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Abstract New species arise as the genomes of populations diverge. The developmental ‘alarm

clock’ of speciation sounds off when sufficient divergence in genetic control of development leads

hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with

intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to

hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene

expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection

between ‘evo-devo’ and speciation genetics to better link macroevolutionary pattern,

microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside

development, emphasizing their mutual dependence on genetic network features, fitness

landscapes, and developmental system drift. We assess models for how ontogenetic timing of

reproductive isolation can be predictable. Experiments and theory within this synthetic perspective

can help identify new rules of speciation as well as rules in the molecular evolution of development.

Introduction
“Are certain developmental processes especially likely to be disrupted in hybrids? This question has

been surprisingly neglected given that hybrid defects provide a rare window on those developmen-

tal processes and pathways that diverge rapidly between taxa.’ – Coyne and Orr, 2004, p.309.

Distinct species are those separate collections of genomes that, if you were to put them together

in the same cells, the mixture would create a broken organism. Development in the hybrid individu-

als would go awry in such a way as to cause inviability, infertility, or a phenotypic mismatch to ecol-

ogy or mating interactions that compromises further reproductive success. Given common descent

from an ancestor, how could evolution produce such disastrous phenotypic consequences of genetic

change? Darwin recognized this dilemma (Darwin 1859), in that natural selection will oppose

changes that confer a net fitness cost. But evolution can circumvent this problem through interac-

tions between multiple genetic factors, as intuited by W. Bateson, T. Dobzhansky and H.J. Muller

and made explicit in the genetic mechanism of Dobzhansky-Muller incompatibility (DMI) for post-

zygotic disruption in hybrids (Box 1A,B). Put simply: when evolution substitutes an allele at one

locus, it makes no guarantee that this new derived genetic background will be compatible with allele

substitutions occurring in other populations at other loci. Such inter-locus incompatibilities could

involve two, or three, or many more interacting loci to create a DMI to genetically enforce species

boundaries.

In this way, the mutational substitutions that accumulate in one population are indifferent to the

substitutions that accumulate in other populations, but only so long as the two populations do not

share alleles with one another through gene flow. When the populations of incipient species do

intermingle genetically, then developmental programs in hybrid individuals must confront whether

alleles derived from such ‘out-of-sight, out-of-mind’ evolution interact in a way that allows ontogeny

to proceed normally (Box 1A,B). Incompatible combinations of alleles in hybrid individuals at two or
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Box 1. Visualizing, conceptualizing, and modeling Dobzhansky-Muller
incompatibilities.

Dobzhansky-Muller Incompatibilities (DMIs) can be viewed as disrupted gene networks and as valleys (or holes) in fitness land-

scapes (Gavrilets, 2003; Fragata et al., 2019). Distinct biological species comprise separate groups of individuals that fail to

successfully interbreed, though ‘good’ biological species may still yield hybrid F1 and F2 offspring, so long as they suffer clear

fitness deficits (Coyne and Orr, 2004). Of special interest for development are genetically intrinsic post-zygotic species barriers

that manifest as DMIs in hybrid individuals and do not depend on extrinsic circumstances, reflecting disruptive changes to devel-

opmental programs. DMIs between populations can evolve from a single common ancestral population through the indepen-

dent substitution of two or more mutations distinguishing the descendant lineages. The substitutions may fix due to positive

selection or genetic drift. This DM model also encapsulates the essence of developmental system drift (DSD): independent evo-

lution in distinct lineages that causes divergence in genetic architectures while retaining within-lineage fitness (True and Haag,

2001).
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Box 1—figure 1. Visualizations of genetic divergence and incompatibilities.

Species trees in (A) show the history of substitutions for loci in two genetic networks that differ in molecular evolution (case on

left with e.g. fewer genes, stronger purifying selection, less adaptation, greater modularity, or lower pleiotropic effects) and

in the potential for DMIs (solid purple lines = potential DMI for derived-derived substitutions between species, dashed

lines = potential derived-ancestral DMIs; lowercase = ancestral alleles, uppercase = derived substitutions unique to one

lineage). The number of potential DMIs (purple) scales faster than linear with number of substitutions (red and blue hashes);

faster evolving genetic networks may be more likely to experience this ‘snowball effect’ of reproductive isolation (Orr, 1995).

DSD arises when the outward phenotype remains constant despite molecular divergence between descendant species. Panel

(B) shows how two loci (a and b) that diverge can potentially create a DMI upon formation of F1 hybrids between descendant

species. Panel (C) illustrates with a Fisher’s geometric model visualization, for two traits with a shared genetic architecture,

how adaptive evolution with respect to one trait (Trait 1) can generate DSD in another (Trait 2). Concentric circles represent

lines of equal fitness; filled dots (black = ancestor, red and blue = descendant species) indicate genotypes (letters as in A) that

Box 1—figure 1 continued on next page
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more loci can be thought of as negative epistasis or as a kind of non-linear genetic perturbation. Put

this way, the genetics of speciation sound eerily similar to notions of cryptic genetic variation

(Wade et al., 1997; Ledón-Rettig et al., 2014; Paaby and Rockman, 2014) and developmental sys-

tem drift in the literature on the evolution of development (True and Haag, 2001; Pavlicev and

Wagner, 2012; Tulchinsky et al., 2014a). The regulatory pathways that govern development are an

important component of how and whether divergence will lead to genetic incompatibility and speci-

ation (Porter and Johnson, 2002). Our aim here is to draw these connections more explicitly, to

place speciation in a firmer developmental context (Sucena and Stern, 2000; Johnson and Porter,

2001), and to emphasize the relevance of the evolution of reproductive isolation to problems in

developmental biology.

Distinguishing detectable versus undetectable differences in phenotype between species is key

to thinking about divergence in the genes and genetic networks that underlie the developmental

pathways that create an organism. Detectable differences in the development of traits between spe-

cies, often due to adaptive divergence, clearly involve genetic changes. The converse, however, is

not true: conservation of phenotype does not imply conservation of genetic controls. For example,

stabilizing selection on expression levels leads to similar expression levels between species, despite

evidence of widespread compensatory effects of molecular evolution to both cis- and trans-acting

regulators of gene expression (Mack and Nachman, 2017). This idea of genetic change despite phe-

notypic stasis is known in evo-devo as developmental system drift (DSD), and in population genetics

as evolution along a ridge in a fitness landscape (Box 1C,D). Adaptive evolution at the molecular

level also can contribute to DSD for a given trait, particularly if the genetic changes affect fitness

through pleiotropic effects with phenotypic consequences for only a subset of traits or from subse-

quent compensatory evolution (Box 1C).

When molecular evolutionary differences between species involve two or more loci, they may not

interact properly in hybrid individuals that have copies of both genomes. This can happen regardless

of whether those differences induce detectable phenotypic differences that distinguish the species

and regardless of whether selection or genetic drift caused their fixation. Each mutational substitu-

tion that distinguishes species in protein coding sequence or gene regulatory control thus has some

probability of contributing to the formation of a DMI in hybrid individuals. The more substitutions,

the more chances for incompatibilities to create hybrid dysfunction at some point in development

(Orr, 1995). In this way, inter-species hybrids can reveal genetic divergence in the control of even

those developmental programs that yield seemingly equivalent phenotypic outputs. Hybrids can also

reveal the incidence and role of different kinds of changes, such as cis- vs trans-acting regulators of

gene expression (Box 2; Wittkopp et al., 2004; Mack et al., 2016).

Divergence in developmental genetic programs and intrinsic post-zygotic reproductive isolation

in the speciation process are thus close conceptual brethren, despite their largely separate research

traditions. But how do features of genetic networks and evolutionary forces intersect to create such

profound developmental genetic divergence revealed as DMIs in hybrids? Are some stages of

ontogeny predisposed to genetic architectures and evolutionary pressures to be more likely to yield

dysfunctional development in hybrid organisms? Applying a timepiece metaphor: what gears and

springs in the genetic clockwork will set the developmental alarm clock to ring at one time versus

another during ontogeny to signal speciation? The more molecular evolutionary change, the more

likely are genetic incompatibilities to manifest in inter-species hybrids. We must therefore set our

goal to define the factors that make some genes evolve more quickly than others. The answers will

help us to determine ways in which the molecular evolution that underpins development is predict-

able and, consequently, in what ways the genetics of speciation is predictable.

Box 1—figure 1 continued

evolve via three substitutions (arrows) toward the fitness optimum at the center. Note the DSD in Trait 2 due to no net pheno-

typic difference relative to the ancestor at the end of the adaptive walk for both species, despite underlying genetic changes.

Panel (D) shows evolution along ridges of equal fitness in a fitness landscape comprised of a genetic architecture with many

genes. Genotypic paths evolve independently in different species (ancestral black to derived red and blue species), similarly to

DSD, such that hybrids between them (purple) occupy a portion of genotype space with low fitness (‘holes’).
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Box 2. Developmental disruption and regulatory inference in inter-species
hybrids.

Box 2—figure 1. Analysis of inter-species hybrids can reveal genome-wide mechanisms of gene regulatory change.

(A) Comparison of allele-specific expression ratios in F1 hybrids to expression ratios for orthologous genes in parental individu-

als allows inference of expression changes due to local cis-acting regulatory differences, distant trans-acting changes, or dis-

tinct ways that both cis- and trans-regulatory divergence can jointly influence gene expression. (B) Another type of expression

comparison between F1 hybrid individuals and parental species can characterize the dominance in allele-specific expression,

with misexpression in hybrids reflecting disproportionately high (overdominant) or low (underdominant) gene expression. (C)

The inference of misexpression in hybrids at the transcriptional level may be buffered at the translational level, leading to more

severe misexpression of the transcriptome than proteome. Other approaches to using inter-species hybrids for deciphering

the genetics of divergence in development include quantitative trait locus (QTL) mapping. Inter-species QTL analyses can

incorporate screens with deletion libraries (Masly and Presgraves, 2007), recombinant inbred line (RIL) panels

(Bedinger et al., 2011), near isogenic line (NIL) or introgression line panels (Guerrero et al., 2017), or multigeneration selec-

tion approaches such as X-QTL mapping (Ehrenreich et al., 2010). Panels A and B redrawn from data for Drosophila flies in

McManus et al., 2010. Panel C data for Saccharomyces yeast from Wang et al., 2015.
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To address this goal, here we first consider how molecular evolution is influenced by the proper-

ties of genes and genetic networks, such as pleiotropy, modularity, robustness, and cis/trans regula-

tion. These are the ‘gears and springs’ in the genetic architecture of development. We then explore

how genetic architecture may sensitize some phases of ontogeny disproportionately to disruptive

effects of misexpression in genetic networks. By integrating genetic architecture and ontogenetic

timing, we arrive at distinct predictions for how molecular evolution and hybrid dysfunction manifest

across developmental time. Finally, we summarize the literature on these issues for three case study

systems (Caenorhabditis nematodes, Drosophila fruit flies, and anuran Bufo and Xenopus). In the

present state of the field, we find that few general answers emerge from these factors considered in

isolation, motivating deeper attention from theory and empirical study.

Speciation and development: divergence in genetic networks
As we explore how the evolution of development intersects with speciation, it is valuable to consider

some key aspects of genetic architecture from the perspective of multi-gene networks that, in turn,

control organismal development (Johnson and Porter, 2007; Palmer and Feldman, 2009). Here,

we focus on how pleiotropy, network modularity, and robustness can influence the molecular evolu-

tion of coding sequences and non-coding regulatory elements. These links will help ground our

expectations for incorporating ontogenetic time into our thinking to then consider predictions for

molecular evolution and the production of incompatibilities in genetic networks of hybrid

individuals.

Pleiotropic roles and effects
The mapping of genotype on phenotype and fitness leads us to predict that evolution will proceed

along genetic lines of least resistance (Schluter, 1996). Genetic ‘resistance’ to evolutionary change

is affected by the mutability and covariation of traits within and across developmental stages, in

addition to natural selection. That is, the net rate of evolution integrates the likelihood and accumu-

lation of mutational input (genetic variance) with the consequences of genetic variants for the

ensemble of traits that comprise an organism (genetic covariances between traits) and fitness (natu-

ral selection). From the perspective of developmental biologists, this means that genetic hot-spots

of evolutionary change over the long term ought to favor mutations with minimally pleiotropic

effects (Carroll, 2005; Stern and Orgogozo, 2008), a form of developmental bias. As more molecu-

lar evolutionary change occurs, genetic incompatibilities become more likely to form from dysfunc-

tional interactions between diverged sequences in inter-species hybrids. Our goal, then, is to

enumerate the factors that facilitate molecular evolution to make some genes evolve more quickly

than others. The structure of genes and gene regulatory networks provide clues to predict what

these factors are (Garfield et al., 2013). These clues about molecular evolution can help us in think-

ing how to connect the temporal dynamics of developmental genetic networks to genetic incompati-

bilities between species.

The extent of pleiotropic effects induced by mutation to a gene is a major determinant of the

likelihood of evolutionary change to that gene (Carroll, 2005; Stern and Orgogozo, 2008). This

logic follows from the idea that most traits experience stabilizing selection on short timescales, and

so the effects of mutation on most traits will be detrimental and offset any fitness benefit conferred

to a particular trait by a mutation. On longer timescales, conserved traits are thought to track a mov-

ing but bounded fitness landscape (Estes and Arnold, 2007), which can facilitate compensatory evo-

lution among the collection of interacting genes of the genetic network to result in sequence

divergence and reproductive isolation between populations (Haag and Molla, 2005;

Tulchinsky et al., 2014a; Tulchinsky et al., 2014b). Consequently, we might expect that more rapid

evolution should occur in genes with fewer pleiotropic roles or for classes of changes that perturb

fewer of a gene’s roles. The position of a gene within gene regulatory networks defines the pleiotro-

pic roles it plays in development. Genes in more central and highly connected network positions can

influence a greater fraction of the genome, and so changes to those genes have the potential to

induce greater pleiotropic effects (Promislow, 2004; Hahn and Kern, 2005; He and Zhang, 2006;

Kahali et al., 2009). However, the precise relationship between centrality and pleiotropy remains

complex (Siegal et al., 2006). And, despite the idea that network ‘kernels’ may perdure through

evolution (Erwin and Davidson, 2009), the molecular interactions among kernel components may

Cutter and Bundus. eLife 2020;9:e56276. DOI: https://doi.org/10.7554/eLife.56276 5 of 25

Review Article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.56276


nevertheless coevolve in ways that could generate DMIs (Haag, 2007; Tulchinsky et al., 2014a).

Genes that are expressed at high levels also are more likely to have a large number of interaction

partners and therefore to occupy central network positions (Bloom and Adami, 2003).

Coding sequence changes can affect protein activity everywhere they get expressed, and so

ought to have greater potential for pleiotropic effects than regulatory changes (Wray et al., 2003;

Carroll, 2005; Stern and Orgogozo, 2008). Alterations of cis-regulatory elements, in contrast, gen-

erally influence only a subset of a gene’s expression, and so will exert the fewest pleiotropic effects

relative to coding sequence and trans-regulatory changes. Consequently, trans-regulatory evolution

and coding sequence divergence ought generally to be slower for genes with high centrality and

connectivity in genetic networks. We should expect such genes to have especially high ratios of cis:

trans regulatory divergence, provided that those genes also have reasonably complex arrays of cis-

regulatory elements controlling their expression that can facilitate divergence. Because trans-acting

regulation tends to show greater condition-dependence than does cis-regulation (Smith and Kru-

glyak, 2008; Tirosh et al., 2009), however, pleiotropy-based predictions for their evolution may be

tempered by the fact that varying conditions experienced by organisms could limit the net negative

pleiotropic effects of trans-regulatory changes. Moreover, trans-regulatory evolution may often be

coupled to subsequent cis-regulatory compensatory evolution that ameliorates negative pleiotropic

effects of a population having fixed a beneficial trans-regulatory change. Such compensatory evolu-

tion involving both cis- and trans-acting regulatory evolution may be an especially important

Figure 1. Predictions and hypotheses in the evolution of ontogeny and reproductive isolation. (A–C) Models from

population genetics and evo-devo suppose that some modes of natural selection may be more potent at

particular life stages, as described in the main text. However, not all models make clear predictions about the

ontogenetic dynamism of selection for all selection modes (purifying vs adaptive vs neutral) or for all stages of

development. (D–E) Differential incidence of selection across development may be mediated by genetic

architecture in terms of the pleiotropic effects of genetic changes and how that translates into the robustness of

fitness-related traits. When fitness is disproportionately robust to changes to genes expressed at a given stage,

then that stage will be more likely to accumulation cryptic genetic variation (CV) within species, divergence

between species as developmental system drift (DSD), and to result in production of Dobzhansky-Muller

incompatibilities (DMIs) in inter-species hybrid individuals.
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contributor to DMI formation (Landry et al., 2005; Ortı́z-Barrientos et al., 2006; Takahasi et al.,

2011; Mack et al., 2016).

Experiments show that trans-acting regulatory factors contribute disproportionately to segregat-

ing genetic variation for gene expression levels within species, whereas cis-acting regulatory differ-

ences disproportionately underlie fixed genetic differences in expression between species

(Wittkopp and Kalay, 2012). The loci controlling DMIs also can be polymorphic or fixed (Cut-

ter, 2012), and so to the extent that regulatory evolution is responsible for creating DMIs, we ought

to expect polymorphic DMIs to often be controlled by trans-acting factors. Because trans-regulatory

Box 3. Measuring molecular divergence across ontogeny.

Incorporating ontogeny into molecular evolution requires developmental time series of gene expression, which necessarily

involves more experimental effort and sophistication of analysis than studies using a single developmental timepoint. This idea

can be explored in several ways. First, one may quantify divergence in gene expression as a phenotypic output that closely

maps to genotype. Studies in diverse organisms have compared transcriptome profiles over ontogeny with this approach

(Table 1). Second, the contrast of gene expression levels between two parental species and their F1 hybrids provides a way to

infer whether changes in expression result from cis- or trans-regulatory evolution (Box 1; Wittkopp et al., 2004; Signor and

Nuzhdin, 2018). This approach has challenges and opportunities: environmental conditions also can influence transcriptome

expression and the balance of cis:trans controls of the set of expressed genes (Tirosh et al., 2009), and it may be difficult to

deconvolve maternal from zygotic trans-effects in F1 embryos. The technique also has not yet been applied in a developmentally

dynamic way, making it ripe for future studies. Third, rates of coding sequence evolution (dN/dS or KA/KS) for genes expressed

differentially across development provide a means of assessing selection on the encoded protein sequences used in genetic net-

works. A simple way of testing for trends in purifying selection and positive selection across ontogeny is to compare the average

dN/dS value for the set of genes with peak expression at a given developmental timepoint (Cutter and Ward, 2005;

Davis et al., 2005) or an expression-weighted mean dN/dS value for all genes expressed at a given timepoint (Quint et al.,

2012; Liu and Robinson-Rechavi, 2018b). When a multi-species phylogeny is used, or if polymorphism data are incorporated in

a McDonald-Kreitman testing framework, then positive selection may be distinguished from relaxed purifying selection (Liu and

Robinson-Rechavi, 2018a). Genes also can be grouped according to patterns of co-expression to analyze for consistent differ-

ences in rates of molecular evolution among them or among parameters of mathematical functions that describe the temporal

profiles of expression (Coronado-Zamora et al., 2019; Cutter et al., 2019). Spatial definition of expression can enhance such

approaches using tissue- and sex-specificity (Kim et al., 2016), restricted cell-lineages (Hashimshony et al., 2015), or tomo-

graphic expression profiling (Ebbing et al., 2018). While mRNA expression is most commonly accessed, all these approaches

can be extended to protein expression; protein levels appear to differ less between species than do transcriptomes

(Leducq et al., 2012; Khan et al., 2013). Quantifying chromatin misregulation in a developmental time-course also could help

discern the influence of epigenetic factors in hybrid dysfunction.
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Box 3—figure 1. Panels (A) for C. elegans redrawn from Cutter et al., 2019 and (B) for Drosophila melanogaster from Coronado-Zamora et al.,

2019 illustrate sets of genes with shared profiles of expression across development (non-linear timepoint scaling), and their rates of coding

sequence evolution (D. melanogaster analysis excludes non-dynamic constitutive genes, gray for C. elegans; non-synonymous substitution rate

KA, adaptive non-synonymous substitution rate wa, non-adaptive non-synonymous substitution rate wna).
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mutations tend to arise more readily due to larger mutational target size in the genome, and to be

more recessive, than cis-acting mutations (Landry et al., 2007; Gruber et al., 2012), they are

expected to be a common and persistent kind of polymorphism within populations.

Modularity of genetic network architecture
Modularity of genetic networks reduces the scope for genes to have highly pleiotropic roles

(Wagner and Altenberg, 1996). By constraining the neighborhood of partner interactions, greater

modularity limits the pleiotropic effects of changes to gene expression or function for any given

gene. Like tissue-specific expression in the spatial modularity of gene networks (Larracuente et al.,

2008; Packer et al., 2019), we can also consider temporal modularity for those portions of gene

regulatory networks that show stage-specific expression. Modularity of genetic network structure

will increase over ontogeny as cells differentiate and tissues establish autonomous regulatory pro-

grams (Packer et al., 2019). Some transient phases of development are thought to reverse this

trend, however, as when tissues integrate during gastrulation or reorganize during metamorphosis

(Chin-Sang and Chisholm, 2000). Consequently, if pleiotropy at the scale of the whole organism

constrains evolution of individual genes, then we might expect faster molecular evolution for genes

that experience highly modular genetic network structures due to spatially- or temporally restricted

expression. This logic provides one way to frame the ‘early conservation’ and ‘hourglass’ models in

the evolution of development (Figure 1).

Despite a trend of increasing genetic network modularity from single-celled zygote to adult,

some genes will experience the modularity more than others at any given place or time in ontogeny.

Genes with greater breadth of expression across tissues, and genes with greater temporal persis-

tence of expression, will experience more scope to contribute to different genetic networks and

their phenotypic outputs. Consequently, genes most likely to produce pleiotropic effects when

genetically perturbed are those expressed at high levels across many tissues throughout a long span

of developmental time (high expression breadth and low temporal expression bias;

Larracuente et al., 2008; Coronado-Zamora et al., 2019). Even a modest role in any given tissue or

at any single stage of development, however, may compound when integrated over space and time.

The appropriate weighting of the importance of spatial versus temporal expression breadth and

modularity, however, is not entirely obvious. Therefore, empirically, it will be valuable to partition

the ontogenetic trajectories of genes with similar expression breadths across tissues, or, comple-

mentarily, partition the spatial profiles of expression for genes with similar ontogenetic expression

dynamics (Box 3). The transcriptome analysis of distinct cell lineages, as conducted for C. elegans

precursors of endoderm, mesoderm and ectoderm (Hashimshony et al., 2015) or for single-cell

transcriptomes throughout embryogenesis (Hashimshony et al., 2012; Tintori et al., 2016;

Packer et al., 2019), provides one intriguing scheme for approaching this issue. Another approach

could incorporate developmental time into transcriptome analysis of serial-sectioned samples to

access four-dimensional expression profiles through developmental space and time (Ebbing et al.,

2018).

Robustness to genetic change in gene regulatory networks
Selection on traits within a species often is stabilizing, favoring a particular phenotypic value and

meaning that factors that lead to alternative phenotypic values will have lower fitness. A genetically

‘robust’ phenotype is insensitive to genetic perturbations, which permits an organism to produce

the same phenotype and to maintain fitness despite mutational disruption to a gene or genetic net-

work that contributes to the trait’s developmental program (Félix and Wagner, 2008). That is, a

greater fraction of mutations to genes in more robust networks have effectively neutral effects

(Ohta, 2011). A gene network’s robustness therefore ought to influence the mutations that can

accumulate, which in turn affects rates of molecular evolutionary divergence and the manifestation

of genetic incompatibilities in hybrids. Differences across gene networks in genetic robustness could

arise from differential selection on robustness itself (adaptive robustness or canalization) or could

simply arise as a byproduct of differences in their epistatic genetic architectures (Hermisson and

Wagner, 2004). Genes and genetic networks that are more robust to genetic perturbation can be

thought of as larger phenotypic capacitors (Paaby and Testa, 2018), letting more cryptic genetic

divergence in developmental controls accumulate to be revealed upon the formation of inter-species
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hybrids. This effect is analogous to how specific environmental circumstances or genetic back-

grounds can expose so-called cryptic genetic variation or conditionally-neutral variants within a spe-

cies (Ledón-Rettig et al., 2014; Paaby and Rockman, 2014).

As a consequence, traits with greater genetic robustness ought to accumulate more cryptic

genetic variation within a species that can then can contribute to greater developmental system drift

between species as substitutions accrue (Félix and Wagner, 2008). This process will, in turn, lead

separate populations to travel independently along a fitness ridge in the landscape of genotype

space (Box 1D; Félix and Wagner, 2008; Fragata et al., 2019). More robust networks are more

likely to contain more cryptic genetic variation, but the presence of cryptic genetic variation alone is

insufficient to conclude whether or not selection directly favored greater robustness, and characteriz-

ing the robustness of genetic networks empirically can be difficult. The selective regime that shapes

the fitness landscape will influence the speed at which developmental system drift can evolve for any

given trait (Tulchinsky et al., 2014b). DSD is especially likely to result from directional selection on

traits, perhaps facilitated by a role for cryptic genetic variation in adaptation to environmental shifts

(Félix and Wagner, 2008), and from selection that drives molecular co-evolution among genetic ele-

ments (Tulchinsky et al., 2014b).

Phenotypes with a larger underlying genetic network are expected to be more robust to pertur-

bation (Fragata et al., 2019), implying that they should more readily tolerate the accumulation of

genetic changes. Genes holding more central positions in genetic networks also appear to be associ-

ated with greater robustness upon perturbation (Proulx et al., 2007), although this effect may

depend more on expression level than connectivity per se (Siegal et al., 2006). This means that

changes to any given gene in a network that is shared with other networks, and that confers a bene-

ficial effect to that other network, are less likely to manifest negative pleiotropic effects for those

genetic networks that are larger (Pavlicev and Wagner, 2012). Consequently, cryptic variation and

DSD may be disproportionately prevalent in developmental programs comprised of larger genetic

networks. Genetic networks with low modularity, by definition, have all constituent genes interact-

ing, and networks with low modularity indeed are most robust to genetic perturbation (Tran and

Kwon, 2013).

Table 1. Studies in the literature that characterize expression profiles across development

(Supplementary file 1).

Number of studies (%) Number of species (%)

Developmental stage analyzed

Embryogenesis only 58 39.5% 45 42.5%

Non-embryo stages 37 25.2% 17 16.0%

All ontogeny 51 34.7% 44 41.5%

Type of molecular time series data

Transcriptome 128 87.1% 106 100.0%

Proteome 7 4.8% 5 4.7%

Other 14 9.5% 12 11.3%

Inter-species divergence feature

Gene expression 32 21.8% 55 51.9%

DNA sequence 5 3.4% 14 13.2%

Non-comparative 99 67.3% 42 39.6%

Taxonomic group

Angiosperm 16 10.9%

Arthropoda 26 17.7%

Chordata 55 37.4%

Nematoda 10 6.8%

Other group only 30 20.4%

Multiple groups 10 6.8%

Cutter and Bundus. eLife 2020;9:e56276. DOI: https://doi.org/10.7554/eLife.56276 9 of 25

Review Article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.56276


Recall, however, that we argued how such low modularity conditions maximizes the pleiotropic

roles of genes, which should impede rather than tolerate molecular evolution. These effects thus

appear to present a contradiction. The resolution may lie in assumptions about network size, such

that the implications of low modularity for pleiotropy may be secondary to robustness for large

genetic networks. Analysis of networks in high-resolution time series of expression showing distinct

tissues with distinct transcriptomic profiles that vary in size may help in testing this idea

(Packer et al., 2019). The resolution may also depend on whether we consider coding or regulatory
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Figure 2. Developmental dynamics in C. elegans nematodes and in Bufo and Xenopus amphibians. (A) C. elegans

cell counts grow exponentially in early embryogenesis, before slowing later. Redrawn with data from

Giurumescu et al., 2012 and wormatlas.org. (B) Gene expression changes dynamically over ontogeny in terms of

number of genes expressed and the incidence of up- and down-regulated genes over time. Redrawn from

Boeck et al., 2016. (C) Ontogenetic timing in the accumulation of reproductive isolation with genetic divergence

for Bufo toads. Hybrid individuals between more closely-related species develop to later stages than do hybrids

from distantly-related species pairs. Redrawn from Malone and Fontenot, 2008. (D–E) Xenopus gene expression

level differentiation decreases over developmental time (yolk comprises ~½ of embryo volume; maternal-zygotic

transition at stage ~8; yolk consumption begins around gastrulation). Redrawn from Yanai et al., 2011.
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sequence evolution, as coding sequence evolution does not appear to depend strongly on how con-

nected the gene is in the genetic network (Jordan et al., 2003; Batada et al., 2006). The way that

connections define the network output also can be crucial. Simple connectivity metrics may just

poorly summarize functional and evolutionary properties of networks, making the contradiction

more apparent than real (Siegal et al., 2006). For example, genetic networks with switch-like behav-

ior may be more capable of accumulating cryptic variation, as appears to occur disproportionately

among genes with early zygotic expression in sea urchin embryogenesis (Garfield et al., 2013).

Ontogenetic stages that have an especially high incidence of mutationally-robust phenotypes

within species should thus be especially prone to experience developmental system drift. Such DSD

can get revealed in the novel genomic environment of inter-species hybrids, taking the form of

DMIs. A counter-argument to this idea is that mutationally-robust traits might also be predisposed

to being robust to the genomic perturbation experienced in hybrid individuals, and therefore be less

likely to show dysfunction. The logic of this counter-argument might be more pertinent at the very

early stages of divergence between populations, becoming less and less applicable as substitutions

accrue in the speciation process. It will be interesting for future research to resolve this question. In

general, it remains unclear how network robustness within species versus between species might

scale differently with the number of genetic changes. Measurements of mutational variance for traits

shared across ontogenetic stages provide another possible way to test for stage-dependent changes

in mutational robustness, for example, using mutation accumulation experiments that, so far, point

to this possibility (Farhadifar et al., 2016; Zalts and Yanai, 2017). It will be interesting to see in

future studies whether the genetic robustness of traits truly can predict the incidence of cryptic

genetic variation, developmental system drift, and the propensity to reveal DMIs in hybrids.

Degeneracy via partially redundant genetic network pathways provides another way that pheno-

types could be robust to genetic perturbation, potentially allowing DSD to accumulate without yield-

ing DMIs in F1 hybrids. Indeed, genes associated with redundant networks evolve more quickly

(Wagner, 2000; Kitami and Nadeau, 2002). Robustness mediated by distributed, rather than

redundant (Félix and Wagner, 2008), genetic networks may thus more readily experience DSD in a

way that would foster DMIs. Moreover, translational buffering of gene expression leads to the infer-

ence that protein production shows much less misexpression than do mRNA transcripts in F1 hybrids

(Leducq et al., 2012; Khan et al., 2013; Artieri and Fraser, 2014; McManus et al., 2014). And, it

is fitness as a phenotype that is the ultimate readout of robustness. Consequently, genetic networks

important for development may be less disrupted in hybrids than transcriptome analyses might oth-

erwise suggest. Overall, discerning the relative incidence of distinct mechanisms conferring pheno-

typic robustness will be important in defining whether different genetic networks and different

stages of development will be more or less likely to contribute to post-zygotic reproductive isolation

as divergence between species accumulates.

Evolvability of distinct genetic components
Mode of selection
Traits and sequences with greater propensity to diverge are said to be more evolvable (Wagner and

Zhang, 2011). One way to detect evolvability is when traits and sequences diverge as a result of nat-

ural selection, because adaptive divergence in phenotypes between species makes it easy to con-

clude that there must have been changes to the underlying genetic networks. Such selection can

involve multiple changes on an adaptive path, for example, if first a large-effect trans-regulatory

mutation gets fixed and is followed by subsequent compensatory cis-regulatory substitutions that

ameliorate suboptimal pleiotropic effects of the initial trans-acting substitution (Box 1C;

Goncalves et al., 2012); similar logic can also apply to coding sequence changes (Clark et al.,

2009). Moreover, positive selection and multi-locus antagonistic coevolution will drive molecular

evolution that is much more rapid than will genetic drift. Repeated adaptive evolution of ortholo-

gous genes in disparate lineages is implicated as a general feature of some types of phenotypic

change, including aggregate effects of multiple mutations affecting the same locus (Stern and Orgo-

gozo, 2008; Martin and Orgogozo, 2013). The genes contributing to such adaptive divergence

may thus be especially likely to contribute to post-zygotic DMIs (Presgraves, 2010b), in addition to

pre-mating, gametic, or ecological reproductive isolation barriers.
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Alternately, some genes may evolve faster than others simply because they experience weaker

purifying selection or greater mutational target size. The evolutionary accumulation of changes in

this way is rate-limited by the input of mutation and the speed of genetic drift, and so will be faster

in species with small population sizes.

Haldane’s rule as developmentally predictable evolution
One developmentally predictable rule in evolution says something about sex: Haldane’s rule, in

which the heterogametic sex is more likely to suffer inviability or sterility in inter-species hybrids (Hal-

dane, 1922; Delph and Demuth, 2016). Dominance theory provides one explanation for this pat-

tern: incompatibility loci linked to sex chromosomes will reveal themselves in F1 hybrids

disproportionately for the sex that has only one copy of a given sex chromosome (Turelli and Orr,

1995). This tells us that genomic compartmentalization of how traits are genetically encoded also is

important for the implications of molecular evolution; when genes contributing to a given develop-

mental process are biased in genomic location, it may confer greater or lesser tendency to yield

DMIs in hybrids.

When males are heterogametic (X/Y or X/O sex-determination), other factors may also contribute

to Haldane’s rule (Delph and Demuth, 2016). Genes that control male-biased traits may evolve

especially rapidly due to sexual selection or mutational biases (‘faster male’ theory), or gene regula-

tory networks controlling male traits may be unusually sensitive to genetic perturbation in hybrids

(‘fragile males’), or genes linked the X-chromosome may evolve especially fast (‘faster X’)

(Charlesworth et al., 1987; Wu and Davis, 1993). Consequently, X-linked genes may show distinct

patterns of misexpression in hybrids (Moehring et al., 2007; Turner et al., 2014; Civetta, 2016;

Sanchez-Ramirez et al., 2020). Developmental pathways related to spermatogenesis seem espe-

cially sensitive to disruption in hybrids, perhaps being predisposed to disproportionate compensa-

tory cis-trans regulatory coevolution (Mack et al., 2016; Mack and Nachman, 2017). Sex-limited

genetic networks also may differ for males versus females in size, location of genomic encoding, or

predominant mechanism of regulatory control, and so influence the relative accumulation of cryptic

genetic variation and developmental system drift.

Coding vs regulatory evolution
Both coding sequences and regulatory sequences diverge between species, despite the fact that

most selection on each of them is expected to be purifying (Casillas et al., 2007). The rate of evolu-

tion for a coding sequence and its cis-regulatory regions, however, correlate only weakly (Castillo-

Davis, 2004; Liao and Zhang, 2006; Tirosh and Barkai, 2008). This observation implies that the

strength and mode of selection affecting mutations to protein structure tells us little about the

strength and mode of selection on mutations affecting expression, and vice versa. Consequently,

molecular evolution associated with ontogenetic timing may show distinct patterns for coding and

regulatory sequences, and so also yield different implications for when DMIs manifest over

ontogeny.

The type of regulatory change may be key, however, in understanding the relation between regu-

latory and coding sequence divergence (i.e. evolvability), as well as to the likelihood of contributing

to a DMI. For example, genes showing evidence of trans-regulatory divergence appear to evolve

slower in their coding sequences than do genes with cis-regulatory divergence (Goncalves et al.,

2012). And, DMIs due to misregulation generally involve non-compensatory evolution of both cis-

and trans-regulators of expression (Ortı́z-Barrientos et al., 2006; Mack and Nachman, 2017). Spe-

cifically, regulatory divergence involving reinforcing cis+trans changes (thought to result from direc-

tional selection within species) may actually be less likely to create DMIs than changes with opposing

cis-trans effects (thought to result from stabilizing selection within species) (Mack et al., 2016) (but

see Tulchinsky et al., 2014b). Consequently, positive selection affecting regulatory versus coding

sequences may differ in their propensity to yield DMIs.

Might the functional role of genes also represent an axis of predictability to factors that instigate

DMIs in inter-species hybrids? The relatively few known ‘speciation genes’ in animals give little clue

to whether particular molecular functions may be predisposed to involvement in inter-species incom-

patibilities (Blackman, 2016). At a coarse level, because DMIs require interaction, we should expect

sequences that affect interactions between DNA, RNA, and proteins to be more prevalent among

DMI loci than, say, enzymes that interact predominantly with metabolites. From the perspective of
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gene regulatory networks, transcription factors experience faster sequence evolution than other

genes in the genome (Gilad et al., 2006; Haerty et al., 2008). piRNA genes also turnover rapidly

and are implicated in hybrid dysfunction (Assis and Kondrashov, 2009; Bagijn et al., 2012;

Kelleher et al., 2012), along with other classes of regulatory endogenous small RNAs (Li et al.,

2016). Genes that act cell non-autonomously, as for secreted proteins or diffusible signaling mole-

cules, may tend to evolve slower if they also tend to exhibit greater expression breadth and lower

modularity, unless they are predisposed to co-evolutionary dynamics. Reproductive isolation

between species need not only involve classic regulators of development, however, as attested by

incompatibilities that commonly seem to involve chromosome segregation and cyto-nuclear interac-

tions (Blackman, 2016; Lima et al., 2019). Despite the fundamental role of the mitochondrial

genome in energy metabolism, mitochondrial genes experience adaptive molecular evolution

(Bazin et al., 2006) and mito-nuclear incompatibilities can provide important reproductive barriers

between species (Hill, 2015; Lima et al., 2019). To the extent that some developmental stages may

be more sensitive to the disruption of chromosome segregation or mitochondrial function, such as

phases of heightened cell division or metabolism, such developmentally tangential genetic pathways

might nevertheless contribute to ontogenetic patterns of hybrid dysfunction.

Gene duplication and gene origination
Gene duplication is a powerful factor in the evolution of phenotypic novelty (Kaessmann, 2010).

Moreover, regulatory or structural subfunctionalization in the evolution of gene copies following

duplication could lead to dysfunction in hybrids and so contribute to a DMI (Mack and Nachman,

2017). Similarly, a DMI could result from ‘divergent resolution’ in the loss of alternate copies in dif-

ferent species for functionally equivalent gene duplicates (Lynch and Force, 2000). The de novo ori-

gin of new genes also can instigate species differences in gene network structure (Neme and Tautz,

2014), as could divergent use of alternative splice forms of a gene (Ortı́z-Barrientos et al., 2006).

Thus, the phenotypic evolvability promoted by gene duplication and gene origination also confers

the potential to induce reproductive isolation as gene copies evolve through distinct trajectories in

different evolutionary lineages.

Ontogenetic timing of genetic networks and molecular evolution
Gene expression profiles and genetic network architecture are dynamic over the course of ontogeny.

This dynamism suggests that molecular evolution could differ for the distinct subsets of genes asso-

ciated with different stages of development (Box 3). Importantly, this molecular divergence may or

may not correspond to divergence in organismal phenotypes (True and Haag, 2001), despite the

common emphasis on how changes to gene regulatory networks alter the development of pheno-

types (Erwin and Davidson, 2009). Stages especially prone to rapid molecular evolution, of coding

sequences or regulatory elements, may also translate into a greater incidence of DMIs. Ontogenetic

predispositions toward sequence evolution may therefore confer predictable ontogenetic detection

of reproductive isolation between species, letting us know when to listen most carefully for the

developmental alarm clock of speciation. In our search of the literature, we identified 147 studies

involving 106 species that quantified transcriptome, proteome, or related molecular data across mul-

tiple developmental stages (Table 1, Supplementary file 1). We found 40% of studies to focus on

embryogenesis only. Over 60% of the studies included a comparative analysis of expression diver-

gence between species (52%) or of DNA sequence divergence (13%). Integrating such studies with

developmental time courses of hybrid dysfunction would provide a powerful collection of empirical

tests for how incompatibilities in genetic networks arise through ontogeny. In the meantime, ideas

from both development and population genetics lead to several partially-distinct predictions for the

evolution of genes expressed differentially across ontogeny, which we enumerate below (Figure 1).

We conclude that a conceptual gap is the lack of a modeling framework that integrates these dispa-

rate perspectives on the role of ontogenetic timing in molecular evolution.

Early conservation model
The early conservation model (‘von Baer’s third law’) derives from the fact that time is unidirectional,

so changes early in development may cascade catastrophically as cell division and differentiation

proceeds. Consequently, genes expressed early in development would experience stronger purify-

ing selection, with slower molecular and phenotypic evolution early in ontogeny (Kalinka and

Cutter and Bundus. eLife 2020;9:e56276. DOI: https://doi.org/10.7554/eLife.56276 13 of 25

Review Article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.56276


Tomancak, 2012). Some perspectives on gene regulatory network structure follow the spirit of this

view, as well (Erwin and Davidson, 2009). This idea would also be consistent with genes and

genetic networks expressed in early development having lower robustness, modularity, and evolv-

ability, and with greater pleiotropy when perturbed (Figure 1). The early conservation model is

mostly applied to embryogenesis, with some empirical support from vertebrates based on gene

expression divergence (Roux and Robinson-Rechavi, 2008; Irie and Kuratani, 2014). In principle,

however, the logic of this model applies to the entirety of ontogeny. If the likelihood of DMIs scales

with rate of evolution, then we ought to expect post-zygotic reproductive isolation to be more likely

to manifest later in development and that species at earlier stages of divergence would manifest

defects later in development.

A caveat about inferring the developmental timing of hybrid dysfunction is that early-acting

incompatibilities may preclude detection of DMIs that would otherwise be revealed later (see uni-

form chance model, below). Disproportionate observation of early-acting developmental defects in

hybrids thus may not imply that molecular evolution disproportionately accrues for genes in early-

acting developmental programs. This ‘pull of the early’ represents a general challenge in characteriz-

ing the profile across ontogeny of disrupted genetic networks that confer post-zygotic reproductive

isolation. There are at least four ways to potentially address this issue empirically: (i) assess distinct

species comparisons from different phylogenetic depths, (ii) exploit partial penetrance of F1 hybrid

dysfunction (Bundus et al., 2015), (iii) use early-acting hybrid-rescue genotypes to test for late-act-

ing hybrid dysfunction (cf. Hmr in Drosophila [Hutter et al., 1990]), or (iv) focus on misregulation of

gene expression over ontogeny for species with relatively weak post-zygotic isolation (i.e. without

catastrophic effects in early life stages).

Uniform chance model
We suggest that the ‘uniform chance’ model represents a null model for the manifestation of hybrid

incompatibilities over the course of ontogeny. If molecular evolution is unbiased with respect to the

timing of expression of genes that have diverged between species, then every point in development

can be considered to have an equal chance of expressing a DMI to yield hybrid disruption of a tissue

type or termination of development (Figure 1). This could arise from each stage adapting continu-

ously to the ‘habitat’ it experiences distinctively from other stages, whether inside an egg (or uterus),

juvenile environmental circumstances, or post-metamorphosis adulthood. Consequently, species

pairs with greater overall divergence would be more likely to have hybrids that terminate develop-

ment earlier in ontogeny; the probability that the earliest developmental stage avoids the effects of

DMIs declines exponentially (pn with n DMIs each with probability p of not occurring in the earliest

stage). This null model therefore predicts a negative relationship of the genetic distance between

species and the terminal stage to which hybrids develop, and predicts that later stages will have

more tissue types exhibiting dysfunction in hybrids. Note that these predictions overlap with several

other models that we describe, but do not depend on differential selection pressures, pleiotropy, or

network features for genes expressed at different times in development. This model, however, pre-

dicts no association of molecular evolutionary rates for genes (or the mode of selection) with the

developmental timing of their expression.

Mutation accumulation model of aging
The mutation accumulation model of aging and senescence predicts that genes and genetic net-

works expressed earlier in development will evolve more slowly (Promislow and Tatar, 1998; Par-

tridge, 2001). Here, the logic and developmental timing, however, is different from the early

conservation model: the reproductive value of individuals declines following the onset of reproduc-

tive maturity, meaning that purifying selection is weaker against deleterious mutations that affect

adult phenotypes relative to embryonic and juvenile phenotypes (Medawar, 1952; Flatt and

Schmidt, 2009). This perspective presumes similarly strong purifying selection for all genes

expressed prior to maturity, and makes no specific prediction about positive selection across ontog-

eny (Figure 1). Not explicitly formulated by the mutation accumulation model, however, is whether

the strong early-life selection would indirectly favor mutational robustness to embryonic and juvenile

developmental programs. Such robustness could facilitate greater molecular evolution of early-
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expressed genes than otherwise anticipated, which also could facilitate the accumulation of develop-

mental system drift.

Antagonistic pleiotropy model of aging
Gain in fitness from traits that increase survival or reproduction early in life will experience dispropor-

tionate selection pressure. Consequently, positive selection may more fiercely favor beneficial muta-

tions to genes expressed early in life, irrespective of negative pleiotropic consequences on fitness-

related traits expressed later on. This idea is the essence of the antagonistic pleiotropy model for

the evolution of aging and senescence (Williams, 1957; Partridge, 2001; Flatt and Schmidt, 2009).

In terms of molecular evolution, it ought to yield a signature of excess positive selection on genes

first expressed at pre-reproductive stages (Figure 1). However, subsequent selection may lead to

compensatory evolution for genes expressed late in life to ameliorate negative pleiotropic effects.

This sequential evolutionary series of events could produce developmental system drift, especially

for late-life traits. Regulatory divergence between species often reflects compensatory changes in cis

and trans, with trans-acting changes being more likely to exert pleiotropic effects and arising at a

higher rate (Gruber et al., 2012). It will be interesting to determine whether the developmental tim-

ing of cis versus trans changes are biased over ontogeny in a way that would be consistent with the

antagonistic pleiotropy model, that is, disproportionate cis-regulatory changes that modulate late-

acting expression.

Hourglass model
The hourglass model is a pattern in search of a mechanism that derives from classic phenotypic

observations of a ‘phylotypic stage’ in mid-embryogenesis, a point of greatest morphological similar-

ity across organisms. Profiles of gene expression divergence between species, a molecular pheno-

type, also are often interpreted to be consistent with this pattern (Raff, 1996; Kalinka and

Tomancak, 2012). In terms of DNA sequence evolution, it is less obvious why genes expressed in

mid-embryogenesis would exhibit slowest rates of sequence evolution, whether due to stronger

purifying selection or less frequent adaptive divergence (Figure 1). Ontogenetic trends in genetic

network architecture may provide some intuition, as it is proposed that the phylotypic stage may

coincide with developmental periods of intense integration of distinct cell lineages, often around

gastrulation (Levin et al., 2012). Consequently, mid-embryogenesis may experience a shift toward

fewer and larger genetic networks (low modularity) that leads to greater pleiotropic effects when

perturbed. Changes in network structure related to switch-like or threshold traits also could contrib-

ute (Garfield et al., 2013). If such a genetic network architecture in mid-embryogenesis also confers

greater within-species genetic robustness, then it may be especially prone to DSD and the produc-

tion of DMIs and hybrid dysfunction in crosses between species. If, instead, it represents a point of

low robustness to genetic perturbation, then DSD from genes expressed at earlier stages may

induce a tipping point of dysfunction that manifests in hybrids during such a phase of integration.

The potential for distinctive properties in the ‘waist of the hourglass’ has drawn most scrutiny by

researchers, but an alternative hypothesis might suppose that it is the earlier points in development

that are unusual and require special explanation. This possibility has recently received greater theo-

retical and empirical attention (Demuth and Wade, 2007; Dapper and Wade, 2016; Zalts and

Yanai, 2017; Coronado-Zamora et al., 2019). For example, theory predicts more rapid accumula-

tion of mutations to genes acting in the earliest genetic networks that derive from maternal resour-

ces, leading to their unusually fast molecular evolution with the potential to drive DSD and DMIs

(Demuth and Wade, 2007). Faster-than-anticipated molecular evolution at the very earliest stages

of development might also arise from especially high robustness of genetic networks involving

maternally deposited gene products, or from co-evolutionary dynamics associated with parent-off-

spring or other genomic conflicts (Brandvain and Haig, 2005; Crespi and Nosil, 2013). In such sce-

narios, the point in time that coincides with ‘waist of the hourglass’ might simply represent the onset

of conditions consistent with the early conservation model.

Sex-biased selection
Selection on genes with sex-limited expression can lead to their more rapid evolution. This faster

evolution can arise in two ways: sexual selection/conflict and weaker purifying selection. Sexual
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selection and sexual conflict that occurs within and between the sexes for reproductive adults can

promote rapid phenotypic and molecular evolution via positive selection, especially in reproduction-

and gamete-related traits (Swanson and Vacquier, 2002; Mank, 2017; Rowe et al., 2018). Thus,

the timing of expression for genes that are part of the developmental programs that build such traits

in late juvenile and adult stages would be expected to be most strongly impacted. This ontogenetic

timing is similar to the mutation accumulation model, except that it should reflect adaptive evolution

rather than weaker purifying selection and that it deals primarily with the subset of traits and genes

associated with sexual interactions between individuals (Figure 1). Genes controlling gamete traits

may be especially prone to rapid molecular evolution (Swanson and Vacquier, 2002), with the

effects on hybrids potentially reflected in the earliest-stage zygotes. Speciation genetics research

has incorporated this idea of rapid evolution of sex-limited genes into the ‘faster male’ theory for

Haldane’s rule and into the explanation for why hybrid sterility often appears to arise earlier in the

speciation process than does hybrid inviability (Coyne, 1989; Wu and Davis, 1993; Ortı́z-

Barrientos et al., 2006; Presgraves, 2010a).

In addition to the possibility of more prevalent positive selection on genes with sex-limited

expression, they may also experience weaker purifying selection (Dapper and Wade, 2016). Weaker

purifying selection means greater accumulation of divergence between species. This weaker efficacy

of selection arises because half of the individuals in the population, one sex or the other, do not

express the gene and so mask the effects of new detrimental mutations. This logic applies to both

sex-limited gene expression for adult traits, as well as for maternally provisioned transcripts deliv-

ered to eggs (Demuth and Wade, 2007; Dapper and Wade, 2016). Rapid evolution of maternal-

provisioning genes may lead to incompatibilities when they interact with zygotically-expressed genes

in inter-species hybrids, potentially elevating the incidence of mid-embryonic hybrid dysfunction

independently of any temporal changes in genetic network modularity or robustness. Genetic incom-

patibilities involving uniparentally inherited genetic factors also may lead to predictable asymmetries

in reproductive isolation between species pairs (Turelli and Moyle, 2007), including roles for genes

encoded on sex chromosomes and mitochondrial genomes (Bolnick et al., 2008; Barreto et al.,

2018; Cutter, 2018).

Toward predictable rules in the evolution of development in speciation
To decipher how predictable molecular evolution and post-zygotic reproductive isolation might be,

it is important to consider the ontogenetic context of organisms to identify trends in the tempo of

gene expression, cell division, and differentiation (Table 1). The kind, number, and molecular evolu-

tionary implications of genetic interactions also likely are sensitive to classes of embryogenesis pro-

grams (e.g., syncytial with late cellularization as in Drosophila and other insects, totipotent versus

highly cell-autonomous cell lineage development as in C. elegans, nourishment by minimal vs very

large yolk vs maternal tissues as seen in many insects, birds, and mammals) (Church et al., 2019).

While here we emphasize animal systems, similar consideration of the evolutionary genetics of devel-

opment and speciation for plant systems may also reveal valuable insights (Rieseberg and Black-

man, 2010; Bedinger et al., 2011; Baack et al., 2015). Here, we distill in abbreviated form what is

known for a few concrete motivating example systems (Caenorhabditis nematodes, Drosophila

insects, Bufo toads) to frame these issues about how ontogenetic features link to molecular evolution

and hybrid dysfunction. Surprisingly, few broad conclusions can be drawn from even these well-stud-

ied systems, and general principles await concerted research efforts. Nevertheless, these study sys-

tems present clear promise for future research to disentangle the constellation of causal

contributing factors that link microevolutionary mechanisms to developmental programs and macro-

evolutionary patterns.

C. elegans ontogenetic profiles of gene expression, molecular
evolution, and hybrid dysfunction
Taking C. elegans development as a point of reference, embryonic cell numbers grow approximately

exponentially until ~520 cells upon which cell count increases relatively slowly to the 959 somatic

and ~2000 germline cells that comprise the adult hermaphrodite animal (Giurumescu et al.,

2012; Figure 2A). Cell lineages derived from five blastomeres exhibit distinct transcriptome profiles

in ontogenetic timecourses (Hashimshony et al., 2015), with single-cell transcriptome sequencing of
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embryos in a time series showing even finer resolution (Packer et al., 2019). The number of genes

expressed increases over most of embryogenesis, with relatively similar numbers of genes expressed

at stages post-hatching (Boeck et al., 2016; Figure 2B). The change in identity of expressed genes,

however, is greatest early in embryogenesis (primarily due to down-regulation) and late in embryo-

genesis (primarily due to up-regulation) (Boeck et al., 2016; Figure 2C). Gene connectivity peaks in

early embryogenesis, declining until a spike in adulthood (Liu and Robinson-Rechavi, 2018a). Cellu-

lar development in embryos is conserved across species, being nearly indistinguishable at least to

the 350-cell stage (Zhao et al., 2008; Memar et al., 2019). In hybrid crosses of most species pairs,

however, embryos arrest around gastrulation (Baird and Yen, 2000; Baird and Seibert, 2013), near

the time that expression divergence appears minimized across Caenorhabditis (Levin et al., 2012)

and that expression-weighted coding sequence divergence is lowest (Cutter et al., 2019). Coding

sequences with fastest molecular evolution show peak expression very early in embryogenesis or

toward adulthood (Cutter and Ward, 2005; Cutter et al., 2019; Box 3). Hybrids of C. briggsae and

C. nigoni show high embryonic inviability, but those genetically identical individuals that hatch suc-

cessfully exhibit little larval mortality (Bundus et al., 2015). Gene misexpression is widespread in

adults of both sexes for these hybrids (Sanchez-Ramirez et al., 2020) and misregulation of small-

RNAs in hybrid genetic backgrounds is implicated in spermatogenic dysfunction (Li et al., 2016).

Together, these observations suggest the possibility that developmental system drift may accrue

more readily and generate hybrid incompatibility disproportionately at stages showing greatest

selective constraint on gene expression levels and coding sequences.

Drosophila divergence in sequences and transcriptomes over ontogeny
Coding sequences expressed across D. melanogaster development show slowest evolution in mid-

to late-embryogenesis (Davis et al., 2005; Coronado-Zamora et al., 2019). The faster sequence

evolution of maternally deposited transcripts in early embryogenesis is due disproportionately to

non-adaptive divergence whereas it is adaptive divergence that is disproportionately implicated in

faster sequence evolution of genes expressed post-embryonically (Coronado-Zamora et al., 2019;

Figure 2E). Gene connectivity similarly shows a peak in early embryogenesis and in adulthood

(Liu and Robinson-Rechavi, 2018a). Transcriptome divergence across species, however, is low

throughout most of embryogenesis and highest after reproductive maturity; within embryogenesis,

however, expression divergence is greatest at the earliest stages (Kalinka et al., 2010; Liu and Rob-

inson-Rechavi, 2018a). Sterility tends to arise before inviability in hybrids of a given phylogenetic

distance in Drosophila (Coyne and Orr, 1997), and hybrid misexpression among spermatogenesis

genes is much more pronounced in adults than in late-stage larvae (Moehring et al., 2007). Genes

with greater tissue-specificity show faster coding sequence evolution (Larracuente et al., 2008).

Hybrid misexpression less often involves genes implicated in transcriptional regulation than

expected (Moehring et al., 2007), and defects of chromosome condensation in mitosis, nucleopor-

ins, and transcriptional regulators of selfish elements have been implicated in the inviability of hybrid

larvae (Orr et al., 1997; Barbash et al., 2003; Tang and Presgraves, 2009; Satyaki et al., 2014). It

will be interesting for future work to assess whether those embryonic stages that show greatest con-

servation in expression and coding sequence evolution might show disproportionate hybrid dysfunc-

tion, as hinted from experiments in Caenorhabditis. The syncytial nature of Drosophila embryos

through the ~6000 cell stage, however, may lead to distinct genetic network architecture and

expectations in the timing of selective pressures on gene products deposited maternally versus

expressed zygotically across embryogenesis.

Bufo ontogenetic profiles of hybrid dysfunction
The developmental timing of hybrid inviability in frogs and toads enjoys much richer literature than

for many other systems. Hybrid developmental data exist for several genera, including Hyla (Fou-

quette, 1960; Mecham, 1960; Mecham, 1965; Kuramoto, 1984; Kawamura et al., 1990), Pseu-

dacris (Mecham, 1965), Rana (Kuramoto, 1974; Frost and Platz, 1983; Sumida et al., 2003), and

most notably Bufo (Blair, 1972; Malone and Fontenot, 2008). The developmental stages of hybrid

inviability are described for over 600 inter-species Bufo cross combinations, with late-stage hybrid

dysfunction being most prevalent for species pairs that are less genetically divergent (Figure 2). By

contrast, genome and transcriptome information is rare, due to the large genome sizes of most frogs
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and toads. One key exception among anurans is for the model species Xenopus laevis and X. tropi-

calis: comparative transcriptome analysis across their embryonic development showed changes in

expression profiles of many genes despite a background of conservation in expression for most

genes (Yanai et al., 2011). Interestingly, earlier stages of embryogenesis showed greater divergence

in gene expression (Figure 2). Post-embryonic development was not analyzed, however, making it

unclear what profile of gene expression divergence describes all of ontogeny. It will be valuable in

future work to link directly the ontogeny of hybrid dysfunction to the degree of divergence in tran-

scriptomes and sequences for genes expressed differentially across development.

Conclusions
A general understanding of genetic mechanisms in the speciation process integrates the ontoge-

netic timing of gene expression and gene action in developmental programs. Predictable ontoge-

netic trends in the molecular evolution of proteins and their regulation will introduce predictability

into how genetic networks diverge and how Dobzhansky-Muller incompatibilities manifest dysfunc-

tional phenotypes in hybrids. In this underexploited way, the genetics of post-zygotic isolation in the

speciation process dovetails with research programs in evolutionary developmental genetics. The

diversity of theoretical perspectives that contribute predictions to ontogenetic patterns of molecular

evolution are, however, at best, incompletely integrated with conceptions about genetic architec-

tures (pleiotropy, modularity, robustness). We still have only a rudimentary understanding of how

the genetic clockwork might set the ontogenetic timing of this developmental alarm clock in the

dawn of new species. Consequently, it is a challenge to extract consensus on patterns and predic-

tions about sequence evolution and DMI incidence over the course of ontogeny.

Key features of an ontogenetic view of molecular evolution include the pleiotropic roles of genes

and the pleiotropic effects of genetic perturbation, as well as the dynamism of genetic network

modularity over development, to influence the evolvability of genes and the robustness of pheno-

typic outputs. A growing body of empirical literature is documenting the dynamics of gene expres-

sion and molecular evolution over developmental time. What is missing in the nascent state of the

field is an integrated set of theoretical expectations for how these features can produce emergent

trends of genome evolution and of dysfunctional genetic networks in the divergent set of genomes

of hybrid individuals. Empirical tests of existing theoretical predictions, from models that focus pri-

marily on only a subset of ontogeny, will benefit from exploring the relative influence of adaptive

molecular evolution and purifying selection on genes that vary in expression over all ontogeny.

Answering the neglected question – ‘Are certain developmental processes especially likely to be dis-

rupted in hybrids?’ – offers the promise to identify new rules of speciation as well as rules in the

molecular evolution of development.
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