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Abstract: An estimated 4 billion episodes of diarrhea occur each year. As a result,  

2–3 million children and 0.5–1 million adults succumb to the consequences of this major 

healthcare concern. The majority of these deaths can be attributed to toxin mediated 

diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding 

of the pathophysiological processes underlying these infectious diseases has notably 

improved over the last years. This review will focus on the cellular mechanism of action of 

the most common enterotoxins and the latest specific therapeutic approaches that have 

been developed to contain their lethal effects. 
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1. Introduction 

Diarrhea is widely accepted as a major healthcare concern. However, only closer examination of the 

epidemiological data available to us fully illustrates the massive burden that acute diarrheal illness 

(ADI) places on our society. Children are particularly vulnerable to the lethal effects of ADI:  

3.2 episodes of diarrhea occur per child/year in the age group <5 years [1]. A total of 2.5 million ADI 

related deaths worldwide (<5 years) occur each year [1]. This means that one out of five deaths in 

children (<5 years) is caused by diarrhea and is, in theory, preventable [1]. Although the specific 

infectious agent cannot always be identified, the majority of ADI cases are attributable to Rotavirus 

and E. coli infections. 
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In the course of this brief review we will revisit the physiological processes underlying intestinal 

ion transport and proceed to elucidate how prominent enterotoxigenic bacteria manipulate the cellular 

biology to induce diarrhea. This review will focus on two bacterial and one viral agent that will serve 

as a pars pro toto for the most common intracellular messaging cascades that are perturbed by 

enterotoxins: enterotoxigenic E. coli (ETEC) and its heat stable enterotoxin (STa) for cGMP induced 

diarrhea, V. cholerae for cAMP induced diarrhea, and Rotavirus for Ca
2+

 induced diarrhea. We will 

additionally discuss the latest specific pharmacological approaches that have been developed to 

contain the lethal effects of toxin mediated diarrhea.  

2. The Physiology of Intestinal Ion Transport 

In order to fully understand the pathophysiological events that occur during toxin mediated 

diarrhea, one must appreciate the physiology of intestinal ion and water transport. The enterocyte, 

which is organized in a columnar epithelial monolayer, is responsible for both electrolyte absorption 

and secretion in the intestine. Although intestinal electrolyte secretion mainly occurs in the crypt and 

electrolyte absorption takes place in the villus or surface epithelium, some overlap in terms of function 

is reported to exist between the two regions [2–6]. To account for the conciseness of this overview, the 

term enterocyte will be used without consideration for functional variability within the mucosa or the 

intestine in general.  

2.1. Enterocyte Electrolyte Absorption 

Apical electrolyte absorption by the enterocyte can be divided into two major categories:  

(i) electroneutral absorption and (ii) electrogenic absorption [5].  

Electroneutral absorption is a synchronized event that involves Na
+
 uptake by the Na

+
,  

H
+
-Exchanger (NHE) and Cl

−
 uptake by Cl

−
,HCO3

-
-Exchangers. Currently, nine isoforms of NHE are 

known (for reviews please see [7,8]). NHE1 is located on the basolateral surface of the enterocyte and 

primarily functions as a housekeeping protein for pH and volume homeostasis, whereas NHE2 and 

NHE3 have an apical localization pattern and conduce to bulk Na
+
 absorption [5,7,9–13]. Although the 

relative contribution of NHE2 and NHE3, respectively, varies between both species and localization 

within the intestine, NHE3 is thought to be the main mediator of electroneutral Na
+
 uptake [7]. This 

assumption is further underscored by the development of NHE2 and NHE3 knockout mouse models. 

In NHE2 (−/−) animals intestinal Na
+
 uptake was unaffected. Still, compensatory elevations of NHE3 

mRNA and protein levels were reported [14]. Conversely, NHE3 (−/−) animals showed a strong 

intestinal phenotype with intestinal hypertrophy and diarrhea, thereby emphasizing the significance of 

NHE3 for physiological salt absorption [14]. Recently, NHE8 has emerged as an important candidate 

for Na
+
 absorption in immature animals, which may account for the observed residual Na

+
 uptake in 

NHE2/3 (−/−) animals [15,16]. NHE activity is chiefly regulated by cyclic nucleotides, most notably 

cAMP. Elevations in cAMP and activation of protein kinase A (PKA) were both shown to inhibit 

NHE3 [5,7]. For effective inhibition to take place, complex formation with accessory proteins, such as 

NHERF1/2 and the cytoskeleton linker ezrin, is essential [17–19]. A close coupling of NHE activity to 

chloride transport and in particular the cystic fibrosis transmembrane conductance regulator (CFTR) 

channel has also been discussed [20,21]. The importance of this interaction was further supported by 
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the ineffectiveness of cAMP in inhibiting Na
+
 uptake in CFTR (−/−) animals. Interestingly, it has been 

suggested that NHERF1 also interacts with CFTR and is pivotal for NHE inhibition in the 

pancreas [22]. CFTR, NHERF1 and NHE3 may thus form an inhibitory complex in response to 

increased levels of cAMP [22].  

Chloride uptake through apical exchange proteins represents the second component of electroneutral 

absorption. Two members of the solute carrier 26 (SLC26) gene family are expressed on the apical 

enterocyte membrane: SLC26A3 (also known as DRA) and SLC26A6 (also known as PAT1)[23]. PAT1 

expression is predominant in the small intestine, whereas DRA expression is higher in the colon [24,25]. 

Both exchangers can transport HCO3
−
 in exchange for Cl

−
, but their stoichiometry differs in that PAT1 

transports 2 HCO3
−
, whereas DRA transports 2 Cl

−
 [26,27]. Despite divergent stoichiometry, the 

concerted uptake of both exchangers is postulated to be electroneutral. In general, the role of DRA in 

intestinal absorption is better characterized than PAT1. Mutations of DRA are known to be responsible 

for autosomal recessive congenital chloride diarrhea (CLD, OMIM 214700)[28,29]. CLD was first 

described in 1945 in patients exhibiting diarrhea with increased chloride content in the stool. Today, 

more than 250 cases which are mainly clustered in Finland, Poland and Saudi Arabia, have been 

reported and 30 mutations in DRA that are responsible for CLD have been identified [29]. Both PAT1 

and DRA are regulated by CFTR [27,30]. In transfected cells stimulation of CFTR by cAMP leads to a 

six-fold increase in activity of both exchangers [27]. Additionally, DRA has been shown to be 

regulated by intracellular Ca
2+

 [31]. Until recently, some controversy persisted regarding the relative 

contribution and importance of DRA and PAT1, respectively [24,32]. Functional studies in DRA and 

PAT1 (−/−) animals have now identified DRA as the predominant mediator of electroneutral chloride 

uptake in the small intestine [30,33]. Members of the SLC4 gene family represent the second type of 

enterocytic anion exchange. SLC4A1 (AE1) localization has been demonstrated on the apical surface 

of colonic enterocytes in the rat [34,35]. These findings could not be reproduced in humans, when 

investigating mRNA levels throughout the entire intestine [36]. The contribution of AE1 to 

physiological Cl
−
 uptake thus remains questionable. SLC4A9 (AE4) was also identified in the 

duodenum, yet subsequent knock-out studies showed that overall HCO3
-
 transport was decreased by 

only <5% in affected animals [25,37]. 

Electrogenic electrolyte absorption accounts for the second source of apical ion uptake and can 

occur through dedicated channels or through symporters as a byproduct of nutrient absorption. ENaC 

is the most prominent apical Na
+
 channel in the colon and allows for Na

+
 flux into the cell along its 

electrochemical gradient [5,38]. Comparable to the collecting duct of the kidney, its expression is 

regulated by aldosterone in response to hypovolemia [39]. Interestingly, aldosterone can also induce 

expression of ENaC in the small intestine [40,41]. Its modulation by CFTR has been subject of 

controversial discussion in the past [42–45]. It has been suggested that an increase in cAMP 

concentrations that in turn activates CFTR has an inhibitory effect on ENaC conductance [42,43,45]. 

However, the expression patterns of both channels in the mucosa do not support this hypothesis, as 

ENaC expression predominates in the colonic surface cells, whereas CFTR is mainly expressed in the 

crypt region [5]. Although this persistent controversy still awaits final clarification, CFTR seems to 

emerge as a potent regulator in nearly all pathways of electrolyte absorption discussed so far.  

The electrochemical gradient that confers Na
+
 absorption through ENaC is utilized by various 

symporters in the small intestine for secondary active nutrient transport into the enterocyte. Similar to 
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its regulation in the kidney, glucose uptake in the proximal small intestine occurs through a member of 

the SGLT symporter family. The stoichiometry of the intestinal isoform (SGLT1) differs from the 

predominant renal isoform (SGLT2), as two Na
+
 ions are needed to carry one glucose molecule across 

the apical membrane [46–48]. The WHO issued oral rehydration salts (ORS) solution, which is used as 

a treatment for diarrheal diseases throughout the world, facilitates electrogenic Na
+
 uptake through 

SGLT1 by containing a particularly high concentration of glucose [47,49]. As water follows the 

absorbed electrolytes osmotically, this therapy has proven itself an effective strategy for rehydration.  

Currently, two inherited diseases that are associated with SGLT malfunction are known [47]. 

Mutations in SGLT1 are responsible for glucose/galactose malabsorption (GGM, OMIM 182380) 

resulting in osmotic diarrhea [50]. The second disorder, i.e., familial renal glucosuria, affects SGLT2 

mediated glucose transport in the kidney [51].  

Amino acid transporters in the small intestine take advantage of the same Na
+
 gradient across the 

epithelia to conduct absorption. For a detailed review on the wide variety of involved transporters, 

please refer to a recent review [52]. 

2.2. Enterocyte Electrolyte Secretion 

An estimated eight liters of fluid are being secreted into the intestine on a daily basis [2]. Although 

this fluid is also composed of gastric, pancreatic, and biliary juices as well as saliva, a significant 

portion of the secreted volume is considered to be bona fide enterocyte secretion [2]. Because it is not 

possible for enterocytes to actively transport fluid, secretion is linked to the creation of an osmotic 

gradient that drags water into the intestinal lumen. Apical chloride channels, such as CFTR, are the 

main generators of this osmotic driving force [2]. Chloride secretion through apical channels relies on 

a constant negative membrane potential that is generated by leak current through basolateral potassium 

channels and a steady intracellular concentration of chloride that is maintained by the basolateral Na
+
, 

K
+
, 2Cl

−
 (NKCC) symporter [2]. Although these basolateral proteins are crucial for the secretory 

function of the apical machinery, their review is omitted in the interest of conciseness. For an excellent 

review on chloride secretion, please refer to [2]. 

CFTR is a cAMP regulated chloride channel that is predominantly expressed in the intestinal crypt 

and to a lesser extent in the villus region [53,54]. The channel consists of two membrane spanning 

domains (MSDs), two nucleotide binding domains (NBDs) allowing for hydrolysis of ATP and a 

regulatory (R) domain that mediates regulatory interactions with PKA [55]. Regulation of CFTR 

mainly occurs through cAMP-dependent PKA at the R domain, but was also shown to be cGMP, PKC, 

c-src and calmodulin dependent [56–62]. In addition to on-site regulation, trafficking rates to the apical 

membrane are affected by cAMP, hence amplifying the impact of cAMP stimulation [63–66]. Recent 

work suggests that the R domain is pivotal for regulatory trafficking to occur [64]. 

Mutations in the CFTR gene result in manifestation of cystic fibrosis (CF), which represents the 

most prevalent genetic disorder in Caucasians. Although the majority of CF symptoms are related to 

respiratory pathologies, gastrointestinal manifestations of the disease are also frequent [67]. Meconium 

ileus, a postnatal intestinal obstruction resulting from hyperviscous stool, is often the first clinical sign 

of CF. The clinical findings and the correlating observations in knock-out animals that succumb to 

intestinal obstruction if not medicated with laxatives emphasize the major role of CFTR in the process 
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of intestinal chloride/fluid secretion [67,68]. cAMP dependent chloride secretion has been 

demonstrated throughout the intestine using various experimental approaches and has been validated 

by its absence in CFTR mutants [2,3,69–71].  

Ca
2+

 activated chloride channels (CaCCs) are extensively described as an alternate chloride efflux 

mechanism in colonic T84 cells [5,72–75]. The role of CaCCs in native human intestinal tissue is, 

however, more ambiguous as several groups reported a failure of intracellular Ca
2+

 to increase chloride 

secretion in CF patients [76–78]. Conversely, it has been suggested that a compensatory up regulation 

of CaCCs increases survival in CFTR mutant mice by alleviating symptoms of constipation [79]. The 

molecular identity of CaCCs has also been subject of controversial speculation. hCLCA1 had emerged 

as a possible candidate, as its expression had been demonstrated to be exclusively confined to the 

crypt, but was later shown to be a secretory protein rather than a channel [80]. Today, the list of 

candidates for CaCCs consists of TMEM16a, bestrophin-2, and hTTYH3 [81–86]. Functional evidence 

for their importance in intestinal chloride secretion has so far only been gained for TMEM16a in a 

knock-out mouse model [87]. Yet supplemental studies that define the significance of CaCCs in the 

human intestine remain to be conducted.  

ClC-2 channels may represent a third route for apical chloride secretion. CF mice with a mild 

intestinal phenotype showed residual apical chloride conductance, which was attributed to expression 

of ClC-2 [88,89]. However, additional disruption of ClC-2 in a ClC-2/CFTR double knock-out mouse 

failed to exacerbate intestinal symptoms in the affected animals [90]. Localization studies in human 

tissue further showed a supra-nuclear localization pattern that does not correlate well with the 

postulated secretory function of the channel [91]. Despite the ambiguous evidence for the involvement 

of ClC-2 in intestinal ion handling, the purportedly specific ClC-2 agonist lubiprostone is in clinical 

use to ameliorate symptoms of constipation. A recent study, however, demonstrates that intact CFTR is 

necessary for lubiprostone to exert its effect, further challenging the suggested importance of ClC-2 

ion handling in the enterocyte [92].  

3. The Pathophysiology of Enterotoxin Mediated Diarrhea 

3.1. Enterotoxigenic E. coli 

Enterotoxigenic E. coli (ETEC) infection is one of the leading causes of diarrhea in the developing 

world. Children are especially susceptible to intestinal infection, with 280 million cases of ETEC 

related diarrhea occurring each year in children under the age of five [93]. ETEC infection also 

accounts for 50–60% of all cases of traveler’s diarrhea, which amounts to about 60 million cases per 

year in total [94–96]. In light of these high incidence rates it comes as no surprise that ETEC infection 

takes its toll with an estimated 370,000 deaths each year, the vast majority of which are children [93].  

ETEC produces at least one of two defined enterotoxins: heat stable enterotoxins (ST) or heat labile 

enterotoxins (LT). LT exists in two classes, only one of which is associated with intestinal disease, 

namely LT-I. LT-I is a hetero-oligomeric holotoxin, composed of one A subunit and five identical B 

subunits and thus belongs to the family of AB5 enterotoxins [97]. Among other bacterial toxins, the 

AB5 enterotoxin family also includes cholera toxin (CTX) and Shiga toxin (STX). Because these 

toxins exhibit a significant degree of homology in both sequence (the A1 subunits of CTX and LT-I 
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have 78% sequence homology) and pathophysiology, we will regard LT-I and CTX as one entity with 

respect to their cellular mechanism of action [98]. The crystal structures of both toxins are now 

available to us and may aid in further elucidating the sites of action [99–101]. It should be noted that 

disease severity in ETEC infection is generally lower than in cholera infection. While the basic 

mechanisms for this effect are not fully understood, it has been proposed that the efficiency of toxin 

secretion may differ between the two bacterial species [102]. For the pathophysiological processes 

underlying LT-I infection, please refer to the section on V. cholerae. 

ETEC produce ST enterotoxins in two variations: STa and STb. Consisting of only 18 or 19 amino 

acids, STs are considerably smaller in size than LTs and are monomeric in structure [103–107]. The 

STs contain six cysteine residues, forming three disulfide bonds [103,104,106,108,109]. The residues 

and bonds are responsible for the heat stability of the protein and were shown to be essential for its 

toxicity [108–110]. The structure of STs is shared to a significant degree with the heat stable toxins 

from V. cholerae O1/non-O1 and Yersinia enterocolitica [111–113]. Unlike LT-I, STs do not exert 

their toxic effects in the cytoplasm of the enterocyte, but rather bind to a receptor on the membrane 

surface. Receptor quantity decreases with age, which may account for the high prevalence and disease 

severity of ETEC mediated diarrhea in children [114]. The receptor has subsequently been cloned and 

identified as the membrane-bound guanylyl cyclase type C (GC-C), which is comprised of an 

extracellular receptor domain, a single membrane spanning domain, and an intracellular kinase 

homology domain followed by the guanylyl cyclase domain [115,116]. Stimulation of GC-C leads to 

an increase in intracellular cGMP concentrations, resulting in activation of PKA or cGMP-dependent 

protein kinase II (cGK II) and increased chloride secretion through apical CFTR channels 

[56,117,118]. Both kinases mediate CFTR activation and concomitant NHE3 inhibition via NHERF, 

leading to increased chloride secretion and reduced sodium absorption [17,19,56,119,120]. cGK (−/−) 

animals were further shown to secrete less fluid in response to STa exposure [118].  

Diarrhea ensues as a product of increased luminal osmolarity. Apart from kinase mediated 

activation, cGMP may influence channel gating directly by binding to CFTR [121]. As CFTR is the 

common endpoint for both CTX and STa mediated diarrhea, CF patients and transgenic CF mice seem 

to have an innate immunity against both toxins [122,123]. The exact binding site of STa to GC-C is 

well characterized by the use of receptor mutagenesis and photoaffinity labeled STa [124,125]. 

Mutation analysis of STa has further revealed that the central -turn region of the protein  

(Asn
11

–Cys
14

) is responsible for GC-C binding and that this interaction is dependent on hydrophobic 

amino acid sidechains [126–129]. A GC-C (−/−) model has helped provide us with compelling 

evidence of the cyclases’s involvement in the process of STa mediated diarrhea, as the affected 

animals were shown to be resistant against the effects of the toxin [130,131].  

Beside STa, the endogenous peptides uroguanylin and guanylin, which are implicated in the 

maintenance of salt balance, serve as physiological activators of GC-C [132–136]. Guanylin is 

significantly homologous to STa in its structure and also relies on disulfide linkages for receptor 

activation [137]. Membrane guanylyl cyclases also serve as peptide hormone receptors regulating 

electrolyte homeostasis in other tissues. Atrio-natrioretic peptide, which is secreted by the atrium in 

response to increased atrial stretch, binds to a similar membrane guanylyl cyclase in the kidney [138]. 

GC-C has recently been identified as a pharmacological target in the treatment of constipation. The 
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synthetic 14-peptide GC-C agonist linaclotide (formerly MD-1100) effectively alleviated symptoms of 

constipation in numerous clinical trials [139,140]. 

In addition to GC-C, several other STa receptors have been postulated to exist [141–144]. This 

hypothesis has recently been supported by the observation that STa can induce HCO3
-
 secretion in a 

non-cGMP, non-GC-C and non-CFTR dependent manner [145,146]. The fact that this HCO3
-
 secretion 

is not dependent on CFTR is especially remarkable, as intact CFTR is traditionally regarded to be a 

prerequisite for HCO3
-
 secretion [147].  

Currently, two pharmacological strategies have been employed to specifically counteract the effects 

of STa: (i) inhibition of GC-C and its signaling; and (ii) inhibition of chloride secretion through 

CFTR [148–152]. The group of pyridopyrimidine derivatives has been demonstrated to decrease 

cGMP levels in T84 cells and to decrease STa triggered fluid secretion in an isolated intestinal loop 

model by inhibition of GC-C [148,149]. Specificity of the substance is limited, as other GC family 

members (GC-A,B and soluble forms) were also inhibited [148]. In addition, the tyrphostin tyrosin 

kinase inhibitors and the membrane permeable nucleoside analog 2-chloroadenosine were shown to 

inhibit GC-C activity in a cultured cell model [150–152]. However, the most promising substances for 

inhibiting STa mediated diarrhea are clearly the specific CFTR channel inhibitors, as they are  

non-absorbable and exert their effects on-site in the intestinal lumen. Except for one study, the 

majority of data has been generated in a CTX model, as CFTR represents the common endpoint for 

both CTX and STa mediated diarrhea [153]. Apart from specific treatment approaches, dietary calcium 

intake has been show to inhibit ETEC mediated diarrhea in human test subjects [154].  

Figure 1. Model summarizing cellular processes during STa mediated diarrhea. 

 

3.2. Vibrio Cholerae 

In 2008, over 190,000 cases of cholera were reported to the WHO [155]. It is safe to say that the 

actual number of annual symptomatic V. cholerae infections is much higher as a result of 

underreporting. Particularly disconcerting is the fact that on average the number of cholera cases has 
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been on the rise in recent years [155]. As the disease is transmitted feco-orally, cholera is associated 

with poor sanitary conditions. Cholera outbreaks are thus grim companions of natural catastrophes, 

political instability and poverty. The disease itself is characterized by a watery diarrhea with typical 

rice-water stools. The fulminant onset of diarrhea is extremely abrupt and the massive fluid loss of up 

to 1liter/h can be lethal within hours as a result of dehydration [156]. Although aggressive rehydration 

therapy has proven to be an effective countermeasure, the acute nature of the disease calls for rapid 

accessibility to treatment, which is often a challenging endeavor in underdeveloped regions.  

The effects of cholera are mediated by CTX, which is secreted by the bacterium. Once secreted, the 

B subunits of CTX bind to the membrane associated ganglioside GM1, which serves as a receptor for 

CTX on the cell surface. The number of B subunits correlates with toxicity, presumably by facilitating 

uptake through clustering of multiple GM1s [157]. Following binding, the CTX-GM1 complex 

undergoes endocytosis and embarks on a true odyssey through the enterocyte before the toxin finally 

exerts its pathological effects in the cytosol. The trafficking of CTX through the cell has received an 

extensive amount of scientific attention, with the hope of identifying a possible pharmacological target 

for the treatment of LT-I and CTX related diarrhea. The trafficking process is reviewed in great detail 

elsewhere and will only be described briefly in this review [158,159]. After endocytosis, CTX is 

trafficked via endosomes to the trans-Golgi network in an actin dependent manner [158–160]. The 

toxin subsequently continues its journey to the ER, where protein disulfide isomerase (PDI) unfolds 

the enzymatically active A1 chain of the holotoxin, allowing A1 to be released from the ER into the 

cytosol. The pathway through which A1 release occurs is not yet fully understood [158]. Once in the 

cytosol, A1 starts to exert its toxic effects. One of the earliest observations on the impact of CTX was 

made in Ussing chamber experiments on isolated rabbit ileal mucosa, demonstrating an inhibition of 

short circuit current (SCC; an indicator for chloride secretion) following toxin exposure [161]. Similar 

changes could be elicited by cAMP, suggesting that CTX exerts its action through elevation of 

intracellular cAMP concentrations [161]. The A1 chain elevates intracellular cAMP concentrations by 

activating the alpha subunit of a G-Protein (Gs) which in turn increases adenylyl cyclase 

activity [102,162]. Gs loses its intrinsic GTPase activity by A1 mediated ADP ribosylation of an 

arginine residue, resulting in prolonged activity of Gs [163–165]. Cells from mice lacking the enzyme 

which antagonizes ADP ribosylation (ADP-ribosyl protein hydrolase) are verifiably more sensitive to 

CTX [166]. As outlined above, cAMP is an activator of apical CFTR channels, which was postulated 

to account for the observed changes in potential difference and SCC [102]. CTX triggered elevations 

of cAMP levels further inhibit Na
+
 uptake by NHE in the villus cell and thereby increase the osmotic 

driving force for fluid secretion [167,168].  

Serotonin (5-HT) release from enterochromaffin cells has also been implicated in the mechanism of 

action of CTX [169–171]. A CTX mediated increase of 5-HT release was observed in a preparation of 

human ileum [169]. Application of the 5-HT3 receptor antagonist granisetron resulted in a decrease of 

both 5-HT release and fluid secretion in isolated rat intestinal segments [172]. In addition, CTX is 

capable of modulating the immune response of the host by eliciting IL-6 secretion from the 

enterocytes, depleting the reserves of CD8+ intraepithelial lymphocytes and by inhibiting CD4+ and 

CD8+ lymphocytes [173–176]. A recent study has also investigated the gene expression patterns in 

response to CTX exposure by micro-array analysis [177]. The affected genes are speculated to play a 

role in the innate defense mechanism of the exposed cell [177].  
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Prostaglandins of the E family (PGE) were shown to play an important role in the action of CTX 

mediated diarrhea. An increase of PGE synthesis was observed in rat and pig ileum in response to 

CTX exposure [178–180]. PGE is also able to induce fluid secretion in unexposed tissue [178,179] 

(this view has also been opposed by Hudson et al. [181]). The role of PGE in the genesis of cholera is 

further emphasized by the successful inhibition of secretion following treatment with cyclooxygenase 

(COX) inhibitors [182,183]. Cells from COX (−/−) animals, however, demonstrated no significantly 

different behavior from wild-type cells in terms of pathological fluid secretion [182]. To the present 

day, the exact relationship and hierarchy between the cAMP, PGE and 5-HT signals have not been 

thoroughly defined [102,184]. 

Although the mechanisms of intestinal electrolyte secretion are fairly well understood, the exact 

route of the ensuing water movement is still unknown [2]. Aquaporin water channels (AQP) have 

emerged as possible candidates for transcellular water movement [2]. Several groups have set out to 

investigate their role in cholera. CTX was shown to modulate permeability of several AQPs in an 

oocyte overexpression system [185]. AQP8 in particular is expressed in the intestine and was shown to 

be regulated by cAMP in the liver [186,187]. Furthermore, observations in rat intestine verify down 

regulation of AQP8 following CTX exposure [188](conversely, AQP10 is down regulated in human 

cholera patients [189]). However, results in a recent AQP8 (−/−) model do not support the hypothesis 

that AQP8 serves as an important route for water secretion in cholera, as the affected mice showed a 

normal secretory response to CTX [188]. 

Chloride secretion through CFTR is canonically regarded to be a major endpoint of CTX toxicity, 

presumably via elevation of intracellular levels of cAMP [102]. An early observation emphasizing this 

theory was made in CF mice that secreted less intestinal fluid in response to CTX [190]. Subsequently, 

it has been argued that the high prevalence of CF in our population may be a result of an innate 

resistance to cholera, thereby conferring an evolutionary advantage on heterozygous mutation 

carriers [190]. CFTR has evolved into a popular target for the potential treatment of cholera. Currently, 

three groups of specific CFTR inhibitors exist. The thiazolidinone CFTRInh-172 was shown to reduce 

CTX stimulated fluid secretion, assessed by intestinal weight measurements, by as much as 

90% [153,191]. In vivo administration of the herbal extract SP-303 also yielded significantly less fluid 

accumulation, employing a comparable experimental approach [192]. The formulation of the original 

substance has recently been improved; however, in vivo data are not yet available [193]. The glycine 

hydrazide GlyH-101 was also tested in a closed loop model and reduced CTX induced fluid secretion 

by 80% [194]. Nonetheless, none of these substances is currently in clinical use. In the absence of a 

specific treatment for cholera, aggressive rehydration with ORS solutions remains the most crucial 

countermeasure against the massive fluid loss that occurs in the course of the disease. The efficacy of 

ORS treatment is exemplified in a case study from the 70s in which cholera mortality could be 

decreased among Bangladesh refugees to 3.6% by administration of ORS, compared to 30% in similar 

refugee camps that relied purely on intravenous fluid substitution therapy [195]. In addition to 

rehydration therapy, a single-dose administration of azithromycin has been shown to ameliorate 

disease severity [196,197]. Apart from these strategies, our specific therapeutic resources are limited. 

A supplemental pharmacological approach is still desirable. The specific CFTR inhibitors may 

represent a remedy for this need, but their clinical potency still remains to be reviewed. 
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Figure 2. Model summarizing cellular processes during CTX mediated diarrhea. 

 

3.3. Rotavirus  

Rotavirus infection is the leading cause of diarrhea related hospitalization in children (<5 years)[198,199]. 

Estimations assert that 611,000 childhood deaths are caused annually by rotavirus, 80% of which occur 

in developing countries [200]. Rotavirus infection is a global phenomenon, and the industrialized 

world is not exempt from its burden. In the US alone, 60,000 hospitalizations per year are attributable 

to the virus, although mortality is substantially lower with 37 deaths annually [201]. 

The RNA of rotavirus encodes six viral proteins (VPs) and six nonstructural proteins (NSPs). One 

of the NSPs, namely NSP4, is a viral protein that induces diarrhea [202,203]. Although several other 

mechanisms, such as activation of the enteric nervous system, secretion of chemokines and epithelial 

ischemia, contribute to the diarrheagenic effects of rotavirus, we will limit our scope on the enterotoxin 

NSP4 [204–206]. NSP4 is a multifunctional protein and, besides its role as an enterotoxin, also serves 

as a receptor on the ER that mediates translocation of viral particles between cytosol and ER [207–209]. 

Recent data suggest that NSP4 can be trafficked from the ER to the plasma membrane where it is 

secreted by the infected enterocyte [210–213]. Given the fairly recent discovery of NSP4, our 

knowledge about its enterotoxic nature is still limited. We know that NSP4 can directly induce 

diarrhea and that this effect is not mediated through CFTR, as (−/−) animals were still susceptible to its 

effects [203,214]. In addition, it has been extensively described that NSP4 can increase intracellular 

Ca
2+

 concentrations [202,215,216]. It has recently been speculated that upregulation of the MS4A2 

gene, which encodes a protein with a calcium channel activity, could play a role in this process [217]. 

Elevations of intracellular Ca
2+

 can activate CaCCs and may explain the vulnerability of CFTR (−/−) 

animals to NSP4. However, evidence for direct NSP4 induced intestinal chloride secretion is still 

scarce. So far, Ussing chamber studies in a cell culture model demonstrated an NSP4 dependent 

increase in SCC and I
-
 imaging revealed that NSP4 causes non-CFTR mediated anion permeability in 

isolated murine crypts [214,218].  

A direct inhibition of SGLT1 has also been observed and may cause osmotic diarrhea by impaired 

uptake of Na
+
 and glucose, rather than by increased secretion [219]. A different group has reported that 
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NSP4 can increase paracellular permeability in a polarized cell model [220]. In summary, conclusive 

information on the action of NSP4 on enterocyte ion transport is not available, although changes in 

Ca
2+ 

homeostasis seem to be involved.  

As a result of the plethora of cellular mechanisms that are affected by Rotavirus infection, no 

specific treatment model exists. Yet, remarkable progress has been made in the prevention of the 

disease with the introduction of Rotavirus vaccines [221].  

Figure 3. Model summarizing cellular processes during NSP4 mediated diarrhea. 

 

4. Conclusions 

Our knowledge of the molecular mechanisms underlying ETEC, cholera, and Rotavirus mediated 

diarrhea has massively improved over the last years. Paradoxically, our arsenal of potential specific 

therapeutic approaches is still small by comparison. The non-absorbable CFTR inhibitors can be 

regarded as the most promising advance in the direction of targeted treatment, but proof of their 

clinical efficacy and benefit is not yet available. Although unspecific, the advent of ORS represents the 

most revolutionary progress that has been achieved in terms of averting the lethal consequences of 

ADI in the past decades. The millions of remaining ADI related deaths, however, are a sad reminder 

that complimentary therapeutic approaches need to be developed and that accessibility to treatment has 

to be optimized.  
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