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Abstract: Perivascular adipose tissue (PVAT) is a special type of ectopic fat depot that adheres to most
vasculatures. PVAT has been shown to exert anticontractile effects on the blood vessels and confers
protective effects against metabolic and cardiovascular diseases. PVAT plays a critical role in vascular
homeostasis via secreting adipokine, hormones, and growth factors. Endothelial nitric oxide synthase
(eNOS; also known as NOS3 or NOSIII) is well-known for its role in the generation of vasoprotective
nitric oxide (NO). eNOS is primarily expressed, but not exclusively, in endothelial cells, while recent
studies have identified its expression in both adipocytes and endothelial cells of PVAT. PVAT eNOS is
an important player in the protective role of PVAT. Different studies have demonstrated that, under
obesity-linked metabolic diseases, PVAT eNOS may be even more important than endothelium eNOS
in obesity-induced vascular dysfunction, which may be attributed to certain PVAT eNOS-specific
functions. In this review, we summarized the current understanding of eNOS expression in PVAT, its
function under both physiological and pathological conditions and listed out a few pharmacological
interventions of interest that target eNOS in PVAT.
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1. Introduction

Perivascular adipose tissue (PVAT) is a special type of ectopic fat depot that adheres
to most large arteries and veins, small and resistance vessels, and microvessels of the
musculoskeletal system [1]. The beneficial role of PVAT was first observed by Soltis and
Cassis in the aorta of a Sprague–Dawley rat where that PVAT diminished agonists-induced
vasocontraction in vitro [2]. Till now, PVAT has been shown to exert anticontractile effects
in the blood vessels in both rodents and humans [3,4]. Similar to other adipose tissues,
PVAT is an important endocrine tissue that secretes adipokines, hormones, growth factors,
chemokine, reactive oxygen species (ROS), nitric oxide (NO), and hydrogen sulfide (H2S) [1].
As PVAT has a very close proximity to the vasculature, PVAT has been recognized as an
active player in vascular physiology and pathology, and studies of PVAT in maintaining
vascular homeostasis have been focused on in recent decades. Endothelial nitric oxide
synthase (eNOS; also known as NOS3 or NOSIII) is an enzyme named after the cell type
(endothelial cell) in which it was first identified. eNOS is well-known for its role in the
generation of vasoprotective NO. To date, numerous studies using global eNOS-deficient
mice have demonstrated the antihypertensive, antithrombotic, and anti-atherosclerotic
effects of eNOS, which were mainly attributed to NO derived from the endothelium.
Indeed, eNOS expression has been identified in both endothelial cells and adipocytes
in PVAT and both contribute to the production of vascular NO and modulate vascular
pathophysiology [5,6]. Although there are reviews discussing several aspects of PVAT, the
functions of eNOS in PVAT have not been fully described. This review will address the
current understanding of PVAT eNOS and propose possible roles of eNOS in PVAT for
future directions.
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2. What Is Special about PVAT?

There are three layers in the vascular wall of blood vessels, namely tunica intima,
tunica media, and tunica adventitia. The inner layer, tunica intima, consists of a single
layer of flattened, polygonal endothelial cells supported by a basal lamina of connective
tissues. Tunica media is the middle layer that mainly consists of vascular smooth muscle
cells (VSMCs), especially in arteries. Tunica adventitia is the strongest layer that contains
connective tissues and elastic fibers [7]. Different from other adipose tissues, PVAT can be
found outside the adventitia of the systemic blood vessels, including arteries and veins,
small and resistance vessels, and microvessels in skeletal muscles. PVAT is absent in
microvasculature and the cerebral vasculature [8,9]. There are no laminar structures or
barriers between PVAT and the adventitia layer of blood vessels.

PVAT is a highly heterogenous tissue. In addition to stem cells, immune cells, and
nerves, both white and brown adipocytes can be found in PVAT. White adipocytes mainly
act as energy storage in the form of triglyceride [10], while brown adipocytes are more
metabolically active and associated with thermogenesis [11]. There are regional phenotypic
and functional differences among the PVAT in different locations of the vascular system [8,9].
Depending on its location on the vascular bed, PVAT can be white adipose tissue (WAT)-like
(such as mesenteric PVAT), brown adipose tissue (BAT)-like (such as thoracic aortic PVAT)
or mixed (such as abdominal aortic PVAT). Vascularization and innervation of these PVATs,
as well as their adipokine profiles also highly vary [8,9,12–14], which could explain the
local functional differences of PVATs. However, the morphology of PVAT in other species
are currently less characterized than that in murine models.

Studies have shown evidence that as an anatomically separated adipose tissue, adipocytes
from different PVATs may arise from unique progenitor cells, giving rise to its distinctive
morphological and functional characteristics compared to other adipose tissues [15–17].
Nevertheless, the origins of adipocytes in the PVAT and the precise process of PVAT devel-
opment are barely known. A recent study suggested that adipocytes in periaortic PVAT may
partly originate from progenitors expressing smooth muscle protein 22-alpha (SM22α) [18].
Thoracic periaortic PVAT may present both SM22α+ and myogenic factor 5 (Myf5+) ori-
gins [19], whereas these progenitor cells are able to differentiate into uncoupling protein-1
(UCP-1) positive adipocytes in vitro [20]. A recent study has also shown that fibroblastic
progenitor cells, but not VSMCs, are responsible for the adipogenesis of thoracic PVAT [21].
The origins of adipocytes in abdominal periaortic PVAT are less known. They may share, at
least, similar developmental origins with SM22α+ and peroxisome proliferator-activated
receptor gamma (PPARγ+) VSMCs, as the absence of PPARγ in the VSMCs resulted in a
complete lack of abdominal periaortic PVAT development [22]. In the same study, Chang
et al. also suggested that mesenteric PVAT may share a similar developmental origin with
VSMCs, since the absence of PPARγ in VSMCs also resulted in a dramatic loss of mesen-
teric PVAT, while other adipose tissues were not affected [22]. Indeed, studies have also
suggested that the developmental origins of mesenteric PVAT may be similar to the visceral
adipose tissues [23,24]. Taken together, the lack of the discovery of unique cell markers
makes the generation of PVAT-specific gene modified mouse models and the mechanistical
study of PVAT function a challenging task.

3. What Is the Function of PVAT?

Since the first attention to the paracrine effects of PVAT on blood vessels [2], growing
studies, from experimental animal models to clinical samples, have indicated that the cross-talk
between PVAT and its connecting vessel plays a critical role in the physiological homeostasis
and pathological changes of the cardiovascular system. The paracrine crosstalk between PVAT
and its connecting vessel can actively regulate vascular inflammation and remodeling [23],
while PVAT can also act as an endocrine organ to modulate multiple biological processes
by releasing adipokines [25]. In 2002, using the physiological buffer in which PVAT from a
healthy rat was incubated, Lohn et al. observed a direct relaxation in precontracted, isolated,
PVAT-removed rat thoracic aorta [26]. They concluded the presence of transferable soluble
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substances from the PVAT that were released to the buffer and caused relaxation. It is currently
known that PVAT is capable to synthesize and secrete substances via endocrine and paracrine
mechanisms, including adipokines, growth factors, ROS, NO, and H2S [1]. The previous
literature already explored the function of PVAT in detail [1,25,27–30]. Here, we briefly
summarized the area of PVAT-derived adipokine production and vascular function regulation,
and some novel findings of exosomes/extracellular vesicles (Figure 1).
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Figure 1. The crosstalk between PVAT and the vessel wall modulates vascular functions. PVAT
releases vasoactive molecules, hormones, adipokines, and microvesicles. PVAT-derived relaxing
factors (PVRFs) include leptin and adiponectin, hydrogen sulphide (H2S), hydrogen peroxide (H2O2),
prostaglandins, NO, and angiotensin (Ang) 1–7. PVAT-derived contracting factors (PVCFs) include
chemerin, calpastatin, 5-hydroxytryptamine (5-HT), norepinephrine (NE), AngII, and ROS. These
factors from PVAT may reach the endothelial layer of blood vessels by either direct diffusion or via
vasa vasorum or small media conduit networks connecting the medial layer with the underlying
adventitia and modulate vasodilation and vasocontraction. PVAT plays a critical role in vascular
homeostasis via secreting adipokine, hormones, and growth factors to modulate the proliferation
of VSMCs. Adipocytes from PVAT also secrete different types of extracellular vesicles, including
exosomes and microvesicles, which have also been shown to trigger early vascular remodeling
in vascular inflammation. Under pathological conditions, PVAT becomes dysfunctional, and the
secretion of the PVAT-derived factor becomes imbalanced which could exert detrimental effects on
vascular homeostasis and lead to vascular remodeling and arterial stiffening.

Similar to any other adipose tissues, PVAT plays a critical role in vascular homeostasis
via secreting adipokine, hormones, and growth factors [31]. These PVAT-derived factors
include both pro-inflammatory and anti-inflammatory vasoactive molecules that modulate
vascular inflammation and oxidative stress, vascular tone, and VSMCs proliferation and
migration [9,32]. In various models of metabolic and cardiovascular diseases, including
obesity, hypertension, and diabetes, the loss of anticontractile function of PVAT was ob-
served [33–35]. PVAT becomes dysfunctional and the secretion of the PVAT-derived factors
becomes imbalanced which could exert detrimental effects on vascular homeostasis and
lead to vascular remodeling and arterial stiffening [28,36–38].

It is currently known that PVAT exerts anticontractile function on the adherent blood
vessel through secretion of various PVAT-derived relaxing factors (PVRFs), previously
known as the adventitia-derived relaxing factors (ADRFs) [39]. Potential PVRFs include lep-
tin and adiponectin [40], H2S [41], hydrogen peroxide (H2O2) [42], prostaglandins [43,44],
NO [45], and angiotensin (Ang) 1–7 [46]. In addition to PVRFs, recent studies have revealed
that PVAT can secrete contracting factors (PVCFs) that modulate vasoconstriction [47–49].
Potential PVCFs include chemerin [50], calpastatin [51], 5-hydroxytryptamine (5-HT) [49],
norepinephrine (NE) [52], AngII, and ROS [53]. Although the detailed mechanisms of
how PVRFs and PVCFs exert their effects on the blood vessel remain unclear, it is hy-
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pothesized that PVAT modulates vascular functions through two distinct mechanisms:
endothelium-dependent and endothelium-independent pathways [29,45]. These factors
from PVAT may reach the endothelial layer of blood vessels by either direct diffusion or
via vasa vasorum or small media conduit networks connecting the medial layer with the
underlying adventitia [8,54,55] (Table 1). In addition, the same factors from PVAT can act
as either PVRFs or PVCFs. For example, H2S and prostanoids in PVAT have anticontractile
effects under normal conditions, while they can induce contractile responses under disease
conditions [56].

Table 1. List of focused PVAT-derived factors.

PVAT-Derived Factors Effects References

Adiponectin Relaxation [40]
Angiotensin (Ang) 1–7 Relaxation [46]
Angiotensin II (Ang II) Contraction [14,56,57]
Calpastatin Contraction [51]
Chemerin Contraction [50,54]
Hydrogen peroxide (H2O2) Relaxation [42,55]
Hydrogen sulphide (H2S) Contraction [41]

Relaxation [56,58]
Leptin Relaxation [57,59]

Contraction [51,60]
Nitric oxide (NO) Relaxation [45]
Norepinephrine (NE) Contraction [52]
Prostanoids
-Prostaglandins Contraction [44,61]
-Prostacyclin Relaxation [22]
-Thromboxane Contraction [61]
Superoxide Contraction [53]
5-hydroxytryptamine (5-HT) Contraction [49]

A recent study has also shown that the anticontractile effects of PVAT can be attributed
to its ability to uptake and metabolize vasoactive amines such as dopamine, NE, and
5-HT [62]. Monoamine oxidase A/B (MAO-A/B) catalyzes the oxidative deamination
of vasoactive amines, while semicarbazide-sensitive amine oxidase (SSAO) catalyzes the
generation of ammonia and H2O2. These two enzymes are present in PVAT, and the
inhibition of these enzymes increased the NE-induced vasocontraction on vessel rings with
PVAT [62]. PVAT can also prevent NE-induced vasocontraction, by taking up NE and
preventing it from reaching the vessel wall [63].

In small arterioles, stepwise increase in blood pressure can induce vasoconstriction due
to smooth muscle myogenic response, while this physiological function is absent in large
arteries [64]. Until now, most of the in vitro pressure myograph studies about myogenic
responses were performed in PVAT-denuded vessels. Therefore, there is an underlying
question of whether PVAT may be involved in the regulation of myogenic responses. In
resistance arteries with myogenic response, endothelial-derived hyperpolarization plays
a more prominent role than NO in vasodilation [65]. Thus far, there has been no direct
evidence on whether PVAT plays a role in myogenic response in vivo. Nevertheless, recent
studies have shown the new function for PVAT in assisting stress-induced relaxation [66]
and the presence of stretch sensitive, nonselective cation channel Piezo1 in PVAT [67].
These shed light on the possible function of PVAT in modulating myogenic responses.

Dysfunction of PVAT has also been linked to the development of atherosclerosis.
Adipocytes and macrophages in PVAT can secrete various pro-inflammatory cytokines and
adipokines including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor
alpha (TNF-α), leptin, adiponectin, omentin, etc. [68]. In obesity, inflammation in PVAT
causes the phenotypic switch from anti-inflammatory to pro-inflammatory [69]. A recent
study has also revealed that macrophage polarization in the PVAT is critically associated
with coronary atherosclerosis [70]. M1 macrophages in the PVAT are positively correlated
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with a higher risk of coronary thrombosis and are correlated with plaque progression and
destabilization. M2 macrophages in the PVAT are negatively correlated with increased arte-
rial obstruction, calcification, necrosis, and decrease of the number of vasa vasorum in the
adventitia layer [70]. Transplantation of PVAT from high-cholesterol diet-fed apolipopro-
tein E (ApoE) knockout mice to normal chow-fed ApoE-knockout mice resulted in a striking
increase in atherosclerosis development [71]. These suggest that the inflammatory status of
the PVAT is related to the progression of atherosclerosis.

Apart from the above secretory factors, adipocytes from PVAT also secrete different
types of extracellular vesicles, including exosomes and microvesicles [72,73]. Exosomes are
formed within the endosomal network and exocytosed by fusion with the plasma mem-
brane, while microvesicles are directly formed from the plasma membrane. Extracellular
vesicles are crucial regulators of vascular functions by transferring the enclosed biological
messengers, including lipids, proteins, noncoding RNAs, and microRNAs (miRNAs) for
intercellular communications [74]. Adipose tissues have been shown to produce circulating
exosomal miRNAs, as a form of adipokine, to regulate gene expressions locally or dis-
tantly [75]. These miRNA-containing extracellular vesicles act as the agent for the crosstalk
between adipose tissues and neighboring tissues, including endothelial cells, VSMCs, and
macrophages [76–78]. In addition, the crosstalk between endothelial cells and adipocytes is
modulated, at least partly, by the extracellular vesicles-mediated reciprocal trafficking of
caveolin-1 (Cav-1) [79]. A recent study demonstrated that PVAT secretes encapsulated mi-
croRNAs, such as miR-221-3p, which can be taken up in neighboring VSMCs, and triggers
an early vascular remodeling in vascular inflammation [72]. In another recent study, PVAT-
derived exosomes were demonstrated to reduce macrophage foam cell formation through
miR-382-5p- and bone morphogenetic protein 4 (BMP4)-PPARγ-mediated upregulation of
cholesterol efflux transporters [76]. However, it is still unclear which cell types in PVAT
generate these extracellular vesicles.

4. Current Proves of eNOS in PVAT

There are currently three isoforms of NO synthase (NOS), which is named by the cell
types where they are first identified: neuronal NOS (nNOS or NOS1), inducible NOS (iNOS
or NOS2), and eNOS (or NOS3) [77]. Vascular nNOS is expressed in perivascular nerve
fibers and in the vascular wall, while the expression of iNOS is induced under conditions
of inflammation and sepsis [77]. eNOS is primarily expressed, but not exclusively, in
endothelial cells. All three isoforms of NO synthase catalyze the production of NO from
L-arginine [80]. Under physiological conditions, eNOS is the main vascular source of NO,
modulates vascular functions and confers protection against cardiovascular diseases.

In recent years, eNOS expression in other cell types has been demonstrated in vitro
and in vivo. Indeed, eNOS expression has been found in dendrite cells [78], red blood
cells [81], hepatocytes [80], as well as in adipocytes [6]. While the expression of iNOS in
PVAT is only induced in pathological conditions [82], and the expression of nNOS in PVAT
is controversial [83], the expression of eNOS in thoracic aortic PVAT has recently been
demonstrated by various groups. Gene and protein expressions of eNOS in PVAT have
been detected [6,84]. Using immunohistochemistry, eNOS can be stained in both adipocytes
and endothelial cells of the capillaries and vasa vasorum in aortic PVAT [6,85]. Of the
three isoforms of NOS, immunostaining of eNOS is the most abundant in PVAT of the
saphenous vein, and eNOS activity is comparable in PVAT and the adherent vein [85]. In
addition, in situ NO production in PVAT adipocytes can be directly detected by fluorescence
imaging [13,86]. There is a high histological discrepancy of eNOS expression among the
anatomical localizations of PVAT. Abdominal PVAT has been shown to have a lower eNOS
expression compared with thoracic PVAT, while the eNOS expression remains the same
along the vessel walls [13]. Indeed, unpublished data from our laboratory suggests a similar
eNOS expression level of mesenteric PVAT and thoracic PVAT. Nevertheless, due to the
highly heterogenous origins and compositions of different PVATs, detailed investigations
of specific cell types that express eNOS in different PVATs is crucial.
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5. What Are the Functions of eNOS in PVAT?

Unfortunately, due to the lack of PVAT-specific eNOS knockout animal models, the
exact functions of eNOS in PVAT is relatively unclear. Most of the current knowledge
about PVAT eNOS is based on evidence from studies using global eNOS knockout mice or
mice with pathological conditions that leads to downregulation of PVAT eNOS. Here, we
summarize current understanding of potential eNOS functions in PVAT under both basal
and pathological conditions.

The first and most important function of eNOS in PVAT is, of course, to generate
vasoactive NO. Previous studies with animal models have demonstrated that PVAT plays
a crucial role in vascular NO production [1,6,29]. PVAT-derived NO can diffuse into the
adjacent VSMC, stimulating soluble guanylate cyclase (sGC) and increasing the cyclic
guanosine monophosphate (cGMP) level, which leads to the phosphorylation of large-
conductance calcium-activated potassium channels in VSMC via protein kinase G, resulting
in hyperpolarization and vascular relaxation [87,88]. In small arteries isolated from visceral
fat of healthy individuals, basal vascular NO production is reduced after PVAT removal,
which leads to an attenuated contractile response to L-NAME [89]. In PVAT-adhered,
endothelium-denuded rat mesenteric arteries, inhibition of eNOS significantly enhances
NE-induced contraction, indicating that eNOS in PVAT contributes to the vascular NO
production, while the anticontractile effect of PVAT is, at least partly, independent of the
endothelium [33,90]. In low-density lipoprotein receptor (Ldlr) knockout mice, the thoracic
aortic PVAT shows significant upregulation of eNOS expression and NO production,
which protects against impaired vasorelaxation to acetylcholine and insulin [84]. In a
very recent clinical study, the authors demonstrated PVAT as a predominant source of
NO in human vasculature in a no-touch saphenous vein grafts (NT-SVGs) coronary artery
bypass model [91]. The study showed that PVAT, via NO production from eNOS, can
induce vasorelaxation even in endothelium-denuded SVG. The above evidence suggests the
protective role of PVAT eNOS in improving endothelial functions. Nevertheless, currently,
there is a lack of detailed studies that are designed to compare the NO production and
eNOS function among vascular components, such as the endothelium and PVAT.

In addition to direct modulation of vasodilation, PVAT-derived NO released toward
the vascular lumen is a potent inhibitor of platelet aggregation and leukocyte adhesion [92].
PVAT has been shown to play a role in the inhibition of DNA synthesis, mitogenesis,
and proliferation of VSMCs [93]. The inhibition of platelet aggregation and adhesion
also protects VSMCs from exposure to platelet-derived growth factors. These confer the
ability of PVAT to protect against the onset of atherogenesis and vascular remodeling in
the adherent vessels. However, there is a lack of direct evidence of how PVAT eNOS and
PVAT-derived NO act on atherogenesis and vascular remodeling.

Another important function of PVAT eNOS is to stimulate the expression of adiponectin,
which is an important adipokine that contributes to vasodilation regulation, anti-inflammation,
and inhibition of VSMCs proliferation and migration [36,94]. eNOS has been shown
to regulate adiponectin synthesis in adipocytes by increasing mitochondrial biogenesis
and enhancing mitochondrial function [95]. PVAT-derived adiponectin may regulate
endothelial functions, partly by enhancing eNOS phosphorylation in the endothelium [96].
Indeed, the function of PVAT is determined by the browning and inflammation status.
Mitochondrial biogenesis is involved in the browning of adipocytes [97]. Fitzgibbons
et al. proposed that promoting the browning of PVAT might confer a protective effect
to attenuate the development of vascular diseases [11]. PVAT eNOS may have a vital
role in the mitochondrial biogenesis and browning of PVAT [98]. However, the detailed
mechanisms underlying browning or thermogenesis of PVAT are barely known.

Apart from the functions of PVAT eNOS and NO mentioned above, NO is also known
as an endogenously produced signaling molecule that regulates gene expression and cell
phenotypes [99]. Currently, NO is known to regulate gene expression either by direct
interaction with transcription factors or by post-translational modification of proteins. NO
may mediate the transcriptional regulation of histone-modifying enzymes and modulate
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the activities and cellular localizations of transcription factors through the formation of
S-nitrosothiols or iron nitrosyl complexes [100]. Additionally, NO may alter the cellular
methylation, acetylation, phosphorylation, ubiquitylation, or sumoylation profiles of pro-
teins and histones by modifying these enzymes [101]. Recent evidence has revealed the
presence of S-nitrosylated (SNO) proteins in abdominal aortic PVAT [102]. For example,
a reduced NO level results in the activation and cellular release of tissue transglutami-
nase (TG2), which is involved in vascular fibrosis and remodeling [103,104]. Normally,
TG2 can be S-nitrosylated by NO, and is retained within the cytosolic compartment. Re-
duced bioavailability of NO leads to reduction of TG2 S-nitrosylation, which facilities its
translocation to the extracellular compartment where it can induce crosslinking of extracel-
lular matrix proteins and promote fibrosis [105]. Nevertheles, the complete nitrosylation
profile of PVAT and vascular wall remains unclear. Identification of these SNO proteins
could greatly enhance our understanding of the detailed function of PVAT eNOS and its
derived NO.

A recent study has revealed the reciprocal regulation of eNOS and β-catenin [106].
eNOS and β-catenin are interactive partners. β-catenin is a membrane protein known
to bind with eNOS to promote eNOS phosphorylation and activation, while this inter-
action facilitates the translocation of β-catenin to the nucleus and activates downstream
gene transcription [106]. This suggests a potential role of eNOS as a ‘carrier’ protein to
facilitate gene expression independent of NO production. In addition, another cobinding
protein and negative regulator of eNOS, Cav-1, is expressed in both endothelial cells and
adipocytes [107]. Cav-1 can regulate eNOS functions in PVAT [108], whereas eNOS-derived
NO has been shown to promote caveolae trafficking [109]. These suggest that protein–
protein interaction of eNOS may play a critical role in PVAT functions, such as the secretion
of miRNA-encapsulated microvesicles.

6. PVAT eNOS under Pathological Conditions

Multiple studies with high-fat diet (HFD) and/or genetic manipulation models have
reported the pathophysiological significance of PVAT eNOS in mediating vascular func-
tions, inflammation, and other metabolic processes [6,29,110]. PVAT eNOS plays a crucial
role in obesity-induced vascular dysfunction [1,28]. Indeed, endothelium-dependent,
NO-mediated acetylcholine-induced vasodilation response has no significant changes in
PVAT-removed aortas from HFD-fed mice compared with control mice, while vascular
dysfunction of the thoracic aorta is only evident when PVAT is adhered [6,111]. Our group
has also found evidence of PVAT eNOS dysfunction and eNOS uncoupling in HFD-induced
obese mice [6]. Although an adaptive overproduction of NO from mesenteric PVAT was
observed at the early phase of HFD-induced obesity in C57BL/6J mice [86], reduced eNOS
expression was observed after long-time HFD feeding in the mesenteric PVAT of obese
rats [33] and thoracic aortic PVAT of mice [112]. Either improving L-arginine availability [6]
or restoring eNOS phosphorylation and acetylation [111] can ameliorate obese-linked vas-
cular dysfunction. These suggest that obese-induced eNOS dysfunction in the PVAT can
sigificantly reduce the vascular functions in the adherent vessels. In addition, basal NO
production is reduced in small arteries from obese patients compared with nonobese con-
trols, while this reduction in basal NO production is only evident in PVAT-adhered, but not
in PVAT-removed arteries [89]. However, in HFD-fed ApoE knockout rat models of early
atherosclerosis, Nakladel et al. demostrated an upregulation of eNOS in the inflammatory
thoracic PVAT, which compensates severe endothelial dysfunction by contributing to NO
production upon cholinergic stimulation [82]. Nevertheless, these results indicate that,
under obesity-related metabolic diseases, PVAT eNOS may be even more important than
endothelium eNOS in obesity-induced vascular dysfunction, which may be attributed to
certain PVAT eNOS-specific functions [1,28,113].

The reduction of eNOS activity and PVAT function can be caused by the reduced
L-arginine bioavailability and changes in post-translational modifications of eNOS in obese
PVAT [28]. Deficiency in L-arginine is attributable to an upregulation of arginase in the
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PVAT of obese mice [6]. The upregulation of arginase reduces L-arginine bioavailability
for NO production and leads to eNOS uncoupling in PVAT [114], while uncoupled eNOS
produces superoxide and increases oxidative stress in PVAT [6]. Indeed, acylation, acetyla-
tion, S-nitrosylation, glycosylation, glutathionylation, and phosphorylation of eNOS have
been reported and involved in the dynamic control of its activity in response to differrent
physiologic and pathophysiologic cues [115]. Reduction in eNOS phosphorylation at serine
1177 residue and inhibition of Akt, an upstream kinase of eNOS, were observed in the
thoracic aortic PVAT of obese mice [6]. Another important post-translational modification
of PVAT eNOS involved in obesity-induced vascular dysfunction is acetylation [35,115].
eNOS has been reported to be constitutively acetylated at Lys 497 and Lys 507 [115], which
inhibits the activity of eNOS. Deacetylation of eNOS by SIRT1 increases the enzymatic
activity of the eNOS [116]. In our previous study, we observed an upregulation of eNOS
acetylation in the thoracic aortic PVAT of obese mice [111]. O-GlcNAcylation is another
post-translational modification of eNOS that influences its stability, activity and subcellular
localization [115]. O-GlcNAcylation of eNOS in PVAT is increased in high sugar diet-fed
rats as well as in hyperglycemic human patients, suggesting that O-GlcNAcylation of
eNOS may be involved in high sugar diet-induced oxidative stress in PVAT [117]. Other
modifications of eNOS and the resulting changes in eNOS functions have not been reported
or investigated in PVAT in pathological models.

One of the mechanisms leading to eNOS dysfunction in PVAT is the dysregulation
of leptin, adiponectin, and chemerin. HFD-induced obesity enhances the leptin level
in PVAT which leads to the reduction of eNOS activity and NO production [86]. The
reduction in PVAT eNOS activity and NO production in obesity can be partially attributed
to the reduced expression of adiponectin in PVAT [88]. Adiponectin and eNOS have a
bidirectional regulation. The decreased adiponectin from PVAT may also reduce endothelial
eNOS activity in obesity [110,113,118]. In obesity, chemerin from PVAT contributes to the
positive amplification of sympathetic nerve stimulation and thereby increases vascular
tone [119], while chemerin in the vessel wall decreases the expression of the rate-limiting
enzyme for tetrahydrobiopterin (BH4) biosynthesis, GTP cyclohydrolase I (GTPCH1),
decreases eNOS activation and NO production, and promotes ROS generation [120,121].
Nevertheless, the regulation of PVAT eNOS by chemerin has not been investigated.

On the other hand, both aging and obesity might affect PVAT in a comparable man-
ner [10]. Aging has been shown to attenuate the anticontractile effect of aortic PVAT and
reduce the browning phenotype of PVAT in rats [122]. Aging can also promote obesity-
induced oxidative stress and inflammation in PVAT, which in turn exacerbates the secretion
of inflammatory factors from PVAT, and affects vascular remodeling in obese mice [123]. In
addition, ROS production in PVAT is progressively increased during aging, which subse-
quently contributes to aging-related vascular injuries [122,124]. eNOS uncoupling has been
demonstrated in aged vessels [125]; however, the changes in expression and uncoupling
of eNOS in aged PVAT is totally unknown. Future studies are needed to examine eNOS
expression and function during aging in related to aging-induced vascular complications.

7. Pharmacological Targeting of PVAT eNOS

As mentioned above, under obesity-related metabolic diseases, PVAT eNOS may be
even more important than endothelium eNOS in obesity-induced vascular dysfunction.
Therefore, restoring the function of eNOS in obese PVAT may effectively improve and
normalize vascular functions. As many studies have focused on the pharmacological
interventions targeting PVAT eNOS in obesity, different targets that regulate eNOS in PVAT
have been detailled [28,126,127]. Here, we briefly summarize a few of interest.

SIRT1 is known as a class III histone deacetylase which also deacetylates nonhis-
tone proteins and cytosolic molecules such as eNOS. SIRT1 deacetylates eNOS at lysine
494 and 504 in the calmodulin-binding domain of eNOS, resulting in the activation of
eNOS [116]. Adipose tissue-specific-SIRT1 knockout mice have increased obesity-induced
brown-to-white transition in PVAT in vivo, leading to impaired vascular reactivity [128].
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The deficiency of PVAT SIRT1 may reduce PVAT browning by promoting local superoxide
production and reducing adipokines production [128], which could be attributed to the
inactivation of eNOS due to the constitutive acetylation of eNOS. In a very recent study, we
demonstrated that the PVAT SIRT1 activity is reduced in obese mice despite an enhanced
SIRT1 expression [35]. This resulted from the downregulation of NAD+-producing enzyme
NAMPT, which leads to a reduced level of NAD+ and NAD+/NADH ratio in PVAT. The
reduced SIRT1 activity is associated with an enhanced acetylation of eNOS in the PVAT [35].
In addition, activation of SIRT1 promotes mitochondrial biogenesis via the peroxisome
proliferator-activated receptor-gamma and coactivator 1 alpha (PGC-1α) mitochondrial
pathway in adipose tissues [129]. Moreover, SIRT1 is reported to regulate adiponectin
secretion in adipocytes [130]. Resveratrol, a SIRT1 activitor, has been shown to improve
PVAT functions [131,132], but the change in PVAT eNOS activity has not been studied. Nev-
ertheless, these suggest a tight interplay between PVAT SIRT1 and eNOS in controlling the
browning and inflammation status of PVAT, which mediates vascular functions (Figure 2).

The serine/threonine protein kinase Akt mediates the activation of eNOS, leading to
increased NO production. Inhibition of Akt or mutation of the Akt binding site on eNOS at
serine 1177 attenuates the phosphorylation of eNOS and prevents eNOS activation [133].
The standardized Crataegus extract WS® 1442, with antioxidative properties, is known
to enhance eNOS phosphorylation at the serine 1177 residue by stimulating Akt activity.
Treatment with WS® 1442 can restore the vascular functions in the PVAT-adhered aorta of
obese mice without any effect on body weight or fat mass [27].

AMP-activated protein kinase (AMPK) is an important regulator of energy metabolism
homeostasis and can activate eNOS via phosphorylation [134,135]. The activation of the
AMPK/eNOS pathway in PVAT is responsible for its anticontractile function. Treating
PVAT with various AMPK activators 5-Aminoimidazole-4-carboxamide ribonucleotide
(AICAR), salicylate, metformin, methotrexate, resveratrol, or diosgenin was reported
to increase phosphorylation of PVAT eNOS and improve PVAT functions in different
studies [131,132].

Exercise training was shown to increase eNOS expression and eNOS phosphorylation
in both vascular wall and PVAT, which is associated with increased adiponectin expression
in PVAT [136]. Aerobic exercise training has been shown to promote the anticontractile
activities of PVAT by upregulating the expression of antioxidant enzymes and decreasing
oxidative stress in PVAT [126]. Aerobic exercise training also stimulates angiogenesis, which
improves blood flow and reduces hypoxia and macrophage infiltration in PVAT [127]. In
addition, exercise training induces browning and thermogenic response in rat PVAT, which
is associated with increased eNOS expression and reduced oxidative stress [137]. Sustained
weight loss also increases eNOS expression and improves NO production in PVAT from
rats [33]. In rats fed with a high-fat/high-sucrose diet, exercise significantly increases
adiponectin levels compared with nonexercised controls, which is associated with increased
eNOS phosphorylation in PVAT [136]. Increased GTP cyclohydrolase 1 expression, which
is involved in the production of BH4, an essential cofactor for NO generation from eNOS,
was reported after exercise training in obese rat thoracic PVAT [138]. Moreover, bariatric
surgery improved NO bioavailability in PVAT of small subcutaneous arteries from severely
obese individuals [139]. These beneficial effects of exercise training and weight loss may be
attributed to the restoration of eNOS activity (Figure 2).
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Figure 2. PVAT eNOS is an important modulator of vascular functions. Under HFD-induced obesity,
the activity and expression of PVAT eNOS is significantly downregulated. PVAT eNOS may be even
more important than endothelium eNOS in obesity-induced vascular dysfunction. Under normal
condition, PVAT eNOS has multiple roles in regulating PVAT and vascular functions. PVAT eNOS can
generate NO and regulate vasodilation via endothelium-dependent and endothelium-independent
mechanisms. NO generated from PVAT eNOS can diffuse to the endothelium and activate EC, or
directly activate sGC in the VSMC to evoke vasodilation. NO generated from PVAT eNOS can prevent
vascular remodeling and stiffening via inhibiting VSMC proliferation and differentiation. PVAT eNOS
is also responsible for modulating mitochondria biogenesis and browning of adipocytes in PVAT.
In addition, NO generated from PVAT eNOS may regulate protein activities via SNO modification.
Moreover, eNOS may, via protein–protein interactions and NO production, modulate miRNA-
encapsulated microvesicles trafficking across PVAT. PVAT eNOS have a bidirectional regulation
with adiponectin. Adiponectin is an important adipokine that modulates vascular functions via
activating eNOS in both PVAT and EC. Current therapeutical strategies targeting PVAT eNOS include
enhancing eNOS activity by phosphorylation, promoting deacetylation of eNOS via activation of
SIRT1, activation of upstream kinase of eNOS (Akt, AMPK), and exercise training. AMPK, AMP-
activated protein kinase; eNOS, endothelial nitric oxide synthase; EC, endothelial cell; HFD, high
fat diet; NO, nitric oxide; PVAT, perivascular adipose tissue; sGC, soluble guanylyl cyclase; SNO,
S-nitrosylation; VSMC, vascular smooth muscle cell.

8. Conclusions and Future Directions

PVAT has a unique role in the modulation of vascular functions due to its very close
proximity to the vasculature. Important to note is also the significance of PVAT in mod-
ulating cardiovascular complications. In metabolic and cardiovascular diseases, adipose
tissue dysfunction has a notable contribution to the associated vascular dysfunction. Recent
evidence from different studies suggests that eNOS in PVAT, rather than eNOS in the
vascular wall, plays a critical role in protection against obesity-induced vascular dysfunc-
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tion (Figure 2). Conventional in vitro vascular experiments are mainly performed with
PVAT-denuded vessels, which does not reflect the vascular function of in vivo conditions.
In this regard, the study of PVAT functions and the unique role of eNOS in PVAT becomes
extremely important for the investigation of metabolic and cardiovascular diseases and
the research for pharmacological interventions. In order to have a better understanding
of the unique role of eNOS in PVAT, there is an urgent need for a suitable animal model,
i.e., a PVAT-specific eNOS knockout or overexpression mouse model. Nevertheless, due to
the highly heterogenous origin and histological and functional variations among PVAT in
different regions of the vascular bed, designing an ideal model for studying the specific
functions of eNOS PVAT is a challenge. On the other hand, current understanding of
eNOS functions in PVAT is based on the understanding of eNOS from endothelial cells,
global knockout, or disease models. PVAT-specific gene knockout or overexpression animal
models may help to answer the following questions:

o What is the exact of role of PVAT eNOS in PVAT functions?
o What are the exact expression levels of eNOS in different regions of PVAT and/or in

different cells in PVAT?
o What is the relative contribution of endothelial eNOS and PVAT eNOS to vascular

function under physiological and pathological conditions?
o Are there any specific functions of eNOS in PVAT but not in endothelial cells?
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