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Introduction

Asymmetric cell division (ACD) is a fundamental process 
whereby the asymmetric inheritance of cellular compo-
nents (e.g. proteins, RNAs) during mitosis defines distinct 
fates for each daughter cell. This evolutionarily conserved 
division mode is used by stem and progenitor cells in dif-
ferent tissues. In a typical outcome of an asymmetric divi-
sion, the stem or progenitor cell generates a copy of itself, 
which retains self-renewal ability and differentiation poten-
tial, and one daughter that enters the path of differentiation. 
Thus, by balancing self-renewal with differentiation, asym-
metric divisions maintain the stem and progenitor cell pool 
while allowing the generation of diverse functional cells.

Much of what we know about the regulation of ACD 
is gleaned from studies of the stem-like cells of the cen-
tral nervous system of Drosophila, the neuroblasts (NBs). 
These studies in Drosophila have shown that disruption of 
ACD leads to abnormal proliferation and genomic instabil-
ity, indicating that ACD may operate as a tumor suppres-
sor mechanism during normal development [1]. Investi-
gations of the mammalian central nervous system have 
more recently revealed that neural stem cells (NSCs) and 
oligodendrocyte precursor cells (OPCs) undergo ACD [2, 
3]. Moreover, decreased ACD frequency has been found 
in cancers with a stem and progenitor foundation, such as 
leukemia [4], brain tumors [3], and mammary carcinomas 
[5]. Intriguingly, however, a subset of highly tumorigenic 
cancer cells with stem cell properties, the cancer stem cells 
(CSCs), retain their ability to divide asymmetrically in 
established brain tumors [6], suggesting that ACD may play 
an important role in tumor maintenance. We will therefore 
first describe how ACD is established in Drosophila NBs 
and subsequently discuss the extent to which these mecha-
nisms appear to be conserved in the mammalian neural 
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lineage. In the final part of this review, we will discuss the 
emerging roles of ACD regulators in controlling cellular 
features observed during the initiation and progression of 
human cancers.

Asymmetric divisions of Drosophila melanogaster 
neuroblasts

Drosophila NBs are the most thoroughly studied model 
system of ACD, where basic principles of polarity, spindle 
orientation, and cell-fate determination have been revealed 
[7]. Embryonic NBs undergo several rounds of asymmetric 
divisions, during which determinants of differentiating fate 
concentrate at the basal cell cortex before mitosis and seg-
regate unequally during cytokinesis, to generate each time 
another NB and a more restricted progenitor called gan-
glion mother cell (GMC). At early stages of larval devel-
opment, and after a period of quiescence, NBs re-enter the 
cell cycle and continue to divide asymmetrically to produce 
GMCs, either directly (type I NBs) or via intermediate pro-
genitors (type II NBs) [8–10].

Establishing polarity

Embryonic NBs delaminate from a polarized neuroecto-
derm and inherit apically positioned Bazooka (Baz or Par3) 
protein. Baz serves as an apical polarity cue and during 
late interphase/early prophase, assembles a polarity com-
plex [11]. Baz binds and activates the Rho GTPase family 
Cdc42 [12], which in turn recruits atypical protein kinase C 
(aPKC) and the aPKC inhibitory subunit Par6 [12, 13]. In 
prophase, the apical complex also binds to the adaptor pro-
tein Inscuteable (Insc) [14] and thereby initiates the assem-
bly of a second complex consisting of partner of Insc (Pins) 

[11] and the heterotrimeric G protein coupled subunits Gαi 
and Gβγ. Pins-dependent heterotrimer formation of Gαi/βγ 
activates G protein signaling in a transmembrane receptor-
independent manner [15] and in the absence of nucleotide 
exchange [16].

In metaphase, the mitotic kinase Aurora A (AurA) phos-
phorylates Par6, which in conjunction with Baz/Cdc42 
binding leads to aPKC activation [14, 17, 18]. Protein 
phosphatase 2A (PP2A) restricts active aPKC to the api-
cal cortex in larval NBs [19, 20] and dephosphorylates Baz 
and Par6 in embryonic NBs [17, 21]. Thus, NB polarity is 
established through the dynamic physical association of 
scaffold proteins, which coordinate GTPase, kinase, and 
phosphatase activities. The activation of G protein signal-
ing through Pins occurs cell intrinsically and not only sta-
bilizes apical polarity but also positions the nascent mitotic 
spindle along the apico-basal axis and determines its size 
asymmetry (Fig. 1).

Orienting the mitotic spindle

Proper apico-basal spindle positioning depends on a 
dynamic cross-talk between polarity and spindle-orientat-
ing complexes at the cortex with centrosomes and astral 
microtubules. Shortly after cytokinesis is completed, NBs 
prepare for the next round of division by localizing one 
centrosome to the vicinity of the apical pole. The api-
cal centrosome forms astral microtubules and anchors in 
a Pins-dependent manner. After it duplicates, the mother 
centrosome moves away to the basal pole [22]. In actively 
cycling larval NBs, the apical centrosome provides polar-
ity cues that precede those provided by the apical polarity 
complex and it functions as a spatial memory for proper 
spindle axis formation in subsequent rounds of divisions 
[22–24].

Fig. 1   Asymmetric division in Drosophila neuroblasts. Polarized 
localization of apical complexes is established during prophase. Dur-
ing metaphase and telophase, the spindle is anchored and orientated 

relative to the axis of apico-basal polarity. Cell-fate determinants are 
asymmetrically segregated into self-renewing neuroblasts or differen-
tiating ganglion mother cells



577Asymmetric cell division and cancer

1 3

The coiled-coiled domain protein mushroom body-
defective (Mud) binds to the centrosome and links astral 
microtubules to the apical complex by interacting with Pins 
[25–27]. The microtubule-cortex contact is additionally 
controlled by the MAGUK Disc large (Dlg), which physi-
cally interacts with Pins at the cortex and with kinesin Khc-
73 at the microtubule plus ends [28, 29]. Pins/Mud interac-
tions stabilize the mitotic spindle and Pins/Gαi/Dlg/Khc-73 
interactions establish a positive feedback loop, and thereby 
maintain apical cortical polarity as well as the correct spin-
dle orientation.

The temporal coordination of spindle positioning is less 
well understood and it is known to require the Polo and 
AurA kinases [30–32]. Polo kinase is part of the spindle 
assembly checkpoint that ensures that microtubules are 
properly connected to kinetochores and that chromosomes 
segregate correctly. Polo therefore potentially links the 
temporal control of ACD with the global temporal control 
of mitosis and proper ploidy.

Cell‑fate decision control

The Baz/Par6/aPKC complex directs the basal distribution 
of the cell-fate determinant Numb, an evolutionary con-
served protein primarily known for its ability to inhibit the 
Notch signaling pathway, and the adaptor protein Miranda 
(Mira). This process depends on an intact actin cytoskele-
ton [33] and two myosin motors, MyoII and MyoVI, which 
operate downstream of the apical complex [34].

In interphase, aPKC and Par6 form a complex with the 
WD40 protein lethal giant larvae (Lgl). Mitotic phospho-
rylation of Par6 by AurA stimulates aPKC to phospho-
rylate Lgl, which is then released from aPKC, allowing 
Baz to enter the Par complex [18, 35]. Assembly of Baz/
Par6/aPKC changes aPKC substrate specificity, allowing 
it to phosphorylate Numb and releasing it from the apical 
cortex [18, 36]. Phosphorylated Numb then localizes to 
the basal side of the cell [36] assisted by the adaptor pro-
tein Partner of Numb (PON) [37], whose activity is largely 
dependent on its phosphorylation by Polo kinase [30]. 
Once in the GMC, Numb prevents self-renewal, predomi-
nantly by antagonizing Notch signaling [31].

Similar to Numb, Mira polarization has been proposed 
to occur as a consequence of direct aPKC phosphoryla-
tion [18, 38]. However, in aurA mutant NBs, which dis-
play delocalized aPKC, Mira distribution is unaltered [31, 
32], implying the existence of alternative mechanisms 
acting upstream of or in parallel to aPKC. Mira binds to 
and directs the asymmetric localization of distinct cell-fate 
determinants, including the transcriptional regulator Pros-
pero (Pros) [39, 40], the double-stranded (ds) RNA-binding 
protein Staufen (Stau) [41, 42] and the NHL-domain pro-
tein Brain tumor (Brat) [43, 44]. Stau binds to pros mRNA, 

through its 3’ UTR, and localizes it to the GMC [45, 46], 
which itself does not transcribe the pros gene [46]. In the 
GMC, Prospero activates a neurogenic program [47, 48] 
and represses expression of genes associated with stem 
cell fate and cell-cycle progression [49]. Brat, on the other 
hand, promotes cell-cycle exit, represses NB fate, and 
inhibits cell growth [43, 44, 50], at least in part, by inhib-
iting the expression of the transcription factor dMyc at a 
post-transcriptional level [43].

As a result of unequal segregation of basal cell-fate 
determinants, the apical NB daughter continues to prolifer-
ate, while the basal GMC daughter is committed to differ-
entiate (Fig. 1). The specification of NB and GMC fates is 
irreversible and no cases of spontaneous de-differentiation 
of a GMC into a NB have been observed.

Asymmetric cell division in mammalian neural lineages

The production of the different cell types in the mamma-
lian central nervous system (CNS) occurs in temporally 
defined, though overlapping, developmental phases. Gen-
erally, neurons arise first, followed by astrocytes and oli-
godendrocytes. This process is largely determined by cell-
intrinsic changes that alter the differentiation potential of 
CNS progenitors as development proceeds [51, 52].

Polarized progenitors and division mode during embryonic 
neurogenesis

Similar to Drosophila NBs, mammalian embryonic neural 
stem cells, or radial glia (RG) cells, arise from neuroepi-
thelial cells, with which they share pronounced apico-basal 
polarization. RG cells divide in the ventricular zone (VZ) 
and they contact the ventricular and pial surfaces of the 
neural tube through an apical process and a long basal fiber, 
respectively. At its apical endfoot, each RG cell forms close 
contacts with its neighboring cells via adherens junctions 
(AJs) [53, 54].

During the peak of neurogenesis, RG cells execute 
mainly asymmetric self-renewing divisions to produce 
either neurons or basal progenitors (BPs) [55]. The newly 
born neurons and BPs lose both ventricular and pial attach-
ments and migrate basally [2, 56]. BPs then divide sym-
metrically in the subventricular zone (SVZ) to give rise to 
either two BPs, or, as in most cases, to two neurons that 
migrate further basally [2, 56] (Fig.  2). Another type of 
neurogenic progenitor with a short basal fiber has been 
reported to divide adjacent to RG cells, which has led to the 
proposal that multiple types of neural progenitors co-exist 
in the VZ [57].

Recently, a new class of RG residing in the outer SVZ of 
the human, ferret [58, 59], and mouse embryonic brain [60] 
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has been identified. Murine outer RG (oRG) arise from 
asymmetrically dividing RG cells and, in contrast to BPs 
and neurons [60], oRG inherit the basal fiber, but lose their 
apical attachment [61] and migrate to the SVZ, where they 
undergo asymmetric self-renewing divisions to produce 
neurons [60] (Fig. 2).

The Par complex and adherens junctions

The molecular mechanisms that establish polarity in RG 
and oRG cells are only partially delineated. The mamma-
lian homologs of the polarity regulators Par3, Par6, and 
aPKC [62], as well as of Cdc42 [63], localize to RG apical 
endfeet and appear to serve two main functions: First, they 
maintain apical AJs integrity, thereby preserving RG polar-
ity and VZ organization, and secondly, they participate in 
the control of RG cell fate.

Apical assembly of the Par3/Par6/aPKC complex 
requires Cdc42 function. Targeted deletion of Cdc42 
disrupts apical localization of Par6 and aPKC [64] and 
causes loss of AJs [63]. Similarly, conditional depletion 
of aPKCλ in RG leads to loss of AJs, disruption of the 
VZ, detachment of apical processes from the ventricu-
lar surface, and centrosome mislocalization. Despite 
these polarity defects, neurogenesis occurs normally 
[65]. This may either indicate that maintenance of AJs 
integrity and associated polarity are dispensable for cell 

fate determination, or alternatively, that loss of aPKCλ 
may not completely disrupt the intrinsic polarity of RG, 
perhaps due to functional redundancy with other aPKC 
isoforms.

RG cells AJs are formed by three different domains, 
which are sometimes bisected in an asymmetric fashion 
by the mitotic spindle during RG divisions [66]. A basal 
β-catenin/E-cadherin-positive region and a central ZO1+ 
domain segregate to both daughter cells in the majority 
of the divisions. In contrast, an apical region enriched for 
Par3 and aPKC, together with the most apical part of the 
plasma membrane, which shows localized expression of 
Prominin-1, have been found to be consistently distrib-
uted to only one daughter cell in neurogenic divisions 
[66, 67].

Prominin‑1 in the VZ

Prominin-1 (Prom1) is a multispan transmembrane glyco-
protein that is specifically sorted to microvilli and plasma 
membrane protrusions and localizes to membrane micro-
domains that are released into the extracellular space [68]. 
The human homolog of Prom1, CD133, is a cell-surface 
marker for distinct, malignant populations of CSCs, and 
has been shown to segregate asymmetrically in a sub-
population of brain CSCs, which we will discuss further 
below [6]. CD133/Prom1 also segregates asymmetrically 
in hematopoietic stem and progenitor cells, suggesting a 
broader and common role in somatic stem and progenitor 
cells [69]. So far, described phenotypes for genetic deple-
tion of Prom1 in mice are restricted to retinal degeneration 
[70]. Therefore, the significance of the asymmetric distri-
bution of Prom1-containing microdomains in RG and non-
neural stem cells remains unclear.

Par3 and Numb

Gain- and loss-of-function studies are conclusive in show-
ing that unequal segregation of Par3/aPKC is responsible 
for differential cell-fate determination. Forced expression 
of Par3 increases symmetric RG divisions at the expense 
of BP generation. In contrast, conditional Par3 depletion 
increases neurogenesis [71]. The effects of Par3 on RG 
cell fate depend on Numb and its close relative Numb-like 
(Numbl). Par3 seems to directly interact with Numb and 
thereby to modulate its antagonistic effect on Notch sign-
aling [71]. Since Notch activity is involved in the mainte-
nance of RG identity [72], this provides a mechanism by 
which Par3 promotes RG fate. Interestingly, Numb and 
Numbl have also been implicated in the maintenance of RG 
AJs and polarity [73]. Thus, Par3 and Numb/Numbl main-
tain polarity and balance self-renewal and differentiation of 
RG cells.

Fig. 2   Patterns of cell division during mammalian embryonic neu-
rogenesis. During the peak period of murine neurogenesis radial glia 
(RG) cells divide in the ventricular zone (VZ) mainly asymmetrically, 
generating one RG cell and one neuron, or one RG cell and one basal 
progenitor (BP), which migrates to the subventricular zone (SVZ). 
Asymmetric RG divisions also produce outer RG (oRG) cells, which 
lose their ventricular attachment and translocate to the SVZ, where 
they divide asymmetrically to produce neurons
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Par3‑independent asymmetry

Consistent with the lack of apical process, human oRG fail 
to express the apical regulators Par3 and aPKC [59], yet 
they retain expression of the RG markers Sox2 and Pax6 
and continue to divide asymmetrically [58, 59]. This sug-
gests that a currently undefined, Par3-independent, mecha-
nism of polarity and cell fate control exists in oRG cells. 
An interesting possibility is that this regulatory machinery 
is dependent on the basal fiber. In support of this, analy-
ses of the contribution of the apical domain and basal RG 
process to cell-fate determination on murine slice cultures 
have shown that inheritance of the basal process alone is 
associated with acquisition of either RG or oRG fate, 
whereas inheritance of the apical domain in addition to the 
basal process is required to retain RG identity [61].

Given that the asymmetric inheritance of both the basal 
process and Par3/aPKC at the apical domain depend on 
a slight tilting of the mitotic spindle, these observations 
highlight how crucial the positioning of the mitotic spin-
dle in relation to the apico-basal axis may be for cell-fate 
determination.

Spindle orientation and centrosome asymmetry

During the peak period of neurogenesis, the majority of RG 
cells undergo vertical divisions, with the mitotic spindles 
aligned within 0° and 30° of the ventricular surface [74, 
75]. A smaller fraction of the cells have an oblique spin-
dle orientation (between 30° and 60°), and only rarely, cells 
divide with a horizontal cleavage plane [74, 76].

Pins/LGN and Insc

Similar to Drosophila NBs, Pins and Insc homologues play 
a role in orienting the spindle in RG cells, although some 
functional differences appear to exist. LGN, an orthologue 
of Pins, is highly expressed in the VZ and localizes to the 
lateral membrane of dividing RG cells [77]. Genetic abla-
tion [74] or siRNA-mediated knockdown [61] of LGN lead 
to increased oblique RG divisions at the expense of vertical 
divisions. During oblique divisions, the entire apical end-
foot with the Par polarity complex is inherited by only one 
cell, while the other cell remains Par3-negative. This results 
in abnormal production of oRG cells at the expense of dif-
ferentiated progeny [61].

Interestingly, Insc seems to oppose LGN function in 
RG cells [74]. The two proteins do not overlap in their 
subcellular localization, but rather Insc localizes to an api-
cal crescent in RG cells at prometaphase and to the mid-
zone in anaphase. Forced expression of Insc in the devel-
oping mouse cortex increases the frequency of horizontal 
and oblique divisions [74, 75]. Conversely, conditional 

inactivation of Insc causes an increased number of verti-
cal divisions [75]. The number of RG cells in the VZ is not 
affected by changes in Insc expression. However, upon Insc 
overexpression the overall number of proliferative cells, 
Pax6+ progenitors in the outer layers, as well as that of BPs 
and neurons increases [74, 75]. Postiglione and colleagues 
concluded that increased oblique divisions led to increased 
numbers of BPs directly. Yet, an alternative explanation is 
that increased oblique divisions may generate more oRG, 
which in turn produce BPs and neurons [78]. Regardless of 
the mechanism, these observations are difficult to reconcile 
with a conserved function of Insc as a cellular linker of the 
Par complex and LGN/Gαι.

In RG cells, the centrosome localizes to the tip of the 
apical endfoot and, after duplication, the nascent centro-
some predominantly segregates to the differentiating prog-
eny [79]. Thus, although showing stereotypical asymmetric 
segregation, the pattern of inheritance of nascent and mater-
nal centrosome in RG is opposite to that in Drosophila  
NBs.

Treacle/Plk1

The phosphoprotein Treacle has been found to associate 
with the centrosome and to be critical for correct spin-
dle positioning and mitotic progression. Treacle function 
appears to depend on its physical interaction with Polo-
kinase 1 (Plk1), a mammalian Polo homolog. In mice 
hemizygous for Treacle, localization of Plk1 to the centro-
some is disrupted. Either Treacle deficiency or pharma-
cological inhibition of Plk1 prolong mitoses and perturb 
cleavage planes of RG divisions [80]. This suggests that 
the Treacle/Plk1 complex acts as a checkpoint that RG cells 
pass once the mitotic spindle is properly positioned.

In summary, some general ACD principles appear to be 
conserved between NBs and RG, such as the crucial role 
of cell intrinsic cues, rather than external signals, in deter-
mining the orientation of cell divisions [81]. Yet, organism-
specific differences exist in the regulation of cleavage plane 
and centrosome asymmetry.

Cell fate determination

Some of the mouse homologs of the cell fate determinants 
that regulate ACD in Drosophila NBs have been reported 
to preferentially localize to either the basal fiber or apical 
domain of RG cells.

Stau2, Prox1, and Trim32

Staufen2 (Stau2), the mouse homolog of Staufen, is api-
cally localized in RG cells [82, 83]. In vitro cell pair assays 
with cortical progenitors indicate that it preferentially 



580 S. Gómez-López et al.

1 3

segregates to the daughter that acquires a BP fate [83]. 
Stau2 is part of a ribonucleoprotein complex that includes 
the RNA-binding proteins Pumilio2 (Pum2) and DEAD 
box polypeptide 1 (Ddx1), as well as cargo mRNAs such as 
the mammalian homologs of prospero and brat, Prospero-
related homeobox 1 (Prox1) [82] and Tripartite-motif con‑
taining 32 (Trim32) [83], respectively. Depletion of Stau2, 
Ddx1, or Pum2 by shRNA results in premature differentia-
tion of RG cells into neurons [82, 83], indicating that the 
complex is essential for progenitor maintenance. Moreover, 
Stau2 knockdown was shown to cause mislocalization and 
increased levels of Prox1 mRNA [82], as well as a more 
diffuse and symmetric distribution of Trim32 mRNA [83]. 
Since Prox1 is known to mediate cell-cycle exit and neu-
rogenesis in the neural retina [84] and Trim32 induces 
neurogenesis [85], these data suggest that, similar to its 
Drosophila homolog, Stau2 binds and localizes neurogenic 
determinants away from the self-renewing daughter.

Trim32 is an E3-ubiquitin ligase and has been suggested 
to promote neuronal differentiation by activating specific 
microRNAs, such as Let-7 [85], and by enhancing the tran-
scriptional activity of retinoic acid receptor-α [86]. Addi-
tionally, Trim32 binds to the transcription factor c-Myc and 
targets it for degradation, thus coupling cell-fate specifica-
tion with cell-cycle exit [85]. Trim32 has also been shown 
to interact with membrane aPKCξ [87]. It has been pro-
posed that this interaction prevents its nuclear translocation 
and consequently c-Myc degradation in neural progenitors, 
allowing maintenance of an undifferentiated and prolifera-
tive state.

Asymmetry and cell cycle

Cell-fate determination in the neural lineage is tightly 
linked to cell-cycle length. Indeed, lengthening G1 has 
been shown to be necessary and sufficient to switch neu-
ral progenitors into neurogenesis [88]. In cyclin-dependent 
kinase 2 and 4 (Cdk2/4) double-knockout mice, neural 
progenitors exhibit G1 phase lengthening, which corre-
lates with increased spontaneous differentiation in vitro 
and loss of BPs and increased neuronal production in 
vivo [89]. Interestingly, recent work indicates that asym-
metrically dividing RG cells unequally segregate Cyclin 
D2, a positive regulator of G1 progression [90]. With the 
onset of neurogenesis, both Cyclin D2 protein and mRNA 
become enriched at the basal endfeet of RG cells [90, 
91]. This biased distribution has been proposed to result 
from active transport and local translation of Cyclin D2 
(Ccnd2) mRNA [90]. Upon asymmetric RG cell division, 
Cyclin D2 preferentially segregates to the nucleus of the 
self-renewing daughter [90], where it plays an active role 
in promoting RG cell fate, as suggested by functional stud-
ies [90, 92]. Together, these observations not only propose 

a mechanistic integration between cell-cycle regulation 
and cell-fate determination but also provide support to the 
view that inheritance of the basal process may be key for 
RG cell-fate specification.

Cellular divisions in the adult neurogenic niche

By early postnatal life, following the completion of the 
neurogenic period, RG cells retract their processes and 
differentiate into astrocytes and ependymal cells [93, 94]. 
Yet, in the rodent adult brain, two main neurogenic sites 
remain: the SVZ of the lateral wall of the lateral ventricle 
[95, 96] and the subgranular zone of the dentate gyrus of 
the hippocampus [97, 98]. In these regions, a subpopula-
tion of RG-derived cells, which express glial fibrillary 
acidic protein (GFAP) and Nestin, act as neural stem cells 
(NSCs) [99, 100]. Adult SVZ NSCs, frequently referred to 
as type B cells, divide to generate transit-amplifying pro-
genitors (TAPs) [101] and oligodendrocyte precursor cells 
(OPCs) [102]. TAPs and OPCs in turn produce neuroblasts, 
also called type A cells [99], and oligodendrocytes [102], 
respectively (Fig. 3a).

Similar to RG cells, adult SVZ NSCs are polarized. 
They extend a long basal process that contacts a blood 
vessel, and a small ciliated apical domain that touches the 
lateral ventricle and forms AJs with the ependymal layer 
[103, 104], the integrity of which depends on Numb activ-
ity [105]. Due to the morphological similarities, it could be 
reasonably assumed that molecular mechanisms of polar-
ity generation and maintenance are shared between RG and 
adult NSCs. However, this remains to be investigated.

Ex vivo analyses have identified a proliferative or 
“activated” GFAP+ population in the adult SVZ that dis-
tinguishes itself from a quiescent GFAP+ NSC popula-
tion by the expression of epidermal growth factor receptor 
(EGFR) [106]. A recent study has demonstrated that the 
majority of NSCs in situ are actually quiescent and only 
8.6  % of GFAP+ cells in the adult SVZ actively prolif-
erate [107]. Given the high level of quiescence, it is not 
surprising that the in vivo division pattern of adult NSCs 
has not been determined yet. In situ labeling studies, how-
ever, suggest that following NSC division, TAPs undergo 
three amplifying divisions before giving rise to neuro-
blasts [107]. These data are in line with earlier in vitro 
time-lapse imaging studies of SVZ-derived progenitors 
that proposed that TAPs predominantly divide symmetri-
cally for several rounds to expand the TAP cell pool and 
to generate neuroblasts [108]. This suggests that isolated 
adult SVZ neural progenitors preserve the cell-division 
pattern that they display in vivo, arguing for cell-auton-
omous regulation of lineage progression. Interestingly, 
in their in vitro imaging analyses, Costa and colleagues 
detected GFAP+ cells that divide to self-renew and to give 
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rise to TAPs, suggesting that adult NSCs indeed undergo 
ACD [108].

The adult ventricular-subventricular neurogenic niche 
encompasses the ventricle with cerebrospinal fluid, epend-
ymal cells, NSC progeny, and capillaries [104, 109]. The 
observation that NSCs contact those components raises 
the attractive possibility that extrinsic cues such as self-
renewal factors emitted by capillaries [110, 111] and 
growth factors in the cerebrospinal fluid [112] may pro-
mote NSC proliferation. Interestingly, in vitro studies 
have shown that a fraction of adult NSCs asymmetrically 
distributes Notch and EGFR between daughter cells, thus 
producing progeny with differential response to extrinsic 

cues. In neurosphere cultures, high Notch activity and 
EGFR expression levels correlate with high self-renewal 
capacity [110]. Asymmetric EGFR levels between sibling 
cells are regulated at both transcriptional and post-transla-
tional levels, by different yet complementary mechanisms. 
First, activated Notch is unequally distributed during 
NSC division and it has been shown to directly regulate 
Egfr transcription [110]. Next, during cytokinesis, Dyrk1a 
kinase is asymmetrically segregated to the EGFRhigh 
daughter, where it prevents EGFR degradation [113]. Une-
qual EGFR expression between sibling cells appears to be 
a common cell-fate switch in embryonic and adult NSCs 
[114]. Together, this suggests that cell-intrinsic processes 

Fig. 3   Progenitor divisions in 
the postnatal and adult brain. a 
Neural stem cells (NSCs) in the 
adult ventricular (V)-subven-
tricular zone (SVZ) neurogenic 
niche extend contacts to blood 
vessels and the lateral ventricle 
(LV) and are surrounded by 
ependymal cells (ECs). NSC 
divisions produce transit ampli-
fying progenitors (TAPs) and 
oligodendrocyte precursor cells 
(OPCs), which in turn divide to 
generate postmitotic progeny. 
b Postnatal cortical astrocytes 
undergo symmetric proliferative 
divisions. c In the white matter, 
adult OPCs divide either sym-
metrically or asymmetrically to 
self-renew and produce differ-
entiated oligodendrocytes
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and signals from the niche synergistically regulate NSC 
fate.

EGFR and Notch are part of the signaling pathways 
involved in cancer and these pathways are frequently 
altered in brain carcinogenesis. Implications of altera-
tions in these pathways on stem and progenitor cell divi-
sion mode in the context of brain cancer will be discussed 
below.

Asymmetric divisions during gliogenesis

In rodents, the generation of astrocytes starts during embry-
onic development and peaks at neonatal stages. Astro-
cytes, which are commonly identified by expression of 
GFAP [115], can arise from RG cells [93, 116–118], glia-
restricted progenitor cells in the white and gray matters 
[116, 119] and from local proliferation—i.e., symmetric 
expansion—of differentiated astrocytes [120] (Fig.  3b). 
However, due to unavailability of lineage-specific mark-
ers, the sequence of developmental steps that glia-restricted 
precursor cells undergo before giving rise to mature astro-
cytes are not yet clear.

Oligodendrocyte precursor cells (OPCs), on the other 
hand, are characterized by the expression of platelet-
derived growth factor receptor alpha (PDGFRα) [121], 
Olig2 [122], and NG2 [123]. They originate at different 
developmental stages in discrete regions of the CNS, from 
where they migrate before differentiating into myelinating 
oligodendrocytes [121, 124, 125] or protoplasmic astro-
cytes [119].

In the adult brain, OPCs are widespread in the gray and 
white matters and continue to divide throughout life, mak-
ing up the largest proliferative population in the postnatal 
brain [126, 127]. In vivo lineage tracing of NG2+ OPCs 
has revealed that the differentiation potential of postnatal 
and adult OPC becomes restricted to oligodendrocytes. 
Live imaging of single NG2+ OPCs in mouse brain slices 
has shown that at early postnatal stages OPCs self-renew 
and generate differentiated progeny by undergoing either 
asymmetric self-renewing, symmetric proliferative or sym-
metric differentiating divisions [128]. Detailed immunohis-
tochemistry analyses of dividing OPCs in the adult mouse 
brain have indeed confirmed the presence of symmetrically 
dividing OPCs producing two NG2+ OPCs, and asym-
metrically dividing OPCs that generate one NG2+ OPC 
and one NG2-negative daughter (Fig. 3c). In vitro studies 
further indicate that the NG2-negative daughter cell is com-
mitted to differentiation [3]. These findings demonstrated 
that glial cells in the adult mammalian brain and, particu-
larly mammalian OPCs, can undergo ACD to self-renew 
and generate mature oligodendrocytes at a one-to-one ratio. 
A first glimpse of the mechanism involved in asymmetric 
cell-fate determination in OPCs comes from in vitro data 

showing that NG2 not only tracks self-renewing fate but 
also instructs EGFR to co-segregate to the proliferative 
progeny. Thereby, each asymmetric OPC division generates 
one NG2+ OPC that activates EGFR and self-renews, and a 
NG2-negative cell that becomes a differentiated oligoden-
drocyte [3].

NG2 is a chondroitin sulfate proteoglycan (CSPG) 
and part of the proteoglycan family, which regulates 
many signaling pathways implicated in cancer, includ-
ing growth factor receptor tyrosine kinases (RTKs), as 
well as cell–microenvironment interactions [129]. In the 
brain, NG2 is only expressed by OPCs and pericytes, 
suggesting that it constitutes a cell type-specific deter-
minant of cell fate. Future studies are expected to reveal 
potential interactions of NG2 with molecules of the con-
served asymmetry regulatory machinery. Such data will 
provide mechanistic insights into the regulation of ACD 
in the adult brain.

Asymmetric cell division and cancer

Cancer is caused by the step-wise acquisition of genetic 
mutations, which provide a survival benefit to the affected 
cell(s). Despite the heterogeneous nature of the disease, 
most cancers can be described by a few organizing prin-
ciples, the so-called “hallmarks of cancer”, a term that has 
been coined by Hanahan and Weinberg over the past dec-
ade [130, 131]. Among such “hallmark capabilities” of can-
cer cells are their ability to sustain proliferative signaling, 
evade growth suppressors, and resist cell death. In addition, 
cancer cells lose cell adhesion, change their shapes, acquire 
novel cell-fate characteristics and secrete factors, includ-
ing metalloproteases that alter their environment. These 
changes are associated with the ability of cancer cells to 
invade adjacent tissue and to migrate to distant sites to 
form metastases. Moreover, it has been proposed that the 
acquisition of distinct hallmarks relies to a great extent on 
genomic instability [131].

Although it is clear that these cellular features are com-
plementary and might indeed be mechanistically linked, 
individually, they provide a basic framework to understand 
the biological complexity of cancers. Genetic mutations 
linked to cancer co-opt molecular pathways that are impor-
tant regulators of normal development and cellular capaci-
ties such as proliferation, differentiation, and cell-cycle and 
growth control. It is feasible that cancer-causing mutations 
also hijack ACD regulatory pathways, since these orches-
trate cellular proliferation, cell-cycle progression, cell 
shape and fate, and possibly genomic stability. Below, we 
discuss how this hypothesis has been addressed in fly NBs 
and murine models of human cancers as well as human 
cancer cell lines.



583Asymmetric cell division and cancer

1 3

ACD as a tumor suppressor mechanism: evidence from 
Drosophila neuroblasts

The first suggestion that loss of ACD might be involved 
in tumorigenesis came from discoveries in Drosophila. 
Studies of loss-of-function mutations in key regulators of 
ACD, including lgl [132], aurA [31, 32], polo [30], numb 
[10, 31, 32], and brat [10, 43, 44, 50], revealed hyperpro-
liferative phenotypes in situ. In these mutants, presumably 
due to defective ACD, NBs divide more symmetrically and 
generate mis-specified progeny that fails to exit the cell 
cycle and differentiate, but rather proliferates continuously 
(Fig. 4).

To study the effects of sustained disruption of ACD in 
fly NBs beyond the lifespan of the fruit fly, the mutant tis-
sues were implanted into the abdomen of adult wild-type 
hosts. Interestingly, the brain tissue transplants from lar-
vae mutant for lgl and dlg [133], or for pins, numb, mira, 
pros, or brat [134] but not wild-type transplants, grew 
expansively and invaded the host. Upon subsequent rounds 
of allografting, the ACD mutant tissues contained cells 
with aberrant karyotypes and multiple centrosomes [134] 
(Fig. 4). Appearance of these defects correlated with higher 
ability to re-grow tumor-like masses upon re-implantation. 
These experiments not only support the observation that 
impairment of ACD and the resulting loss in cell-fate deter-
mination can cause hyperproliferation but also suggest that 
loss of polarity and spindle control may be an important 
step in the neoplastic transformation of asymmetrically 
dividing stem and progenitor cells [135].

The integrity of the mitotic spindle and centrosomes is 
paramount to a stable genome and disruption of mitotic 
spindle checkpoints and centrosomes have been frequently 
observed in human cancer. Distinct studies have inves-
tigated the relevance of centrosome integrity for normal 
growth. Hypermophic mutants for polo, aurA, and dsas-4 
fail to properly regulate the centrosome in both asymmetri-
cally dividing NBs and symmetrically dividing epidermal 
cells. Surprisingly, allografting experiments have shown 
that while transplants of larval brain tissues from polo, 
aurA, or dsas-4 mutants lead to formation of masses remi-
niscent of tumors, implanted epidermal tissue from the 
same mutants never forms masses [136]. These observa-
tions indicate that loss of centrosomal integrity can cause 
hyperplastic growth of asymmetrically dividing cells, but 
not of cells undergoing symmetric divisions. Overexpres-
sion of the protein kinase Sak/Plk4 in NBs leads to super-
numerary centrosomes, aberrant mitotic spindle position-
ing, and mild hyperproliferation. Upon allografting, NBs 
overexpressing Sak also form tumor-like masses, although 
at lower rates than ACD mutant NBs [137]. Given that 
only a small fraction of the Sak mutant cells display mis-
localized expression of cortical regulators and therefore 
impaired ACD [137], the data suggest that losing centro-
somal integrity in itself does not initiate hyperproliferative 
phenotypes and associated mass formation. Instead, these 
seem to be secondary effects of ACD disruption.

Due to the intertwined control of polarity, spindle orien-
tation, cell-fate determination, and proliferation, it is chal-
lenging to uncouple those events and to reveal a temporal 

Fig. 4   Defects in polarity, spindle orientation, or cell-fate specifica-
tion disrupt asymmetric division and result in hyperproliferation and 
loss of differentiation of Drosophila neuroblasts. Serial allografting of 

asymmetry-defective, hyperproliferative neuroblasts leads to chromo-
somal abnormalities and aneuploidy
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sequence of defects. However, mounting genetic evidence 
suggests the provocative possibility that failure of basal 
cell fate determinants to segregate properly initiates a 
cascade of events that starts with aberrant proliferation 
of NBs and that ultimately leads to the neoplastic trans-
formation of stem or progenitor cells. Hyperproliferative 
NBs acquire spindle defects such as supernumerary cen-
trosomes and overrule spindle checkpoints, which causes 
genomic instability and thus introduces cellular phenotypes 
similar to those found in human brain cancer [138]. Large-
scale forward genetic screens in Drosophila cancer models 
will be useful in clarifying the sequence of events lead-
ing to massive outgrowth of larval brain tissue and those 
data are expected to inform studies of human brain cancer 
development.

Relevance of ACD during cancer formation

Genetics of ACD regulators in cancer

Cancer is essentially a genetic disease and arises from a cell 
that has acquired a cancer-initiating mutation. The accumu-
lation of additional genetic and/or epigenetic alterations 
cause the cancer cells to further progress and grow, invade, 
and metastasize. Most frequently, mutations are single-
nucleotide changes or point mutations. Additional genetic 
aberrations found in cancer cells are smaller chromosomal 
changes such as translocations and insertions, as well as 
regional amplifications and deletions. However, many can-
cer cells also exhibit loss or gain of entire chromosomes 
[139]. Emerging evidence indicates that key regulators of 
ACD are mutated in multiple cancer types and introduction 
of such mutations in murine models cause cancer-associ-
ated phenotypes (Table 1). For instance, a recent genome-
wide screen for micro-deletions across a range of primary 
and cultured human tumor cells identified the deletion of 
polarity regulators in numerous human epithelial tumor 
cells. Such deletions include PARD6 (PAR6) in lung can-
cer, PARD3 (PAR3) in lung, head and neck, esophagus, 
prostate and bladder cancers, and DLG2 in lung and cervi-
cal cancers [140, 141].

Malignant brain tumors are classically categorized into 
three main variants: astrocytomas, oligodendrogliomas, 
and mixed oligoastrocytomas. Grade IV astrocytoma, also 
known as glioblastoma multiforme (GBM), is the most 
aggressive type of glioma. The Cancer Genome Atlas has 
provided a comprehensive view of the genomic landscape of 
GBM [142]. The study revealed that a small number of sign-
aling pathways are frequently mutated in these tumors. Sin-
gle-nucleotide variations within genes implicated in ACD 
regulation are rarely found in GBM (Andor and Petritsch; 
unpublished observations). Yet, expression of ACD regula-
tors is frequently altered in many types of human cancers 

(see Table 1 for a list), including gliomas [3]. It is therefore 
likely that regulators of ACD are subjected to epigenetic 
and/or posttranslational modifications that influence their 
expression levels in cancer cells. Examples of such regula-
tions have been provided for a small number of ACD regu-
lators and these will be discussed below.

ACD and the cellular origin of (brain) cancer

Most cancers arise from a single cell, i.e., they have a clonal 
origin. Genetically engineered mouse model (GEMM) stud-
ies suggest that in several organs, including the brain, the 
cellular origin of cancer might be a stem or progenitor cell.

Despite their clonal origin, many cancers are diverse and 
have significant intratumoral genetic and phenotypic heter-
ogeneity. Underlying genetic factors and the unique micro-
environment within each tumor contribute to its individual 
evolution and heterogeneity. The effects of genetic het-
erogeneity and the microenvironment on the mode of cell 
division of the stem and progenitor cells of origin are yet 
unknown. Our recent studies indicate that the rates of ACD 
are different between tumors of a single tumor type [3] and 
may have to be determined individually for each tumor.

Given the difficulty of studying cancer initiation in 
human patients, the development of GEMMs that recapitu-
late key aspects of the disease has been crucial for elucidat-
ing the cellular and molecular events occurring at different 
stages of tumorigenesis. Sophisticated GEMMs modeling 
key genetic alterations in the core signaling pathways 
found to be mutated in GBM, namely the p53 pathway, 
the Retinoblastoma (RB) pathway and the RTK signaling 
pathways, including deletion of the neurofibromatosis type 
1 (NF1) gene [143], have recently become available [144]. 
These mice have been used to investigate the cellular origin 
of astrocytoma and oligodendroglioma.

These GEMM studies have shown that the sequence by 
which cellular controls become dysregulated during onco-
genesis can vary between cancer types. However, increased 
proliferation, enhanced self-renewal, and evasion from cell 
cycle control tend to be early events during cancer devel-
opment. In contrast, immortalization, genomic instability, 
invasion and metastasis are considered intermediate or late 
events [131]. The molecular mechanisms and temporal reg-
ulation of defects in polarity and ACD in human cancer ini-
tiation and progression remain poorly understood. Below, 
we discuss the emerging role of ACD dysregulation in pro-
moting hallmark capabilities of cancer cells with a focus on 
data obtained from GEMMs of glioma.

Abnormal proliferation and self‑renewal

Asymmetric divisions are a key mechanism to ensure tis-
sue homeostasis. In normal stem and progenitor cells, ACD 
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Table 1   Asymmetric cell division regulators and their role during cancer formation and progression

Gene Chromosomal location Genetic alteration and/or expression  
in human tumors

Cancer-associated phenotypes in in vivo 
mouse models

AURAK 20q13.2–q13.3 Amplified and overexpressed in diverse human 
tumors [194], including breast [195], ovarian [196], 
gastric [197], bladder [198], and pancreatic [199] 
cancers

Pharmacological inhibition in breast 
[200] and ovarian [201] cancer cells 
and siRNA-mediated depletion in 
laryngeal cancer cells [202] prevent 
metastasis upon xenotransplantation

CSPG4 (NG2) 15q24.2 Overexpressed in astrocytomas [129] and oligoden-
drogliomas [3]

Pericyte deficiencies in Cspg4 knockout 
mice lead to aberrant tumor vasculari-
zation [203]

DLG2 11q14.1 Localizes within a large common fragile site [204]. 
Expression downregulated in oligodendroglioma [3]

Not determined

HUGL-1 17p11.2 Gene loss in 75 % of colorectal cancers [205]. 
Reduced expression in melanoma, breast, lung, 
prostate [206], and ovarian cancers [207]

Lgl1 knockout mice have pre-cancerous 
rosette-like structures in the brain. Neu-
ral progenitor cells fail to differentiate 
and to exit the cell cycle [147]

HUGL-2 17q24–q25 Loss or aberrantly localized in gastric adenocarcino-
mas [208]. Reduced expression in colorectal and 
breast cancers [209]

Forced expression in breast cancer cell 
lines reduces their metastatic potential 
upon subcutaneous xenotransplantation 
[210]

MSI1 12q24.1–q24.31 Upregulated in oligodendrogliomas [3], astrocytomas 
[211], colorectal tumors [212], and endometrial 
cancers [213]

Msi1 knockdown reduces growth of 
xenografted glioblastoma [214] and 
colon adenocarcinoma cells [215]

MSI2 12q24.1–q24.31 Increased expression in CML [153] Loss of function in HSCs expressing 
NUP98-HOXA9 reduces leukemia 
growth in vivo [153]

NUMB 14q24.3 Reduced protein levels in some mammary carcino-
mas [151], NSCLC [216] and blast crisis of CML 
[153]

Ectopic expression in HSCs transduced 
with BCR-ABL and NUP98-HOXA9 
reduces the incidence and propagation 
of blast crisis in vivo [153]

PARD3 10p11.21 Reduced expression in melanoma, breast, lung, and 
bladder cancers [149]

In the presence of relevant oncogenic 
mutations, loss of Par3 favors forma-
tion of keratoacanthomas [150] and 
increases mammary tumor growth and 
metastasis [149]

PARD6A 16q22.1 Increased expression [217] or mis-localized [173]  
in low- and high-grade breast cancers

Expression of a dominant negative form 
in mammary carcinoma cells reduces 
incidence of metastases [166]

PLK1 16p12.2 Increased expression in several tumors, including 
NSCLC [218], gastric [219], ovarian [220], pros-
tate [221], bladder [222], breast [223], head and 
neck [224] cancers, and gliomas [225]

siRNA-mediated depletion in bladder 
cancer [222] and GBM [226] cell lines 
and pharmacological inhibition in 
breast cancer [223] and glioma cells 
[226] impairs/delays tumor growth in 
xenograft models

PRKCI 2p21 Overexpressed in NSCLC [227], breast [228], ovar-
ian [229], and prostate [230] cancers

Expression of a dominant negative 
form in lung cancer cells [231] and 
siRNA-mediated depletion in prostate 
cancer cells [230] reduce tumorigenic-
ity in vivo. Required for Ras-mediated 
transformation of intestinal epithelial 
cells [168]

SCRIB1 8q24.3 Reduced expression or mis-localized in glioma [232] Loss of Scrib predisposes to cMyc trans-
formation in mammary epithelia [233]

TRIM3 11p15.5 Loss of heterozygosity in some gliomas [234]. 
Downregulated in a subset of gliomas [235], 
including oligodendrogliomas [3]

Knockdown increases incidence of 
PDGF-driven gliomas in p21-deficient 
mice [235]
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balances proliferation and self-renewal with cell-cycle exit 
and differentiation. Disruption of ACD leads to aberrant 
self-renewal and impairs differentiation, and could there-
fore constitute an early step in the neoplastic transforma-
tion of stem and progenitor cells.

In a GEMM of oligodendroglioma, in which the viral 
oncogene verbB is expressed under the control of the 
S100β promoter in a p53 hemizygous background [145], 
NG2+ OPCs expand and initiate tumor development [146]. 
Detailed cellular analyses in this model demonstrated that 
premalignant NG2+ OPCs display a higher frequency of 
symmetric self-renewing divisions at the expense of asym-
metric differentiating divisions, when compared with non-
neoplastic OPCs (Fig.  5). Remarkably, NG2+ OPC-like 
cells isolated from human oligodendrogliomas also exhibit 
defective ACD, leading to an overproduction of daughter 

cells that inherit both NG2 and EGFR [3]. Furthermore, 
bioinformatic analyses revealed altered expression of 15 
conserved ACD regulators in human oligodendroglioma 
[3]. This suggests that defects in ACD may occur during 
neoplastic transformation of OPCs and may contribute to 
oligodendroglioma formation. An emerging scenario for 
the early events of OPC transformation is that NG2 lev-
els are upregulated early in tumorigenesis in response to 
expression of verbB, which mimics constitutively active 
EGFR signaling. Abundance of both molecules disrupts 
the asymmetric distribution of NG2 and EGFR during 
OPC division. In the normal adult brain, the OPC progeny 
negative for these two molecules enters the path of differ-
entiation. In premalignant OPCs, however, NG2/EGFR 
segregates to both daughter cells, causing their abnor-
mal proliferation (Fig.  5). The molecular details of how 

Fig. 5   Cellular origin of malignant gliomas. a Oligodendrocyte pre-
cursor cells (OPCs) in the adult brain can divide asymmetrically to 
give rise to a self-renewing NG2+ OPC and a differentiated NG2-

O4+ oligodendrocyte. In p53 hemizygous mice, expression of the 
viral oncogene verbB in OPCs disrupts asymmetric OPC division and 
causes hyperproliferation of symmetrically dividing premalignant 
glioma precursor (PGP) cells, which, following unknown transforma-
tive events, eventually give rise to oligodendrogliomas. Similar to 

their human counterparts, murine oligodendrogliomas contain sym-
metrically dividing NG2+ tumor-propagating cells (TPCs). b Induc-
ing oncogenic mutations of core signaling pathways (e.g., inactiva-
tion of the p53 and Rb tumor suppressor pathways and activation of 
RTK signaling) in mouse neural stem cells (NSCs) leads to formation 
of tumors with features of high-grade astrocytomas. CD133+ cancer 
stem cells (CSCs) isolated from human high-grade astrocytomas self-
renew through symmetric and asymmetric cell divisions
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NG2/EGFR asymmetry is established in OPCs remain to 
be fully elucidated, and it is possible that verbB expression 
also affects other conserved ACD regulators.

Studies of the central nervous system of mice lacking 
Lgl1, one of two mammalian orthologues of Drosophila 
lgl, have revealed precancerous brain lesions and prenatal 
death due to hydrocephalus. Misregulation of Lgl1 dis-
rupts downstream localization of cell-fate determinants, 
decreases differentiation, and increases proliferation and 
apoptosis. Furthermore, neural progenitors in prenatal 
Lgl1-knockout mice show loss of AJs [147]. It is interesting 
that loss of polarity or cell-fate regulation through muta-
tion of apkc, lgl, or other polarity regulators is sufficient 
to induce massive hyper-proliferation in Drosophila NBs. 
In contrast, in mammalian epithelia and progenitor cells, 
loss of ACD regulators leads to tissue disorganization and 
hyperplasia [147, 148], but does not appear to be sufficient 
to initiate tumor formation [149, 150]. Functional redun-
dancies between the regulators of ACD have been observed 
in Drosophila and they may mask the role of ACD in tumor 
initiation in mammalian GEMMs.

Growth suppressor evasion

Mounting evidence points to a role for the cell-fate deter-
minant NUMB as a tumor suppressor in distinct types of 
human cancers. In breast cancers, NUMB protein levels 
are frequently reduced or lost and inversely correlate with 
tumor grade [151] and patient prognosis [152]. In primary 
breast tumor cell cultures, those with low or no NUMB 
expression, referred to as class 1, not only display increased 
NOTCH activity [151] but also a reduction of TP53 protein 
levels [152]. Forced-expression of NUMB in class 1 cells 
significantly reduces NOTCH activity and cell proliferation 
[151] and restores normal TP53 levels [152].

Numb has been found to physically interact and sta-
bilize p53 by preventing its ubiquitination and degrada-
tion induced by the E3 ubiquitin ligase HDM2 [152]. In 
primary ErbB2-driven mouse mammary carcinoma cells, 
p53 is unstable, and attenuated p53 levels switch the mode 
of cell division from asymmetric to symmetric, leading 
to geometric cell expansion [5]. Although it is not clear 
whether in this model the levels of Numb protein are also 
affected, these observations suggest that downregulation 
of NUMB/TP53 in human breast cancers may cause a bias 
towards symmetric divisions.

Reduced NUMB levels are also observed during the 
progression of human chronic myeloid leukemia (CML) 
to blast crisis and, again, this is associated with increased 
NOTCH signaling and reduced TP53 activity [153]. In a 
mouse model of myeloid blast crisis driven by co-expres-
sion of the oncogenic fusion proteins BCR-ABL and 
NUP98-HOXA9, it was found that overexpressing Numb or 

inhibiting Notch activity reduces the incidence and propa-
gation of blast crisis. Importantly, in the absence of p53, 
ectopic Numb had no impact on leukemic cell growth, indi-
cating that the effects of Numb are solely dependent on p53.

In normal mouse hematopoietic stem cells (HSCs), 
Notch activity is required for the maintenance of an undif-
ferentiated state [154]. When isolated and cultured under 
differentiating conditions, HSCs divide to give rise to a 
Notch+ HSC and a differentiating daughter that inher-
its Numb and downregulates Notch. Transduction with 
NUP98-HOXA9 causes Notch+ HSCs to grow expansively 
[4]. This suggests that Notch overactivation may mediate 
leukemic growth, at least in part, by promoting symmetric 
expansion of more immature cells.

Underexpression of NUMB in the above-mentioned 
tumors appears to be a consequence of posttranscriptional 
modulation and not of genetic alterations affecting the 
NUMB locus. In breast cancer, loss of NUMB expression 
results from increased proteasomal degradation [151]. 
Downregulation of Numb during blast crisis has been pro-
posed to be mediated, at least in part, by Musashi2 (Msi2) 
[153]. Depletion of MSI2 in cell lines from patients with 
CML blast crisis increased NUMB protein levels and led 
to reduced cell proliferation and apoptosis induction in 
vitro [155]. Similarly, Msi2 knockdown in mouse HSCs 
transduced with BCR-ABL and NUP98-HOXA9 resulted 
in significant leukemic growth impairment in vivo [153]. 
The Msi family members are evolutionary conserved 
RNA-binding proteins. In Drosophila, Msi is required for 
ACD of the sensory organ precursor cell in the peripheral 
nervous system and its main in vivo target is tramtrack69 
mRNA [156]. Two Msi family genes have been identified 
in mammals, Msi1 and Msi2. Msi1 is selectively expressed 
in neural progenitor cells [157] where it has been shown to 
repress Numb translation [158]. It is thus thought that Msi2 
may regulate Numb protein levels by a similar mechanism.

The observation that NUMB stabilizes TP53 provides 
a connection between evasion of growth suppression and 
genomic instability. Disruption of ACD and loss of p53 
due to lack of NUMB are therefore expected to increase 
the possibilities of malignant transformation. Moreover, by 
eliminating the antagonistic effect on NOTCH signaling, 
reduced NUMB levels would also lead to maintenance of 
an undifferentiated state and abnormal self-renewal. Fur-
ther studies are required to test this model and to deter-
mine if the mechanisms operating in breast cancer and the 
blast crisis of CML are conserved in tumors from other 
tissues. Loss of p53 in the adult mouse brain expands the 
pool of type A cells and quiescent B cells and leads to 
increased self-renewal, but not to tumor formation [159]. In 
a GEMM of astrocytoma, combined loss of p53 and Pten 
impairs NSC differentiation and induces tumor formation 
[160]. Ectopic expression of a mutant form of p53 in adult 
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GFAP+ cells suggests that, although NSCs are initially 
accumulating mutations, progenitors expressing Olig2, 
a marker of OPCs and TAPs, are actually expanding and 
forming tumors [161]. It will be interesting to determine 
how Numb and other ACD regulators may impact gliom-
agenesis through evasion of cell cycle control.

Invasion and metastasis

The molecular mechanisms leading to loss of polarity 
are still only partially understood. However, recent work 

has revealed that many important oncogenes act as key 
(mis)regulators of polarity. Given the frequency at which 
polarity defects are observed in human cancers, particu-
larly in high-grade tumors, loss of polarity may be a nec-
essary step during tumor progression. Epithelial mesen-
chymal transition (EMT) is thought to be an important 
source of invading and metastasizing cells (Fig. 6) [162]. 
Strikingly, recent work has shown that maintaining aPKC 
signaling at the apical surface is sufficient to prevent 
EMT in non-small cell lung carcinoma (NSCLC) cells in 
vitro [163].

Fig. 6   Loss of polarity, ACD, and tissue architecture during EMT 
may contribute to invasion and metastasis. Apical (self-renewal, 
red) and basal (pro-differentiation, orange) signals are segregated to 
opposite compartments in asymmetric divisions of some epithelial 
progenitor cells (green). Disruption of ACD may lead to breakdown 

of polarity and increased inheritance of pro-proliferative signals usu-
ally confined to the apical domain, and a concomitant loss of cell-fate 
specification. Disruption of apical domain and AJ stability contribute 
to loss of epithelial integrity, and may be important steps in tumor cell 
invasion and metastasis
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TGF‑β and polarity

Transforming growth factor beta (TGF-β) signaling has 
long been implicated in EMT [164] and is frequently 
upregulated in tumor cells [165]. Recent studies have 
shown that TGF-β-mediated transformation involves direct 
disruption of epithelial cell polarity that precedes break-
down of AJs and epithelial organization. TGF-β binding 
to the TGF-β receptor III leads to direct phosphorylation 
of Par6 [166], via a partially aPKC-dependent mechanism 
[163]. Phosphorylation of Par6 leads to the breakdown 
of the Par complex, subsequent loss of apical G-protein 
activity, and breakdown of AJs [163, 167]. Hypothetically, 
loss of polarity in epithelial cells could switch the plane 
of division from a perpendicular to a planar orientation. 
In a planar division, the apical domain is bisected and the 
cell divides symmetrically. In contrast, in a perpendicu-
lar division, the basal cell may no longer be bound to the 
epithelium and can acquire distinct fate and migrate fur-
ther basally. Whether this switch of division occurs and is 
involved in EMT remains to be tested (Fig. 6).

RTK signaling and polarity

Dysregulation of the EGFR family of RTKs is very com-
mon in many cancers, including astrocytoma and oligo-
dendroglioma. In epithelial tissues, EGFR family mem-
bers have been implicated in regulation of polarity, which 
is an essential component of ACD. Activation of ErbB2 
[168] or EGFR [169], both EGFR family members, leads 
to increased activity of mitogen-activated protein kinase 
(MAPK) family members MEK and ERK via increased 
Ras activity. ErbB2-mediated transformation of mammary 
epithelial cells directly disrupts the Par3/Par6/aPKC com-
plex and this disruption leads to a breakdown of cellular 
polarity and epithelial structure [170]. It appears that, at 
least in the case of ErbB2-mediated transformation, polar-
ity defects do not arise secondary to increases in prolifera-
tion, but rather polarity pathways are directly targeted by 
the oncogenic transformation during very early stages of 
tumor formation.

Moreover, the archetypal tumor suppressor PTEN, 
which is a negative regulator of RTK signaling, has also 
been implicated in the maintenance of epithelial polarity. 
Polarized localization of PTEN to the apical membrane 
dephosphorylates phosphatidylinositol 3,4,5-trisphosphate 
(PIP3), antagonizing phosphatidylinositol 3-kinase (PI3K) 
signaling at the apical domain of the cell. This restriction 
of PI3K activity at the apical surface appears to play a key 
role in establishing polarity, as localization of PTEN to the 
baso-lateral membrane results in the recruitment of apical 
protein Cdc42 to the lateral wall, while ablation of PTEN 
activity disrupts apical polarity [171].

Polarity complex and adherens junction breakdown

There is an intimate relationship between polarity and 
maintenance of AJs. Indeed, loss of Par3, Par6, or Cdc42 
individually destabilize tight junctions, leading to disrup-
tion of epithelial polarity [172–175]. Studies of polarity in 
tumor initiation have suggested that disruption of normal 
epithelial organization may have cell type-specific, possi-
bly opposite, effects on tumor initiation and progression. 
Loss of Par3 disrupts polarity is skin epithelia, and inhib-
its the initiation and progression of low-grade papilloma 
while promoting the development of high-grade keratoa-
canthomas [150]. Increased invasion following loss of Par3 
may result from the induction of aPKC-dependent activa-
tion of JAK/STAT signaling, which induces metallopepti-
dase 9 (MMP9) expression by transformed mammary epi-
thelial cells [149]. In a transplantation model of mammary 
carcinoma, loss of Par3 cooperates with ErbB2 to destabi-
lize E-cadherin junctions and aberrantly activate Tiam1-
Rac-GTP signaling. Par3 loss also induces invasive behav-
ior and metastases formation in this model. Loss of Par3, 
however, does not alter the weight of the primary tumor 
and fails to induce molecular changes associated with EMT 
[172]. Thus, loss of polarity may increase invasiveness by 
upregulating expression of extracellular matrix degrad-
ing enzymes as well as by disrupting inhibitory cell–cell 
contacts.

The temporal regulation of polarity defects and how they 
arise to impact tumor initiation and progression in human 
cancer is still unclear. In particular, the causal relationship 
between disruption of ACD and associated loss of cellular 
polarity is not yet known.

Clinical relevance of ACD in tumor‑propagating cells

Glioblastoma multiforme (GBM) are fast-growing grade 
IV astrocytomas and extremely resistant to radiation- and 
chemotherapy. Oligodendrogliomas, on the other hand, 
are slow-growing cancers that are very responsive to 
chemotherapy [3, 146]. Yet, both tumors can arise from 
immature neural progenitors. These wide-ranging clini-
cal manifestations in tumors with relative similar cel-
lular origin provide an interesting conundrum. GEMM 
studies have provided evidence that astrocytomas origi-
nate from NSCs and OPCs [176, 177], whereas oligoden-
drogliomas originate from OPCs [146] (Fig.  5). OPCs 
are more sensitive than NSC to the growth inhibitory 
effects of temozolomide, an alkylating agent that is used 
as standard treatment for high-grade gliomas [146]. It is 
therefore speculated that the cellular origin of the two 
types of glioma (i.e., NSCs in GBM and OPCs in oligo-
dendroglioma) in part determines their distinct therapy 
responses [178].
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At least two models attempt to explain how a single 
cell of origin can lead to a heterogeneous tumor, display-
ing expression of markers of distinct brain cell types at 
various stages of differentiation. The stochastic model has 
long been established and claims that cancer cells acquire 
mutations stochastically and those mutations that provide 
a survival benefit will expand the affected cell population. 
In this model, cancer evolves from a single mutated cell 
(clone), through clonal expansions. On the other hand, the 
cancer stem cell (CSC) model postulates that only some 
cancer cells, namely those with stem cell properties, are 
tumorigenic. These CSCs are proposed to generate cellu-
lar hierarchies similar to NSCs by self-renewing and giving 
rise to progeny that then “differentiates” into heterogeneous 
tumor cells. Recently, an extended model of cancer devel-
opment has been provided, which combines the stochastic 
and the CSC hypothesis by claiming that different cancer 
cell populations may evolve and these interact with each 
other and with the cancer microenvironment, thereby pro-
moting cancer growth and development of therapy-resistant 
subpopulations [179]. Several studies have indeed provided 
evidence that diverse human cancers contain cellular sub-
populations that exhibit stem-like features, such as multi-
potentiality and self-renewal ability. However, in contrast to 
their non-neoplastic counterparts, in CSCs the self-renewal 
machinery is dysregulated, leading to uncontrolled growth 
and heightened malignant potential when compared to the 
bulk of tumor cells [180]. Due to their ability to re-grow 
tumors with parental phenotypes when xenotransplantated 
into immunocompromised mice, these cells are also often 
called “tumor-propagating cells” (TPCs), tumor-initiating 
cells, or stem-like cancer cells. TPCs include the classically 
defined stem-like CSCs, as well as those tumor cells with 
heightened malignant capacity that share more attributes 
with lineage-restricted progenitor cells rather than stem 
cells.

CSCs are common in anaplastic astrocytoma and GBM 
[181–183] and are present in some anaplastic, high-grade 
oligodendrogliomas [184]. CSCs have been associated with 
therapy resistance to radiation [185, 186] and conventional 
chemotherapy [187, 188]. This has led to the specula-
tion that while the majority of tumor cells are eliminated 
by conventional treatment, the CSCs survive to re-grow 
the tumor and are thus culprits for tumor recurrence. This 
model has been supported by a sophisticated study in a 
murine glioblastoma model, which showed that a relative 
quiescent Nestin+ neural progenitor population survives 
treatment with the alkylating agent temozolomide, while 
the tumor bulk shrinks. Moreover, the Nestin+ population 
significantly contributes to tumor re-growth [189].

The resemblance to stem and progenitor cells by 
CSCs and some TPCs, respectively, has raised the ques-
tion of whether they undergo ACDs. CD133 is a surface 

marker for CSCs in GBM [182] and cultured CD133+ 
CSCs indeed asymmetrically segregate CD133 during 
mitosis [6]. Molecular analyses have recently revealed 
that CD133 regulates CSC maintenance by activating the 
PI3K/Akt signaling pathway, which is frequently upregu-
lated in glioma. CD133 physically interacts with the PI3K 
regulatory subunit p85 and thereby activates Akt signal-
ing, promoting CSC self-renewal and tumor-initiating 
potential [190]. The cell-fate determinant Numb has 
been reported to asymmetrically segregate to CD133high-
expressing GBM cells and to specify their stem cell fate 
[191]. Interestingly, when oligodendroglioma cells were 
fractionated into stem cell-like and progenitor-like sub-
populations, the progenitor-like subpopulation, charac-
terized by high expression of the OPC marker NG2, but 
not the stem cell-like population, was capable of initiating 
tumor growth upon orthotopic implantation [146]. This 
indicates that oligodendroglioma harbor a population with 
progenitor-like features, rather than stem cell-features. We 
therefore call these cells TPCs rather than CSCs. It is fea-
sible that a progenitor-like TPC has limited self-renewal 
potential and may eventually differentiate, which may 
explain the slower tumor growth of oligodendroglioma. 
Examination of NG2+ TPCs isolated from human sur-
gical glioma specimens from patients prior to treatment 
revealed that these cells divide predominantly symmetri-
cally [3]. Thus, asymmetry-defective oligodendroglioma 
TPCs presumably expand the tumor by non-hierarchical, 
symmetric divisions.

A major open question with regards to glioma CSCs 
and TPCs and in relation to cell division modes is about 
their predecessor in humans. Do CSCs have a common 
predecessor, such as a NSC, and do TPCs arise from pro-
genitor cells instead? Such a direct lineage relationship of 
the CSCs and TPCs and their non-neoplastic counterpart 
is suggested by their biological similarities. Indeed, stud-
ies with GEMMs of glioma have suggested that NSCs can 
act as cellular origin of astrocytoma [176, 192]. Alterna-
tively, CSCs may arise de novo by de-differentiation of, 
for example, OPC-like cells, which is further supported by 
the observation that high-grade astrocytoma can arise from 
NG2+ OPCs [177] and even from mature astrocytes [193]. 
These studies suggest that depending on cellular context 
and the nature of the mutations, several cell types have the 
capacity to give rise to CSCs and TPCs. Given that TPCs 
can divide asymmetrically [6], but astrocytes for example 
divide mostly symmetrically [120], these data indirectly 
suggest that a subset of tumor cells may acquire asymmet-
ric division modes.

In summary, in glioma, the capacity for tumor propaga-
tion is not restricted to NSC-like cells, but can also be kept 
by progenitor-like cells, which are more accurately referred 
to as TPCs. Regardless of how these distinct phenotypes 
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are acquired, it is clear that tumors are comprised of mul-
tiple cellular populations that may not be equally impacted 
by conventional therapies. Understanding why some popula-
tions of cells acquire and/or retain ACD, while others expand 
symmetrically, may prove useful in understanding why dis-
tinct cancer cell types are unequally affected by treatment.

Concluding remarks

Groundbreaking work in Drosophila has helped to uncover 
many of the molecular mechanisms and cellular processes 
underlying ACD regulation in mammalian cells. Recent 
questions have begun to push the limits of invertebrate 
model systems, in particular with respect to the great vari-
ety of progenitor cell types and ACD mechanisms present 
in mammals.

As evidence mounts for adult progenitor cells as a likely 
cellular origin of distinct human cancers, the importance 
of understanding the molecular mechanisms underly-
ing ACD regulation in different types of progenitor cells 
become more urgent. In-depth cellular analyses of complex 
and difficult-to-treat tumors, such as high-grade astrocy-
toma, constantly reveal new types of subpopulations that 
may be resistant to traditional therapy. New research will 
allow therapeutics to target defects in ACD, and associated 
changes in polarity, spindle orientation, and cell-fate deci-
sion, in different types of cancer cells.
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