanethiol, also 
by gram-negative bacteria72,73. Interestingly, Dimethyl disulfide (VOM 16) has been detected as a potential cancer 
biomarker in many biomatrices, especially urine49, but in cerumen was not selected as a cancer biomarker. In 
cerumen only the 3-Phenylthiophene (VOM 88), of this class, was selected as a biomarker by GA-PLS; however, 
this compound is present only 2.5% more in cancer than in control group samples (Table S3).

We detected twenty-four hydrocarbons, the second most present class in cerumen samples. Many produc-
tion routs of hydrocarbons have been connected to the presence of reactive oxygen species, due to oxygen free 
radicals that probably escape from mitochondria into a cytoplasm37. This analysis selected three hydrocarbons 
as cancer biomarkers: 3-Methylhexane (VOM 10), 1-Methylcyclooctene (VOM 40), and Eicosane (VOM 126). 
Eicosane, which was probably produced by peroxidation of polyunsaturated fatty acids (PUFAs), e.g. linoleic acid, 
present in the cell membrane74, has already been detected in saliva and feces of healthy subjects33,75. In addition, 
3-Methylhexane, a result of peroxidation of PUFAs76, is related for the first time in the human organism. Thus, 
these hydrocarbons are found exclusively in cerumen as valuable cancer biomarkers.

In summary, we developed a new analytic approach to identify cancer in humans with some advances to 
another methods. The main merits of cerumen sampling over other non-invasive biomatrix include easy sample 
collection, painless and no discomfort or embarrassment associated with other biomatrices (such as blood, urine, 
and feces tests), no need for treatment or preconcentration of the sample, less inclined to contamination, and not 
liable to blood contamination of samples25.

In addition, cerumen was the first biomatrices to achieve a 100% efficiency in the discrimination between 
samples from cancer and control group, and the only limitation is the inability to discriminate between cancer 
types that would require further specific screening process77,78. However, it is worth emphasizing that, given its 
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high reliability, accuracy, simplicity, and low cost, this test for cancer and other diseases using cerumen – here 
called for the first time as Cerumenogram – could be used frequently as a preceding diagnosis to be applied before 
the use of specific diagnostic methods for each type of cancer, which are much more expensive and still very rare.

Conclusion
Cerumen is a fingerprint of both polar and nonpolar substances excreted by biochemical reactions, and cancer 
cells produce different substance than healthy cells. These differences in chemical composition can be moni-
tored to determine cancer early, since cerumen is continuously excreted. This new analytical test development 
obtained 100% efficiency in the discrimination of all samples used in this work, separating the cancer from the 
control group samples. The Cerumenogram is performed in a total time of around 3 hours, with an estimated 
analysis cost of US$ 50/per sample. This means that the analysis of VOMs in cerumen is a simple, fast, and cheap 
way to identify cancer, with the highest accuracy possible for a human that suffers from cancer. Furthermore, 
cerumen presents many advantages, such as painless collection and no liability of external contamination. This 
new method will allow a number of biomarkers identified for cancer diseases, 27 VOMs, to be monitored in an 
emergency or routine test, substantially reducing deaths from these diseases. The trend is that, from the encour-
aging data obtained here, soon, a so-called Cerumenogram will be a diagnostic test as common as a blood count 
is today, making it possible to save lives that could be eradicated by one of the deadliest diseases.

Methods
Test population: Patients and sample collection.  Cerumen samples from 102 volunteers were col-
lected at oncology unit of the Clinical Hospital, Federal University of Goiás (HC/UFG – Goiás, Brazil). Samples 
were collected from volunteers’ ears using a metallic curette and transferred in Eppendorf tubes, which were 
closed and stored in a freezer at −20 °C. All analyses were carried out a maximum of 7 days after the collect. The 
patients were divided into two groups: control group (Healthy subjects; cancer free, n = 50, age range 2–65 years 
old, 29 males and 21 females), and cancer group (n = 52, age range 33–83 years old, 25 males and 27 females).

Ethics committee approval.  All volunteers who agreed to participate in this study signed an informed 
consent after the approval of local ethics committee at the Federal University of Goiás (#57880516.9.0000.5083). 
A questionnaire about their medical history was applied with the aimed of identifying and eliminating metabo-
lites from medications, licit drugs, and treatment of past diseases that can show VOMs not coming from the can-
cer diseases or from the patient’s health conditions. Every step in this study was strictly conducted by following 
the Declaration of Helsinki. The main information extracted from the volunteers’ questionnaires are summarized 
in Table S2.

VOMs analysis.  Cerumen samples were analyzed according to the recent method created in our research 
group29. In this way, 20 mg of each cerumen sample collected was weighed into 20 mL GC headspace vials and 
0.2 µL of 3-methylcyclohexanone (Sigma-Aldrich, Saint Louis, MO, USA) was added as IS. In addition, gas-tight 
polytetrafluoroethylene (PTFE)-lined rubber septum caps were used to seal the vials. Then, the analyses were 
carried out by HS/GC-MS, applying all steps pre-established for GC-MS-based metabolomics, such as baseline 
correction, noise reduction, retention time alignment, and data-normalization79,80.

HS/GC-MS equipment.  The cerumen sample analyses were conducted using a Shimadzu GCMS-QP2010 
Ultra system and a Shimadzu AOC-5000 headspace analyzer (Shimadzu, Japan). The system uses a 2500 µL 
gas-tight syringe, a VT32–20 tray for 20 mL standard vials (PAL System, Zwingen, Switzerland) with a preheating 
module LHS0 Combi Pal with heating time and control of temperature (PAL System, Zwingen, Switzerland).

Headspace.  Headspace sampler parameters were configured at: fill volume (2500 µL), fill speed (100 µL s−1), 
injection volume (2500 µL), injection speed (1 mL s−1), syringe temperature (150 °C), pre-warm time (10 min), 
equilibration time (3 min), syringe flushing time (5 min), re-flush time (5 ms), and post-flush time (5 ms). The 
preheating module parameters were set at: agitation speed (500 rpm), agitation on time (5 s), agitation off time 
(3 s), incubation temperature (160 °C), time of incubation (60 min).

Gas chromatography.  VOMs were eluted in an analytical capillary column NST-100-ms (25 m × 0.25 mm 
i.d. × 0.3 µm film thickness) (NST, São Paulo, Brazil) with a polyethylene glycol high-polarity stationary phase. 
The injector was operated at 250 °C in the splitless mode applied with high purity helium (99.999% - 5.0, Helium, 
Air Liquide) as a carrier gas with a constant flow rate of 1.36 mL min−1 with a linear velocity for the carrier gas 
of 45.8 cm s−1. The oven temperature programming was set at: elution start in 30 °C (with isothermal heating for 
5 min), a 2 °C min−1 gradient up until 45 °C (held 5 min), followed by another increase at 2 °C min−1 to 50 °C (held 
5 min), another increase at 2 °C min−1 to until 120 °C, and another with 6 °C min−1 to 200 °C (held 5 min) ending 
at 5 °C min−1 to 250 °C (held 10 min), for a total of GC run time of 98.33 min.

Mass spectrometry.  MS spectra of VOMs were acquired by electron ionization (EI) mode at 70 eV. The star 
cut-off time for MS recording was 0 min. Data acquisition was performed in full scan mode from 40 to 500 m/z 
with a scan time of 0.3 s and a scan speed of 1666 u s−1. The cerumen VOMs were confirmed by comparing their 
MS patterns with those of valid standards (ST) run in the same GC conditions, and by NIST11s Mass Spectral 
Library. Only compounds with more than 80% probability of a match to NIST11s library standards were consid-
ered. Finally, all the VOMs chromatographic peaks were confirmed by their respective retention time relative to 
the IS.
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Statistical methods.  The raw data generated in our analysis provides a total of 158 observations (chroma-
tographic peaks) extracted from the test groups. A binary data model was constructed, where the 158 variables 
detected were transformed into binary output express as 1 for presence and 0 for absence, resulting in a data 
matrix of 102 rows representing the earwax samples by 158 columns for the VOMs.

Data treatment.  A variable selection procedure using the GA-PLS results in 27 selected variables. The 
GA-PLS parameters were set as: population size of 100, window width at 1, maximum number of variables in each 
population of 100, convergence probability of 50%, mutation probability of 0.5%, maximum number of genera-
tions of 35, and contiguous cross-validation. HCA analyses using Ward agglomeration method were run applying 
Hamming distances as proximity measures of the binary data. GA-PLS was run according to PLS Toolbox 7.9 
(Eigenvector Research Inc., Manson, WA, USA) algorithm using Matlab 2014b (MathWorks, Natick, MA, USA). 
The e1071 package was used to calculate Hamming distances under R version 3.5.1 (R Foundation for Statistical 
Computing, http://www.R-project.org)81.

Materials & correspondence.  All data needed to interpret conclusions herein are presented in the paper 
and/or the Supplementary Information. Additional data related to this paper may be requested from the corre-
sponding authors (J.M.G.B. and N.R.A.F.). Only the questionnaires filled out by the volunteers during the collec-
tion will not be available, due to the signature of their identity preservation agreement.
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