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Abstract. In airway smooth muscle, the intracellular basal 
Ca2+ concentration [b(Ca2+)i] must be tightly regulated by 
several mechanisms in order to maintain a proper airway 
patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic 
reticulum Ca2+‑ATPase 2b, plasma membrane Ca2+‑ATPase 
1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ 
channels, including the L‑type voltage dependent Ca2+ channel 
(L‑VDCC), T‑type voltage dependent Ca2+ channel (T‑VDCC) 
and transient receptor potential canonical 3 (TRPC3), appear 
to be constitutively active under basal conditions via the action 
of different signaling pathways, and are responsible for Ca2+ 
influx to maintain b[Ca2+]i. The two types of voltage‑dependent 
Ca2+ channels (L‑ and T‑type) are modulated by phosphoryla-
tion processes mediated by mitogen‑activated protein kinase 
kinase (MEK) and extracellular‑signal‑regulated kinase 1 and 2 
(ERK1/2). The MEK/ERK signaling pathway can be activated 
by G‑protein‑coupled receptors through the αq subunit when 
the endogenous ligand (i.e., acetylcholine, histamine, leukot-
rienes, etc.) is present under basal conditions. It may also be 
stimulated when receptor tyrosine kinases are occupied by the 
appropriate ligand (cytokines, growth factors, etc.). ERK1/2 
phosphorylates L‑VDCC on Ser496 of the β2 subunit and Ser1928 
of the α1 subunit, decreasing or increasing the channel activity, 
respectively, and enabling it to switch between an open and 
closed state. T‑VDCC is also probably phosphorylated by 

ERK1/2, although further research is required to identify the 
phosphorylation sites. TRPC3 is directly activated by diacylg-
lycerol produced by phospholipase C (PLCβ or γ). Constitutive 
inositol 1,4,5‑trisphosphate production induces the release 
of Ca2+ from the sarcoplasmic reticulum through inositol 
triphosphate receptor 1. This ion induces Ca2+‑induced Ca2+ 
release through the ryanodine receptor 2 (designated as Ca2+ 
‘sparks’). Therefore, several Ca2+ handling mechanisms are 
finely tuned to regulate basal intracellular Ca2+ concentrations. 
It is conceivable that alterations in any of these processes 
may render airway smooth muscle susceptible to develop 
hyperresponsiveness that is observed in ailments such as 
asthma.
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1. Introduction

In unstimulated tissues, numerous cellular mechanisms 
contribute to the influx and efflux of Ca2+ to and from the 
cytoplasm in order to maintain homeostasis of intracellular 
basal Ca2+ concentrations [b(Ca2+)i], a phenomenon that occurs 
in almost all cells (1‑7). In smooth muscle at rest, b[Ca2+]i must 
be kept tightly within the range of 100 and 150 nM (8‑15) 
to maintain an equilibrium between contraction and relax-
ation. In these cells, the processes of Ca2+ influx and efflux 
preserve the myogenic tone, resting membrane potential 
and sarcoplasmic reticulum (SR) Ca2+ refilling (1,10,16‑18). 
It has been proposed that the influx process involves entry 
of extracellular Ca2+ through L‑type voltage dependent 
Ca2+ channels (L‑VDCCs)  (10,19‑22), receptor‑operated 
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Ca2+ channels (ROCCs) activated by agonists  (23‑28) and 
store‑operated Ca2+ channels (SOCCs, capacitative Ca2+ entry) 
activated by SR‑Ca2+ depletion  (10,29‑33). An additional 
cytosolic Ca2+ source is the SR, that is the main intracellular 
Ca2+ store, activated via inositol 1,4,5‑trisphosphate (IP3) 
receptor channels (30,34‑36) and ryanodine‑receptor (RyR) 
channels  (35,37‑40). Ca2+ extrusion from the cytoplasm is 
accomplished via the action of membrane and sarcoplasmic 
Ca2+ ATPases and Na+/Ca2+ exchanger (NCX) in its forward 
mode (41‑49).

Pivotal work on basal Ca2+ influx performed in aortic 
vascular smooth muscle cells using a pharmacological 
approach, demonstrated two predominant mechanisms of 
basal Ca2+ entry: One associated with L‑VDCCs, accounting 
for ~23‑43% of the total Ca2+ entry, and another associated 
with SOCCs, which contributed ~30% of the total (50).

In a recent study on airway smooth muscle (ASM), the 
present authors observed that the basal Ca2+ entry was medi-
ated by L‑VDCCs and probably also a constitutively active 
transient receptor potential canonical 3 (TRPC3) channel (18), 
which is described below. However, the mechanisms that 
maintain their permeability to Ca2+ have yet to be elucidated.

In the present review, current knowledge regarding 
different structures that maintain the b[Ca2+]i in ASM, including 
those involving L‑ and T‑VDCCs, TRPC3, membrane and 
sarcoplasmic Ca2+‑ATPases, NCX in its forward mode, IP3 
and RyRs, is discussed, including the most recent findings 
associated with the phosphorylation of L‑ and T‑VDCCs and 
the dependence of TRPC3 on diacylglycerol (DAG). 

For a better understanding of the participation of each of 
these proteins in the b[Ca2+]i regulation of ASM, novel unpub-
lished data from studies by our group have been included. 
Firstly, Fig. 1A shows the maximal reduction of intracellular 
Ca2+ concentration ([Ca2+]i) produced under Ca2+ free medium. 
This maneuver allowed determination of the proportional 
effect of each protein in the handling of b[Ca2+]i.

2. VDCCs

L‑ and T‑VDCCs have been described in different types of 
smooth muscle (19,51,52); in particular, L‑VDCC expression 
has been abundantly reported in the ASM of different species, 
including human  (20,21,53‑56). Opening of both types of 
channel is dependent on membrane depolarization, allowing 
the entry of Ca2+

, which subsequently contributes to contraction 
and SR Ca2+ refilling (9,10,19,20,57).

Several subunits for L‑VDCC have been described: 
CaV1.1, CaV1.2, CaV1.3 and CaV1.4  (58). In ASM, L‑VDCC 
had generally been characterized by pharmacological and 
electrophysiological methods (19). However, the presence of 
all the subunits of this channel was recently reported in rat 
bronchial smooth muscle (59). Nevertheless, in bovine and 
guinea‑pig tracheal myocytes, only CaV1.2 and CaV1.2‑CaV1.3, 
respectively, were observed (21,60). As identified recently by 
the present authors and shown in Fig. 1B and E, in guinea‑pig 
ASM, D‑600 (methoxyverapamil hydrochloride), a blocker of 
L‑VDCC, significantly decreased the b[Ca2+]i, corroborating 
that this channel is constitutively active and contributes towards 
maintaining the b[Ca2+]i (18). It is well known that this channel 
is greatly dependent on the membrane voltage, and in canine 

ASM our group observed that its membrane potential at rest is 
approximately‑59 mV, and is held steady. Furthermore, when 
the tissue was stimulated with carbachol, a cholinergic agonist, 
its membrane was depolarized, and when the depolarization 
reached‑45 mV, it started oscillating (20). These oscillations 
are nifedipine‑sensitive, and therefore corresponded to the 
opening and closing of the L‑VDCC (61). Since the membrane 
potential at rest is unchanging, it was highly improbable that 
the voltage was influencing its opening at this stage. 

Recently, a study in rat cardiomyocytes demonstrated that 
extracellular signal‑regulated kinases 1 and 2 (ERK1/2), the 
mitogen‑activated protein kinases (MAPKs), are able to phos-
phorylate L‑VDCC at two sites: On Ser496 of the β2 subunit 
and Ser1928 of the α1 subunit. Phosphorylation on the β2 subunit 
or the α1 subunit decreased or increased the L‑VDCC activity, 
respectively (62). Thus, it may be hypothesized that in ASM, 
MAPK kinase (MEK)‑ERK1/2 signaling may be involved in 
the continual opening and closing of the channel under basal 
conditions. This pathway may be associated with receptor 
tyrosine kinases (RTKs), which are activated by basal cyto-
kines or growth factors. Our group previously demonstrated 
that ERK1/2 are present in the phosphorylated state in unstim-
ulated bovine ASM (9). Fig. 1D and E show that the addition 
of U‑0126, an inhibitor of ERK1/2, to guinea‑pig tracheal 
myocytes significantly diminished the b[Ca2+]i until reaching 
a plateau. The addition of D‑600 did not further modify the 
[Ca2+]i, confirming that phosphorylation of the L‑VDCC 
through the MEK‑ERK1/2 pathway is possibly involved in 
its constitutive active mode. Therefore, the ERK1/2 signaling 
pathway may be responsible for phosphorylating the β2 Ser496 
and α1 Ser1928 sites, serving to switch the L‑VDCC between an 
open and closed state (Fig. 1F). 

Treatment with mibefradil, a T‑VDCC blocker, also signifi-
cantly lowered b[Ca2+]i in the guinea‑pig tracheal myocytes, 
implying the participation of this channel in sustaining 
b[Ca2+]i (Fig. 1C and E). The presence of T‑VDCC has been 
reported in this tissue  (19), and the expression of CaV3.1, 
CaV3.2 and CaV3.3 subunits has been detected in ASM by 
immunohistochemistry  (63). In this context, unexpectedly 
our group found that the addition of mibefradil following 
U‑0126 did not further diminish b[Ca2+]i (Fig.  1D). This 
finding suggested that T‑VDCC could also be regulated by the 
ERK1/2 signaling pathway. Recent studies have shown that 
T‑VDCC may be modified by several serine/threonine protein 
kinase pathways, suggesting that this channel is susceptible 
to undergo phosphorylation (64); however, further research is 
required in this regard to determine the functional impact that 
ERK1/2 signaling has on the T‑VDCC. Notably, in sensitized 
guinea‑pigs that developed an airway inflammatory state, 
the expression level of L‑VDCC was not modified (60). This 
finding indicated that these channels appear not to participate 
in the modification of b[Ca2+]i that is observed in inflammatory 
ailments, such as asthma (65).

3. TRPC channels

In smooth muscle, TRPC channel genes code for ROCC and 
SOCC, which have an important role in intracellular Ca2+ 
homeostasis, while recently transient receptor potential vanil-
loid 1 (TRPV1) was revealed to be involved in the modulation of 
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ASM tone and Ca2+ handling during agonist‑induced contrac-
tion (66). In general, due to their ionic permeability, all TRPC 
channels are considered to be non‑selective cation channels 
(NSCCs) (67,68). Thus far, all known TRPC channel activity 
has been shown to be associated with a phospholipase C (PLC) 
signaling pathway (69,70). In this context, it has been proposed 
that certain TRPC channels, including TRPC1, ‑2 and ‑3, 
are dependent on SR‑Ca2+ depletion due to IP3 production [a 
process termed store‑operated Ca2+ entry (SOCE)] (36,71‑75). 
On the other hand, ROCCs also include TRPC channels 
(TRPC3, ‑4, ‑5, ‑6 and 7), although these are activated by DAG, 
the other metabolite of PLC activity, and are independent of 
SR‑Ca2+ depletion (69,70,76). In this context, only TRPCs 3, 
6 and 7 are directly activated by DAG not involving protein 
kinase C (69,76), whereas TRPCs 4 and 5 are inhibited by 
protein kinase C, since their activity may be observed when 
this kinase is blocked (70).

In ASM, previous studies have reported the presence of 
almost all TRPC channel subtypes (TRPC1, ‑2, ‑3, ‑4, ‑5 and ‑6), 
with the exception of TRPC7 (67,68). Several TRPC chan-
nels have been shown to be constitutively active in different 

types of tissue. For example, TRPC1 and ‑4 were proposed 
to be continuously active in C57 mice skeletal myocytes (77); 
likewise, TRPC7 in human embryonic kidney cells (76), while 
TRPC3 was also observed to be constitutively active in rabbit 
ear artery and mouse airway myocytes (78,79). In this regard, 
our recent study demonstrated that, in guinea‑pig ASM, this 
channel was also involved in maintaining the b[Ca2+]i and 
preserving smooth muscle basal tone (18). The role of this 
channel in b[Ca2+]i is illustrated in Fig. 2, where the addi-
tion of 2‑aminoethoxydiphenyl borate (2‑APB), a blocker of 
the TRPC3 channel (80), markedly diminished the b[Ca2+]i 
(Fig. 2A and E). Furthermore, Pyr3, another specific TRPC3 
channel blocker (81), also lowered b[Ca2+]i by a similar extent 

(Fig. 2B and E). These results suggested that TRPC3 is consti-
tutively active in guinea‑pig ASM, even though the mechanism 
underlying this phenomenon has yet to be fully elucidated. 

Since almost all TRPC channel subtypes are expressed in 
ASM, in this review the DAG analog, 1‑oleoyl‑2‑acetyl‑sn‑glic-
erol (OAG), was used to investigate the possible functional 
role of the channels present in this tissue. Fig. 2C shows that 
the addition of OAG to tracheal myocytes induced a transient 

Figure 1. In guinea‑pig airway myocytes at rest, L‑VDCC and T‑VDCC contribute towards maintaining the b[Ca2+]i, and apparently are phosphorylated through 
the MEK‑ERK1/2 pathway. Upper traces are representative of the intracellular Ca2+ measurements through fura‑2AM in the different experimental protocols. 
(A) Representative trace showing the amplitude of the reduction in the b[Ca2+]i in the absence of extracellular Ca2+. The addition of (B) D‑600 (an L‑VDCC 
blocker; n=12) or (C) Mibef (a T‑VDCC blocker; n=13) significantly lowered the b[Ca2+]i to differing extents. (D) Blockade of MEK‑ERK1/2 kinase with 
U‑0126 (n=12) markedly diminished the b[Ca2+]i and the administration of D‑600 or Mibef did not lead to any further decreases in the altered [Ca2+]i (n=6). 
(E) Bar graph depicting the statistical analysis of the different experimental protocols. Each bar represents the mean ± standard error of the mean. **P<0.01 
when compared with their respective b[Ca2+]i values; †P<0.05, ††P<0.01 with respect to the Mibef group (according to the Student‑Newman‑Keuls multiple 
comparison test). (F) Schematic representation of regulation of the basal activity of the VDCCs. The MEK signaling pathway through ERK1/2 phosphorylates 
the β2 Ser496 (pS496) and α1 Ser1928 (pS1928) sites, switching the L‑VDCC and probably also the T‑VDCC between an open and closed state. D‑600, Mibef or 
U‑0126 diminished the b[Ca2+]i, (for further details, see the ‘VDCCs’ section). These results suggest that, under basal conditions, the two types of VDCC are 
continuously phosphorylated through the MEK pathway, which is responsible for their constitutive activity. L‑VDCC, L‑type voltage‑dependent channel; 
T‑VDCC, T‑type voltage dependent Ca2+ channel; b[Ca2+]i, intracellular basal Ca2+ concentration; MEK, mitogen‑activated protein kinase kinase; ERK1/2, 
extracellular‑signal‑regulated kinase 1/2; Mibef, mibefradil; KS, Krebs' solution.
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peak in the [Ca2+]i followed by a plateau. This response could 
have been developed through TRPC3 and/or TRPC6 channels, 
since these are both directly activated by DAG (69). However, 
after having reached the Ca2+ plateau induced by OAG, the 
addition of Pyr3 led to a return of [Ca2+]i to its basal level. This 
finding indicated that the predominant TRPC channel that is 
functionally active in guinea‑pig ASM, is TRPC3. Our group 
has postulated that TRPC3 is one of the channels involved in 
the maintenance of b[Ca2+]i (18), probably in a DAG‑dependent 
manner. This lipid molecule is produced via the PLC or phos-
pholipase D (PLD) pathways. It has been reported in rabbit 
ear artery myocytes that the PLD pathway produces DAG to 
sustain the constitutive activity of TRPC3 that contributes 
to the resting membrane potential (78,82). In ASM, protein 
kinase A was reported to regulate PLD activity, and it has 
been postulated that this phospholipase may be involved 
in the molecular mechanism underlying cyclic adenosine 
5'‑phosphate (c‑AMP)‑mediated relaxation in this tissue (83). 
By contrast, PLC has been shown to be predominantly 
involved in the IP3‑Ca2+ signaling pathway and in contrac-
tion (35). Therefore, in this review, we investigated if PLC 

may participate in DAG production in ASM at rest by using 
tricyclodecan‑9‑yl xanthogenate (D‑609, a relatively specific 
inhibitor of PLC) (84) to inhibit this enzyme activity. It was 
observed that the addition of Pyr3 following D‑609 to tracheal 
myocytes did not result in any further notable perturbations of 
the b[Ca2+]i (Fig. 2D). Thus, these results suggested that PLC 
generates DAG, which subsequently leads to the activation of 
TRPC3 under basal conditions in order to maintain b[Ca2+]i in 
ASM (Fig. 2F). Conceivably, the activity of PLC may be regu-
lated by endogenous ligands of RTKs, or by G‑protein‑coupled 
receptors. 

It has been demonstrated that the expression levels and 
activity of the TRPC3 channel are greatly augmented in ASM 
cells obtained from sensitized mice (79). This may lead to 
an increase in the b[Ca2+]i, which could contribute to airway 
hyperresponsiveness in asthma.

The TRPV receptors, which are other members of the TRP 
family, have been implicated in mechanical stretch‑induced 
Ca2+ influx in human ASM (85). In this context, TRPV1 is 
expressed in these cells, and was shown to be involved in Ca2+ 
oscillations and the maintenance of contraction by cholinergic 

Figure 2. Membrane TRPC3 channel also contributes to b[Ca2+]i in guinea‑pig airway smooth muscle. The upper traces shown are representative of the different 
experimental protocols. The addition of (A) 2‑APB (a blocker of TRPC3; n=5) or (B) Pyr3 (a specific TRPC3 blocker; n=5) lowered the b[Ca2+]i. (C) The 
addition of OAG, a DAG analog, induced a transient peak of the [Ca2+]i, followed by a plateau. The application of Pyr3 to the Ca2+ plateau returned Ca2+ to its 
basal level, indicating that the main TRPC channel functionally active in airway smooth muscle at rest is TRPC3. (D) Incubation with D‑609, an inhibitor of 
PLC, produced a small incremental increase in the [Ca2+]i, and the addition of Pyr3 no longer diminished the b[Ca2+]i. (E) Bar graph illustrating that the effects 
elicited by 2‑APB and Pyr3 on b[Ca2+]i are similar. Each bar represents the mean ± standard error of the mean. **P<0.01 compared with the respective b[Ca2+]i 
value. (F) Schematic representation of the basal activity regulation of the TRPC3 channel. The results suggest that, under basal conditions, TRPC3 may oscil-
late between an open and closed state in the plasma membrane, i.e., these channels are constitutively active in this tissue, and are regulated by PLC through 
DAG. See the ‘Transient receptor potential canonical channels’ section for further details. PIP2, phosphatidylinositol 4,5‑bisphosphate; TRPC3, transient 
receptor potential canonical‑3; 2‑APB, 2‑aminoethoxydiphenyl borate; OAG, 1‑oleoyl‑2‑acetyl‑sn‑glycerol; DAG, diacylglycerol; PLC, phospholipase C. 



INTERNATIONAL JOURNAL OF MOlecular medicine  42:  2998-3008,  20183002

agonists (66). However, any role in terms of maintaining the 
b[Ca2+]i has not yet been elucidated, and this requires further 
research. 

4. Capacitative Ca2+ entry

SR‑Ca2+ depletion mediated by IP3 induces the established 
mechanism of capacitative Ca2+ entry. The first studies on 
this were performed by Putney (31) in non‑excitable cells. 
Capacitative Ca2+ entry also occurs in smooth muscle via Ca2+ 
influx through diverse membrane channels (32,86). One of 
these Ca2+ influx mechanisms involves two types of protein 
associated with the SOCE pathway: Stromal interaction 
molecules (STIMs) and Orai proteins (87,88), both of which 
have been characterized in vascular smooth muscle and 
ASM (89,90). Orai are plasma membrane proteins, and three 
isoforms from different genes have been characterized: Orai1, 
‑2 and ‑3 (91). On the other hand, two homologs of STIM have 
been identified: STIM1 and STIM2, both of which are located 
in the SR membrane (88,92,93). Regarding the two protein 
groups, Orai1 and STIM1 are the proteins that are chiefly 
expressed in ASM, and are responsible for the capacitative 
Ca2+ entry (89,94). Briefly, STIM1 on the SR functions as a 
Ca2+ sensor, monitoring the organelle's Ca2+ content (95). When 
the SR‑Ca2+ store is depleted, STIM1 forms an aggregate with 
other STIM1 molecules, thereby forming structures desig-
nated as ‘puncta’, which interact with Orai1 plasma membrane 
proteins to promote capacitative Ca2+ entry (89). Additionally, 
in several cell types it has been postulated that STIM/Orai 
may interact with TRPC channels, thereby establishing an 
alternative mechanism for capacitative Ca2+ entry  (89,96). 
It is noteworthy that, in ASM, IP3 has been demonstrated to 
directly open membranal TRPC3 channels. This recent finding 
implies that IP3 mediates SR‑Ca2+ depletion (i.e., capacitative 
Ca2+ entry) and also a direct, independent Ca2+ influx by 
TRPC channels (36). In this context, in one of our previous 
studies, we demonstrated that, in unstimulated airway 
myocytes, capacitative Ca2+ entry was not activated unless 
the SR Ca2+ content fell below 50% (8). However, it is well 
known that capacitative Ca2+ entry is activated by contractile 
agonists that act through the PLCβ‑IP3 signaling cascade (32), 
therefore providing no certainty that it does contribute to the 
maintenance of b[Ca2+]i.

5. Na+/Ca2+ exchanger

The Na+/Ca2+ exchanger (NCX) is a membrane Ca2+‑handling 
protein that introduces three Na+ ions to the cytoplasm, while 
extruding one Ca2+ when in its forward mode. By contrast, 
in its reverse mode, it introduces Ca2+ and extrudes Na+ (42). 
To activate the reverse mode (NCXREV), the entry of Na+ 
through an NSCC, and probably L‑VDCC in proximity to 
the NCX, is required (21,41,48,97). The NCX is encoded by 
three gene isoforms, which generate NCX1, ‑2 and ‑3 (98‑100). 
NCX1, extensively distributed in mammalian cells, has 17 
different splicing variants that are tissue‑specific and define 
the exchanger's ionic sensitivity and regulation (101). NCX2 
has no splicing variants and is located predominantly in the 
brain, spinal cord, gastrointestinal and kidney tissues, whereas 
NCX3 has five splice variants expressed in brain and skeletal 

muscle (101). In ASM, the NCX1.3 splicing variant is the main 
isoform present (102).

In airway myocytes, it has been proposed that NCX 
participates in the physiology of [Ca2+]i, including SR‑Ca2+ 
refilling (10,57), although it has been given a minor role in 
Ca2+ homeostasis (43). In this context, we have observed that 
NCX blockade with amiloride, a blocker of both the forward 
and reverse NCX modes, or KB‑R7943, a blocker of NCXREV, 
had no noticeable effect on b[Ca2+]i, indicating a minor role 
of this protein in terms of b[Ca2+]i regulation (unpublished 
data). Nevertheless, its participation in Ca2+ regulation, 
accomplished mainly through NCXREV, becomes evident when 
b[Ca2+]i is increased and acquires a new steady‑state (Fig. 3A). 
In this context, in a murine chronic model of allergen‑induced 
airway hyperresponsiveness, it was shown that the levels of 
NCX1 were significantly augmented, and that NCXREV activity 
was increased (103). Furthermore, in human myocytes, the 
addition of pro‑inflammatory cytokines, including tumor 
necrosis factor‑α (TNFα) and interleukin (IL)‑13, also 
increased the expression of NCX1 and favored NCXREV 
activity (104). These findings suggested that, during inflam-
mation, NCXREV could significantly contribute to an increase 
in the b[Ca2+]i, which would predispose airway smooth muscle 
to hyperresponsiveness.

6. Ca2+‑ATPases in ASM

Ca2+‑ATPases form part of a large family of membrane proteins 
defined as P‑type ATPases, including the plasmalemmal 
Ca2+‑ATPase (PMCA) and the SR Ca2+‑ATPase (SERCA, or 
sarco/endoplasmic reticulum Ca2+‑ATPase) (105). 

The PMCA extrudes Ca2+ against a high concentration 
gradient to contribute to b[Ca2+]i. It exists in a 1:1 relation-
ship with ATP, is electroneutral via H+/Ca2+ exchange, and 
its affinity for Ca2+ and transport efficiency is increased by 
calmodulin. PMCA1‑4 are the products of four different genes 
with several splice variants (105). PMCA1 and ‑4 are ubiqui-
tous, and have lower affinity for calmodulin, whereas PMCA2 
and PMCA3 have high calmodulin affinity (105,106).

In ASM, the primordial function of PMCA in Ca2+ 
homeostasis was demonstrated late in the 20th century (43). 
Shortly afterwards, the expression of this pump in canine ASM 
was reported (107). More recently, in rat bronchial myocytes, 
the presence of PMCA1 and PMCA4 was confirmed, and the 
participation of these two isoforms in Ca2+ homeostasis was 
demonstrated (108).

On the other hand, SERCA is, in part, electrogenic, since it 
introduces two Ca2+ ions to the SR, at the same time releasing 
at least four H+ ions to the cytoplasm (105). Additionally, it has 
been demonstrated that SERCA transports two Ca2+ ions for 
each hydrolyzed ATP molecule, and it appears to be the main 
system for controlling [Ca2+]i in muscular cells (105). 

SERCA pumps are produced by three genes: SERCA1, ‑2 
and ‑3. They are subjected to alternative splicing, resulting in the 
isoforms, SERCA1a‑b, SERCA2a‑c and SERCA3a‑f (105,109). 
In smooth muscle cells, the SERCA isoforms predominantly 
present are 2a and 2b (109), whereas in ASM, SERCA2b is the 
predominant isoform (110).

By measuring [Ca2+]i in the absence of extracellular Ca2+, 
the addition of thapsigargin, a SERCA blocker, to rat bronchial 
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myocytes produced a transient Ca2+ peak that returned to its 
basal value. At this point, lanthanum, a PMCA blocker, induced 
a sustained [Ca2+]i increment that promoted apoptosis (108), 
demonstrating the central functional role of the two pumps in 
Ca2+ handling in ASM. In this regard, it has been proposed 
that there is a functional coupling between PMCA and SERCA 
to maintain Ca2+ homeostasis (49). Under physiological condi-
tions (i.e., in the presence of extracellular Ca2+), we found in 
guinea‑pig tracheal myocytes that thapsigargin increased [Ca2+]i 
until a plateau was reached (Fig. 3A). It is well known that, 
in ASM, this Ca2+ increment is due to capacitative Ca2+ entry 
(i.e., SOCE) predominantly via the TRPC3 channel, a process 
that also produces membrane depolarization due to the entry 
of Na+ (79,111), consequently leading to L‑VDCC opening and 
further Ca2+ and Na+ entry (10,18,21,36,79,112). At this stage, 
the NCX may change to its reverse mode (i.e., NCXREV) due to 
the Na+ entry, thereby becoming the main contributor towards 
sustaining the Ca2+ plateau due to SERCA blockade. This 
proposition was corroborated using an NCXREV‑mode blocker, 
KB‑R7943, which brought [Ca2+]i to a new basal Ca2+ steady 
state (Fig. 3A) that was maintained by the PMCA activity. At 
this point, the addition of lanthanum, a non‑specific PMCA 
blocker, led to a marked increase in [Ca2+]i, probably inducing 
cellular apoptosis, as was suggested by a previous study (108). 
Taken together, these results corroborated that, under physi-
ological conditions, SERCA and PMCA exert a primordial 
role in regulating [Ca2+]i homeostasis, whereas NCXREV only 
participates when b[Ca2+]i is modified and acquires a new 
steady state (Fig. 3A and B). 

Studies associated with the effects of pro‑inflammatory 
cytokines on the ASM SERCA have demonstrated that over-
night exposure of human airway myocytes to TNFα or IL‑13 
decreases the expression of SERCA that, in turn, diminishes the 
reuptake of SR‑Ca2+ (113). Notably, these authors also revealed 

that, unlike other species, e.g., in porcine airways (114), human 
ASM SERCA does not express phospholamban, but is directly 
phosphorylated by Ca2+/calmodulin‑dependent protein 
kinase II (113). Thus, it is possible that in an inflammatory 
process such as asthma, SR‑ATPase activity is decreased, 
which may lead to an increase in the b[Ca2+]i to a new steady 
state, favoring an augmented response to bronchoconstrictor 
agonists. The same phenomenon may also be occurring as 
far as the PMCA is concerned; however, further research is 
required in this field.

7. Ryanodine and IP3 receptors

RyR is a non‑selective cation channel that releases Ca2+ 
from the SR and, in mammals, its three isoforms, RyR1, 
‑2 and ‑3, are the products of different genes  (115). All 
three isoforms are expressed in smooth muscle, including 
ASM (115,116). Cyclic ADP‑ribose (cADPR) is considered 
to be their endogenous ligand in airway myocytes, which 
is regulated by the membrane‑bound protein, CD38 (117). 
This protein has ADP‑ribosyl cyclase and hydrolase activity, 
and is involved in the synthesis or degradation of cADPR, 
respectively (118,119).

The IP3 receptor (ITPR) is another non‑selective cation 
channel that releases Ca2+ from the SR via IP3 generated by 
the Gqα signaling pathway (35). It has three isoforms (ITPR1, 
‑2 and ‑3) derived from different genes, which share ~60‑80% 
amino acid homology (120,121). These receptors have also 
been identified in different smooth muscles types, including 
ASM (36,122‑124).

In 1993, Ca2+ ‘sparks’ were described in heart muscle (125), 
and these were associated with the Ca2+‑induced Ca2+ release 
from RyRs (126). In guinea‑pig tracheal myocytes, the presence 
of spontaneous Ca2+ sparks was observed for the first time in 

Figure 3. In guinea‑pig airway smooth muscle, SERCA and PMCA actively participate in maintaining the b[Ca2+]i (A) The blockade of SERCA with Thaps 
(n=6) increased the [Ca2+]i until a new basal steady state was reached due to capacitative Ca2+ entry involving L‑VDCC and SOCC. At this point, the NCX 
changes to its reverse mode, probably due to the entry of Na+ through SOCC and L‑VDCC, and thereby becomes the main contributor to sustaining the Ca2+ 
plateau since KB‑R7943 brought [Ca2+]i to a new basal steady state. The addition of lanthanum (La3+), a non‑specific PMCA blocker, led to large increase 
in [Ca2+]i, thus indicating that the former new Ca2+ basal state was maintained by PMCA activity. Note that all experimental protocols were performed in 
Ca2+‑containing Krebs solution, with the exception of the first 1.5 min at the beginning of the experiment. (B) Schematic representation of the roles of SERCA, 
PMCA, NCX and NCXREV in maintaining b[Ca2+]i. For further details, see the ‘Na+/Ca2+ exchanger’ and the ‘Ca2+‑ATPases in ASM’ sections. NCX, Na+/Ca2+ 
exchanger; SERCA, sarcoplasmic reticulum Ca2+‑ATPase; PMCA, plasmalemmal Ca2+‑ATPase; Thaps, thapsigargin; L‑VDCC, L‑type voltage‑dependent 
channel; SOCC, store‑operated Ca2+ channel. 
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1998 (127). Subsequently, in urinary bladder smooth muscle, 
these Ca2+ sparks were characterized as the elementary release 
of Ca2+ from RyRs (128), and this finding was later corrobo-
rated in mouse ASM, occurring predominantly through 
RyR2 (116,129). In this context, studies on the pulmonary 
artery revealed that Ca2+ sparks are activated by Ca2+ released 
via ITPR (130), as well as in ASM (129). The physiological 
role of these Ca2+ sparks in guinea‑pig tracheal myocytes 
was well established. Essentially, they produce spontaneous 
transient outward currents caused by large‑conductance 
Ca2+‑activated K+ channels; they also induce spontaneous tran-
sient inward currents accomplished through Ca2+‑activated 
Cl‑channels (127). Therefore, all these components may serve 
an important role in the basal state regulation of the ASM by 
stabilizing the membrane potential, the b[Ca2+]i and the basal 
contractile tone.

Interestingly, further lines of research have demonstrated 
that pro‑inflammatory cytokines (predominantly TNFα), 

promote the augmentation of CD38‑cADPR signaling and 
increase Ca2+ responses to agonists (117,131), a phenomenon 
that is probably mediated by an augmentation of b[Ca2+]i. 
Furthermore, TNFα also enhances Gqα protein expression, 
thereby increasing the ASM response to carbachol  (132). 
However, upregulation of the IP3‑Ca2+ signaling pathway and 
any consequent modification of the b[Ca2+]i in an inflammatory 
context, such as in asthma, has not readily been identified, and 
this requires further research.

8. Conclusion

The current review has discussed how several Ca2+ handling 
mechanisms are finely tuned to regulate the b[Ca2+]i, summa-
rized in Fig. 4. It is conceivable that alterations in any of these 
processes could render ASM susceptible to developing the 
type of hyperresponsiveness that is commonly observed in 
ailments such as asthma, and this warrants further study. 

Figure 4. Schematic representation of the mechanisms involved in the maintenance of b[Ca2+]i. Membranal Ca2+ channels, such as L‑VDCC, T‑VDCC and 
TRPC3, appear to be constitutively active under basal conditions through different signaling pathways. The two types of voltage‑dependent Ca2+ channel may 
be modulated by phosphorylation processes mediated by mitogen‑activated protein kinase ERK1/2 signaling. This signaling pathway can be activated by 
GPCRs through the αq subunit when the endogenous ligand is present under basal conditions (i.e., acetylcholine, histamine, leukotrienes, etc.). It may also be 
stimulated when RTKs are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L‑VDCC on Ser496 of the β2 subunit 
and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, enabling it to switch between an open and closed state. T‑VDCC is 
probably also phosphorylated by ERK1/2, but further research is needed to identify the phosphorylation sites (see Fig. 1D). TRPC3 is directly activated by 
DAG and IP3 arising from PLCβ or PLCγ, the first coupled to the αq subunit of GPCR, and the second to RTKs. Constitutive IP3 production induces SR‑Ca2+ 
release through ITPR1. This Ca2+ induces Ca2+‑induced Ca2+ release through the RyR2 (designated as Ca2+ ‘sparks’). Finally, [Ca2+]i is efficiently regulated 
by the SERCA2b and PMCA1 or PMCA4. L‑VDCC, L‑type voltage‑dependent channel; T‑VDCC, T‑type voltage dependent Ca2+ channel; TRPC3, transient 
receptor potential canonical‑3; ERK1/2, extracellular‑signal‑regulated kinase 1/2; GPCR, G‑protein‑coupled receptor; RTK, receptor tyrosine kinase; DAG, 
diacylglycerol; IP3, inositol 1,4,5‑trisphosphate; PLC, phospholipase C; SR, sarcoplasmic reticulum; ITPR, IP3 receptor; RyR, ryanodine receptor; SERCA, 
sarcoplasmic reticulum Ca2+‑ATPase; PMCA, plasmalemmal Ca2+‑ATPase.
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