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A B S T R A C T

In silicomethods for linking genomic space to chemical space have played a crucial role in genomics driven
discovery of new natural products as well as biosynthesis of altered natural products by engineering of
biosynthetic pathways. Here we give an overview of available computational tools and then briefly de-
scribe a novel computational framework, namely retro-biosynthetic enumeration of biosynthetic reactions,
which can add to the repertoire of computational tools available for connecting natural products to their
biosynthetic gene clusters. Most of the currently available bioinformatics tools for analysis of second-
ary metabolite biosynthetic gene clusters utilize the “Genes to Metabolites” approach. In contrast to the
“Genes to Metabolites” approach, the “Metabolites to Genes” or retro-biosynthetic approach would involve
enumerating the various biochemical transformations or enzymatic reactions which would generate the
given chemical moiety starting from a set of precursor molecules and identifying enzymatic domains
which can potentially catalyze the enumerated biochemical transformations. In this article, we first give
a brief overview of the presently available in silico tools and approaches for analysis of secondary me-
tabolite biosynthetic pathways. We also discuss our preliminary work on development of algorithms for
retro-biosynthetic enumeration of biochemical transformations to formulate a novel computational method
for identifying genes associated with biosynthesis of a given polyketide or nonribosomal peptide.
© 2016 The authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Polyketides and nonribosomal peptides are two major classes of
secondary metabolite natural products with enormous diversity in
chemical structures and bioactivities.1 Examples of pharmaceuti-
cally important polyketides and nonribosomal peptides are lovastatin
(a cholesterol-lowering agent),2 erythromycin (an antibiotic), FK506
(an immunosuppressant) and epothilone (anticancer compound).3

These secondary metabolites are biosynthesized by multifunc-
tionalmegasynthases like polyketide synthase (PKS) and nonribosomal
peptide synthetase (NRPS) using a thiotemplate mechanism. The
diverse and complex structures of polyketides and nonribosomal pep-
tides arise from assembly line synthesis by these megasynthases.
Details of the biosynthetic mechanism have been discussed in a

number of earlier reviews.4–8 Owing to their pharmaceutical and in-
dustrial importance, these natural products as well as their
biosynthetic mechanisms have been subject of particular interest and
extensive characterization.9 Unraveling the “biosynthetic code” of these
natural products has opened up the possibilities for identification of
novel natural products in various bacterial and fungal organisms and
also biosynthetic engineering of rationally designed secondary me-
tabolites for their use as drug molecules.10–13 The structural diversity
arising from combinatorial complexity of their biosynthesis is the
reason why these natural products are a great source of drugs. Un-
derstanding themechanisms of their biosynthesis and devising clever
strategies to tweak it can potentially yield fruitful results in the form
of economically important products.14 The extent of diversity of these
natural products has been vastly underestimated andwith newniches
of microorganisms being explored, the number of novel bioactiveme-
tabolites is likely to increase many folds.15,16 It has been anticipated
that novel drugs can be discovered by cultivating and characteriz-
ing microorganisms like actinobacteria.17 Therefore, these bacterial
strains could be the new unexplored sources of natural products.
In addition, the exponential growth of genome sequencing has
unveiled many bacteria containing putative natural product biosyn-
thetic gene clusters with unknown biosynthetic products.18,19
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Linking biosynthetic genes to secondarymetabolites and vice versa
can potentially help not only in characterization of new second-
ary metabolites, but also in redesigning known biosynthetic
pathways of secondary metabolites to produce novel compounds.4,20

The problem can in principle be solved using two approaches:
Forward (Genes toMetabolites) and Reverse/Retro-biosynthetic (Me-
tabolites to Genes) Approach21,22 (Fig. 1). In forward approach genomic
sequence information is used to predict the chemical structure of
the final metabolite. In contrast to forward approach which starts
by considering the genes or gene clusters and attempts to predict

its biosynthetic product, retro-biosynthetic approach starts from a
knownmetabolite and attempts to identify which gene cluster might
be biosynthesizing it.23,24 Even though traditionally identification
of natural products and their biosynthesis have been an area of in-
terest for microbiologists, organic chemists and biochemists,
elucidation of the catalytic machinery for biosynthesis of polyketides
and nonribosomal peptides by genome encoded PKS and NRPS clus-
ters has opened up the area of genomics driven discovery of new
natural products’ biosynthetic pathways.13,25,26 Bioinformatics has
played an important role in in silico identification of new secondary

Fig. 1. Two approaches for deciphering new biosynthetic pathways. (A) “Forward approach”, where information from genes is used to decipher the biological pathways.
“Retro-biosynthetic approach” is where a known product is linked to the genes. Some of the available methods belonging to either approach have been mentioned in boxes.
(B) Alternative approaches to connecting genes and metabolites. (Left Panel) Use of module organization in comparison of secondary metabolite gene clusters and predic-
tion of the secondary metabolite synthesized. (Right Panel) Retro-biosynthetic approach for prediction of the gene cluster responsible for biosynthesis of a particular secondary
metabolite.
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metabolites by genomemining and several pioneering studies have
been successful in experimental characterization of new metabo-
lites predicted by in silico analysis.20,27,28 However, majority of the
available computational methods for analysis of secondary me-
tabolite biosynthetic pathways utilize forward approach for linking
Genes to Metabolites, while automated computational tools for
linking secondary metabolites’ chemical structures to their biosyn-
thetic gene clusters are not available yet.

In this article, we first give a brief overview of the presently avail-
able in silico tools and approaches for analysis of secondary
metabolite biosynthetic pathways and identification of novel
secondary metabolites by genome mining. Most of the in silico ap-
proaches use evolutionary information on sequence/structural
features of individual catalytic domains of PKS or NRPS biosyn-
thetic pathways for genome mining of secondary metabolites and
for prediction of chemical structures of their putative products. We
also discuss the feasibility of devising a retro-biosynthetic ap-
proach to link orphan secondary metabolites to their biosynthetic
gene cluster. The retro-biosynthetic approach for linking “Metabo-
lites to Genes” involves enumerating the various biochemical
transformations or enzymatic reactions which would generate the
given secondary metabolite starting from a set of precursor mol-
ecules and identifying enzymatic domains which can potentially
catalyze the enumerated biochemical transformations.

2. Connecting PKS/NRPS gene clusters to their biosynthetic
product

Based on analysis of experimentally characterized PKS andNRPS
biosynthetic clusters, a numberof bioinformatics resourceshavebeen
developed as knowledge bases for domain organization and sub-
strate specificities of PKS and NRPS genes. These computational
resources can play an important role in genomic mining for novel
secondary metabolites and functional analysis of newly identified
gene clusters. Some of the major databases which have cataloged
very large number of experimentally characterized PKS and NRPS
clusterswith knownbiosynthetic products are ClusterMine360, IMG-
ABC andMIBiG. Apart from the sequence information and catalytic
domain organization, major utility of these databases is to obtain
the chemical structures of secondary metabolite products. Recent
version of ClusterMine36029 has information on approximately 290
gene clusters involved in biosynthesis of more than 200 polyketides
and nonribosomal peptides. In addition to sequence of genes, cata-
lytic domain organization and chemical structure of secondary
metabolite product, IMG-ABC30 has also cataloged information on
genomic locus for a large number of secondarymetabolite gene clus-
ters. TheMIBiG31 resourcehasbeendevelopedbya communitydriven
initiative to store secondary metabolite biosynthetic pathways fol-
lowing a minimum information standard and MIBiG-compliant
reannotation has been carried out for approximately 400 second-
arymetabolite biosynthetic gene clusters. Another exampleof auseful
database for secondarymetabolites is NORINE,32which has chemical
structures for 1168 nonribosomal peptides. Based on bioinformat-
ics analysis of experimentally characterized PKS and NRPS gene
clusters, a number of computational methods have been devel-
oped for connecting “genes tometabolites”. In viewof the remarkable
conservation of overall biosynthetic paradigm for polyketides and
nonribosomal peptides, these computational methods have essen-
tially used a knowledge based approach33,34 for deriving prediction
rules basedonexperimentally characterizedPKS andNRPSgene clus-
ters. The tools like NRPS-PKS,35 SBSPKS,36 ASMPKS/MAPSI,37

ClustScan,38NP.Searcher,39NRPSpredictor,40 PKS/NRPS41 andPKMiner42

permit semi-automatic identification and annotation of PKS, NRPS
or PKS-NRPS hybrid gene clusters. In addition to annotating the
domains of multi-domain PKS and NRPS, most of these tools also
predict the substrate specificity of adenylation and acyltransferase

(AT) domains. Apart from identification of different catalytic domains
of NRPS and PKS, SBSPKS can also model three dimensional struc-
tures of complete PKS modules and predict the order of substrate
channeling in case of PKS clusters consisting of multiple ORFs. Bio-
informatics tools have also been developed for analysis of specific
class of secondary metabolite gene clusters. SMURF43 allows iden-
tification of biosynthetic gene clusters in fungal genome, while
PKMiner42 helps in mining of type II PKS gene clusters. Bioinfor-
matics tools for analysis of secondarymetabolite biosynthetic genes
have also been developed for analysis of metagenomic data.
Metagenomic samples canbequickly scanned for novel natural prod-
ucts by using PCR primers specific for secondary metabolite
biosynthetic gene clusters.44 This PCR-based sequence tag ap-
proach has been coupledwith in silico phylogenomic tools to search
for putative secondary metabolites. eSNaPD has been specifically
developed to analyze largemetagenomic sequence tag datasets and
aid in the discovery of diverse secondarymetabolite gene clusters.45

Another bioinformatics tool which accepts sequence tags from
metagenomic datasets along with protein or genomic sequences is
NaPDoS.46 It uses phylogenomic information to search and classify
NRPS Adenylation and PKS Ketosynthase domains.

Majority of the toolsmentioned above identify the PKS andNRPS
catalytic domains, whereas NP.searcher can also indentify auxilia-
ry and tailoring domains in PKS and NRPS gene clusters. Based on
thepredicted substrate specificities of adenylationandacyltransferase
domains in NRPS and PKS clusters, NP.searcher appends mono-
mers to the growing chain of polyketide or nonribosomal peptide
and then the predicted chemical structure is furthermodified based
on all possible combinations of predicted tailoring and cyclization
steps. NP.searcher hence outputs chemical structures for a list of pu-
tative secondarymetabolites and focuses specially on nonribosomal
peptides.

Recently developed antiSMASH47 pipeline can identify the bio-
synthetic loci covering the whole range of known secondary
metabolite compound classes (polyketides, nonribosomal pep-
tides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles,
lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones,
siderophores, melanins and others). antiSMASH48 is also integrated
with tools like ClusterFinder49 which allows identification of puta-
tive secondary metabolite gene clusters encoding novel class of
secondarymetabolites. It uses thePFAMdomain50 definition to search
for enzymes involved in synthesis of secondary metabolites. It also
allows comparison of identified clusters with experimentally char-
acterized clusters using clusterBLAST. Latest update of antiSMASH
can identify active site residues of core PKS domains like AT, KS, DH,
KR, ACP, TE and tailoring domains like cytochrome P450 oxygenase
using ‘Active Site Finder’ module. antiSMASH also uses domain in-
formation ofmodular PKS andNRPS to predict the linear polyketides
produced by the query cluster. Although the chemical structure pre-
diction feature includes effect of reductive domains KR, DH and ER
on the polyketide structure, predictions of post-PKS/NRPS modifi-
cations and cyclizations are not yet available in antiSMASH.

Another web-based tool that connects secondarymetabolite gene
cluster to the chemical structures of secondary metabolites is PRISM
(PRediction Informatics for Secondary Metabolomes).51 It uses a
library of 479 HMMmodels for the identification of these gene clus-
ters. These HMMmodels include HMMs for thiotemplate domains,
substrate specific adenylation and acyltransferase domains, domains
catalyzing a number of tailoring reactions, and acyl-adenylating
domains, among others. The PRISM algorithm identifies putative PKS/
NRPS modules along with the specific substrate monomers. Based
on permutation of open reading frames (ORF), the position of loading
and termination modules and principle of co-linearity the order of
substrate channeling is predicted. After deciphering the chemical
structure of the linear polyketide or nonribosomal peptide based
on co-linearity rule, PRISM carries out pseudo-random enumeration
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of a number of different tailoring reactions and all combination of
cyclization patterns to generate a combinatorial library of chemi-
cal structures of putative secondary metabolites.

The aforementioned computational methods have been de-
signed to relate sequences of secondary metabolite gene clusters
to the chemical structures of the unknownmetabolites by using the
forward approach. They essentially use various sequence and struc-
ture based bioinformatics approaches to predict the catalytic reaction
a given enzymewould catalyze in the biosynthetic pathway, its sub-
strates and products. In biochemical pathways consisting of multiple
catalytic reactions, it is also necessary to predict the precise order
in which these reactions will be catalyzed; otherwise it will lead
to a combinatorial explosion of possible chemical structures of the
final metabolic product. Most of the above mentioned computa-
tional tools predict the order of biochemical transformations by the
so called co-linearity rule52 or based on inter subunit interactions
in the limited context of modular PKS clusters. However, there are
significant deviations from co-linearity rule in many PKS/NRPS clus-
ters and also occurrence of complex tailoring enzymes and
cyclization patterns make prediction of the correct order of cata-
lytic reactions an enormously difficult task. Hence, despite reports
of successes in general identification of new secondary metabo-
lites by forward approach are extremely difficult, none of the above
mentioned computational tools permit a completely automated pre-
diction of chemical structures of secondary metabolites based on
genome analysis.

3. Connecting secondary metabolites to their biosynthetic
gene clusters using probabilistic matching

In contrast to the large number of software for linking genes to
metabolites, Pep2Path53 is the only software package currently avail-
able for linking chemical structures of nonribosomal peptides to gene
clusters. It helps inmatchingof tandemmass spectra of nonribosomal
peptides to their gene clusters. It accepts either MS-derived NRP
mass shift sequence or a short stretch of amino acid and genome
sequences. When the input is mass shifts it is first converted into
amino acid tag. The genome sequence, on the other hand, is scanned
for putativeNRPS gene cluster using antiSMASH. Then Pep2Path uses
Bayesian algorithm to predict the chances of an amino acid in the
tag to be synthesized by the predicted NRPS modules. Using this
probability a final score for complete gene cluster is then calculated.
Pep2Path is also designed to identify gene clusters corresponding
to ribosomally synthesized post-translationally-modified peptides
(RiPPs).

4. Retro-biosynthetic approach

Here, we discuss our preliminary work toward development of
a retro-biosynthetic approach for linking chemical structures of sec-
ondary metabolites to succession of reactions that potentially
produce it. With correct enumeration of biochemical transforma-
tion it will be possible to link the enumerated biochemical reactions
to genes containing enzymatic domains which can catalyze such re-
actions. Hence, this computational method can be further developed
in future as an alternative to probabilistic matching method for
linking secondary metabolites to gene clusters.

There are several organisms for which complete genome se-
quences are available and many secondary metabolites have also
been experimentally characterized in the corresponding organisms.54

However, the genes responsible for the biosynthesis of the corre-
sponding metabolites are not known.4 Therefore, a reverse or
retro-biosynthetic approach can in principle be applied in such cases.
Retro-biosynthetic approach starts from a known metabolite and
attempts to identify which gene cluster might be biosynthesizing
it. Using the knowledge of enzymatic reactions and logic of chemical

transformation the immediate precursor molecule(s) are pre-
dicted. The predicted precursor is used for another round of retro-
biosynthetic enumeration to predict precursors of the precursor. This
cycle of reaction enumeration is continued until a known starting
product is obtained. After E.J. Corey illustrated the concept of
retrosynthesis, the approach has helped in delineating biochemi-
cal pathways too.23,24 The benefits of the approach in reconstruction
of pathways have been discussed earlier.55,56 This approach is ben-
eficial in caseswhere themass spectrometric or similar analysis has
revealed the chemical structure of final metabolite but its biosyn-
thetic gene has not been characterized. Retro-biosynthetic tools are
available forpredictingmetabolic routesbetween twometabolites57–60

and predicting biosynthetic routes of plant secondarymetabolites.61

Similar automated in silico tools have been also developed mainly
for the prediction of biodegradation pathways.61–63 These ap-
proaches are reaction rule based, where generalized reactions are
applied to finalmetabolite to enumerate precursormetabolites. Ap-
plicationof all possiblegeneralized reactionsat each stageof precursor
enumeration can lead to prediction of huge number of possible path-
ways – combinatorial explosion.60 To avoid such combinatorial
explosion, these tools rank the possibility of enumerated reaction
based on available enzymatic and chemical knowledge. Also, fo-
cusing on a smaller set of reactions like xenobiotic degradation or
chemical transformations relevant for plant secondarymetabolites
helps in decreasing the false positive hits. The essential task for de-
veloping retro-biosynthetic approach is to predict all possible
enzymatic reactions which can lead to the final secondarymetabo-
lite of known chemical structure starting from certain precursor
molecules. In the next step, potential enzymes that can catalyze each
of these enzymatic reactions can be identified by sequence or struc-
turebasedbioinformaticsmethods. In recent years fewcomputational
tools like ReBit,63 FMM59 and PathPred61 have been developed for
retro-biosynthetic enumeration of biochemical reactions and have
been applied for biosynthesis of novel natural products by syn-
thetic biology approach. Even though PathPred focuses on predicting
pathway for plant secondary metabolites, the focus of most retro-
biosynthesis related computational tool development has been on
primary metabolites and chemical degradation pathways, because
information about these pathways is well documented in data-
bases like KEGG.64,65 In contrast, information about natural product
biosynthesis is still dispersed in scientific literature. PathPred and
ReBit are the only two servers that predict biosynthetic reactions.
PathPred predicts multistep reaction pathway for degradation of
xenobiotic compounds and biosynthesis of plant secondary me-
tabolites. It uses a database of Biochemical transformation patterns
for substrate-products called RPAIR.66 ReBit predicts a set of enzymes
capable of using the given query either for biosynthesis or
biodegradation.

Since biosynthesis of polyketides and nonribosomal peptides in-
volves a limited number of reactions compared to metabolic
pathways in general, they are amenable to retro-biosynthetic ap-
proach for predicting which gene clusters in a given genome might
be making a known secondary metabolite. Our group has at-
tempted to develop a computational protocol for reconstructing the
biosynthetic pathways of polyketides and nonribosomal peptides
using retro-biosynthetic approach. Fig. 2 shows a schematic depic-
tion of various steps involved in retro-biosynthetic enumeration
protocol. The assembly linemechanism of biosynthesis of polyketides
involves various chemical transformations like condensation, re-
ductive steps, chain release involving hydrolysis or macro-ring
formation, other complex cyclizations and various post-PKS and post-
NRPS modifications. To develop a retro approach 25 such reactions
were stored as generic reactions (Fig. 3, Supplementary File S2). Func-
tional groups of products were also stored in a separate database
in SMARTS language. The generic reactions and functional groups
were generated based on sub structural changes that occur in a
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reaction (Supplementary methods in Supplementary File S1). Given
a polyketide or nonribosomal peptide chemical structure, the retro-
biosynthetic enumeration process first searches for a functional group
using Obgrep tool of Open Babel.67 The Reactor module of ChemAxon
(JChem 6.1.3, 2013, ChemAxon (http://www.chemaxon.com)) is used
to transform the given metabolite into its precursor based on the
corresponding generic reaction. This precursor metabolite becomes
the new input and another round of functional group search and
reaction enumeration is then processed. The process is continued
until no other functional group is detected in the compound. In order
to test the developed retro-biosynthetic approach chemical struc-
tures of 78 experimentally characterized secondarymetabolites were
downloaded from SBSPKS database (Supplementary File S2). This
set consisted of 49 polyketides frommodular PKS section of SBSPKS,
27 nonribosomal peptides from NRPS section and two compounds
from hybrid PKS/NRPS section. For each of these 78 secondary me-
tabolites complete biosynthetic pathwayswere available in published
literature. Reactions for each compound were enumerated and the
predicted steps were cross checked with known biosynthetic path-
ways for correctness. Supplementary File S2 lists the total number
of reactions in the biosynthetic pathways of each compound, number
of correctly predicted reactions, and sum of the incorrect andmissing
reactions. For a given compound the prediction was classified as

“correct” if the number of correctly predicted reactions was 100%,
“minor error” if correctly predicted reactions were within 80%–
100%, “partially correct” if the number of correctly predicted
reactions was within 50–80% and “Incorrect” if the number of cor-
rectly predicted reactions was less than 50%. Table 1 shows the
summary of the results of retro-biosynthetic enumeration for 78
secondary metabolites. Out of these 78 secondary metabolites con-
sisting of 51 polyketides/hybrid metabolites and 27 nonribosomal
peptides, all the enzymatic reaction steps could be completely enu-
merated for 17 polyketides/hybrids and 12 nonribosomal peptides.
An example of completely enumerated biosynthetic pathway is that
of halstoctacosanolide (Fig. 4). Macrolactonization, oxidation, spon-
taneous cyclization and 18 steps of condensation and reductionwere
correctly predicted for halstoctacosanolide. Ten other compounds
from the polyketide set were in the “minor error” category due to
post-PKSmodifications or conjugation of double bonds. For example
in geldanamycin a post-PKS hydroxylation step changes a com-
pletely reduced extender unit (KS-AT-DH-ER-KR-ACP) to its
hydroxylated form. The hydroxylated form is seen by the retro-
biosynthesis algorithm as one synthesized by KS-AT-KR-ACPmodule.
For 9 polyketides/hybrids and 10 nonribosomal peptides partially
correct predictions could be made. One such example is monensin
(Fig. 5). Although initial cyclization and post-PKS reactions were

Fig. 2. Schematic representation of retro-biosynthetic enumeration. Schematic diagram representing the main steps involved in the retro-biosynthetic enumeration of re-
actions leading to a given polyketide and nonribosomal peptide product.
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predicted correctly, the first condensation and reduction step was
incorrectly predicted. The last module of monensin PKS adds a
methyl malonyl-coA and completely reduces the keto group (C-
26) using the KR, DH and ER domains. A hydroxylation step at the
end adds a hydroxy group back to C-26 atom. Although the retro-
biosynthesis approach correctly predicts condensation of a methyl
malonyl-coA, presence of a hydroxyl group is mistaken as partial
reduction by the PKS module. Hence, reduction by only a KS-AT-
KR module is predicted. In addition, there was error in prediction
of reaction of another module. Another example of partially enu-
merated pathway is the biosynthetic pathway for non-ribosomal
peptide A40926 (Supplementary Fig. S1). The steps predicted cor-
rectly have been marked in blue and the missing or wrong
predictions have been marked in red. As the cross-linking could not

be predicted the algorithm is unable to locate a regular amino acid
after the hydrolytic termination step and hence terminates. For the
remaining 15 polyketides/hybrids and 5 nonribosomal peptidesmore
than 50% of the reactions could not be enumerated, hence they were
classified as incorrect predictions. This set also includes com-
pounds like ambruticin, aureothin, chlorothricin, coronafacic acid
and curacin, for which no reaction could be enumerated, mainly due
to presence of unusual and complex cyclizations. In summary, out
of 78 secondary metabolites correct or partially correct enumera-
tion could be done for 58 compounds.

The database of secondary metabolite biosynthetic reactions can
be improved to add complex cyclization steps and many other post-
PKS and post-NRPS modifications catalyzed by tailoring enzymes.
This will aid in widening the scope of this approach. The tool can

Fig. 3. Examples of generic reactions used for Retro-biosynthetic approach. All possible modules required for the biosynthesis of polyketides and nonribosomal peptides.
The second column lists an example reaction catalyzed by each type of module and the generic reaction or reaction rule associated with these modules. Circles indicate
change in functional group.

Table 1
Results of retro-biosynthetic enumeration for secondary metabolites.

Number of compounds Correct predictions (100%) Minor error (80%–100%) Partially correct (50%–80%) Incorrect predictions (<50%)

Polyketides/hybrid 51 17 10 9 15
Nonribosomal peptides 27 12 0 10 5
Total 78 29 10 19 20

85S. Khater et al./Synthetic and Systems Biotechnology 1 (2016) 80–88



be further developed to link the biosynthetic reactions to their re-
spective genes. Genome mining could be used to identify PKSs in
completely sequenced genomes and stored in a separate data-
base. Therefore, after the reactions are enumerated and enzymes
are identified, co-occurrence of these enzymes together in a gene
cluster can be checked using the PKS sequence database. Tailoring
enzymes usually co-occur in the genomic neighborhood of PKSs.
Hence, neighboring genes of PKS should also be stored in the da-
tabase. Therefore, the retro-biosynthetic approach can be a very
useful resource for enumeration of secondary metabolite biosyn-
thetic pathways and relating it to polyketide and nonribosomal
peptide biosynthetic clusters by genome mining.

5. Discussion

The two major classes of natural products biosynthesized by
various microbial, fungal and plant species are polyketides and
nonribosomal peptides. Connecting these natural products and their
gene clusters would not only broaden the understanding of their
complex biosynthesis, but will also help in discovery of novel natural
products and help in designing new natural product-based drugs.
In silico tools for identification of new secondary metabolites have
played an important role in successful experimental characterization

of new polyketides and nonribosomal peptides. Most of these com-
putational tools facilitate connecting “genes to metabolite”. These
tools use various sequence and structure based bioinformatics ap-
proaches to predict the reaction catalyzed by each domain, its
substrate and product. Occurrence of tailoring enzymes, complex
cyclization patterns and iterative use of catalytic domains and order
of catalytic reactions add to the complexity of the chemical struc-
ture of thesemetabolites. A retro-biosynthetic approach of identifying
genes associated with the metabolite, i.e., connecting “metabo-
lites to genes”, would overcome the hurdle of complexity of reactions.
In this article, we have given a brief overview of a retro-biosynthetic
approach to connect orphan polyketides and nonribosomal pep-
tides to their biosynthetic gene clusters. This computational approach
will be made available in the next update of SBSPKS web-server de-
veloped by our group. The predictive power of the aforementioned
computational approaches can be enhanced by expanding the knowl-
edge base with information about tailoring enzymes, cyclization
patterns and iterative use of catalytic domains.

Both “Genes to Metabolites” and “Metabolites to Genes” ap-
proaches are based on understanding of the evolution of sequence/
structural features of individual catalytic domains of PKS or NRPS
biosynthetic pathways. Availability of large number of experimen-
tally characterized modular PKS and NRPS clusters has opened up

Fig. 4. An example of reaction enumeration. An example of complete reaction enumeration starting from the polyketide – halstoctacosanolide to its starting metabolites
using the retro-biosynthetic approach.
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the opportunity for integrative analysis of the evolution of com-
plete PKS or NRPS biosynthetic pathways by insertion, deletion and
substitution of various catalytic domains. The PKS and NRPS gene
clusters have evolved by insertion, deletion and substitution of
various catalytic domains. Thus, it would be interesting to explore
the possibility of correlating the combinatorial organization of
domains in a genomic space and the diversity of the products in
the chemical structure space. It is possible to develop new com-
putational approaches, where different PKS and NRPS modules can
be represented by unique identifiers and hence the gene cluster can
be represented as a module string. The insertions, additions and de-
letions can be taken into account by aligning these module strings
using modified version of standard alignment tools or dynamic pro-
gramming. The best alignments can be picked and used to predict
the probable metabolite synthesized by the biosynthetic cluster. It
may be noted that such domain string approach is similar to the
clusterBLAST method available in antiSMASH. However, domain
string approach will be computationally faster in view of reduced
representation of modules in terms of single identifiers. Hence, it
can be used for quick comparison of newly identified clusters with
experimentally characterized clusters present in various databases.
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