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Abstract
Cloud healthcare system (CHS) can provide the telemedicine services, which is helpful to cope with the difficulty of patients
getting medical service in the traditional medical systems. However, resource scheduling in CHS has to face with a great
of challenges since managing the trade-off of efficiency and quality becomes complicated due to the uncertainty of patient
choice behavior. Motivated by this, a resource scheduling problem with multi-stations queueing network in CHS is studied
in this paper. A Markov decision model with uncertainty is developed to optimize the match process of patients and scarce
resources with the objective of minimizing the total medical costs that consist of three conflicting sub-costs, i.e., medical costs,
waiting time costs and the penalty costs caused by unmuting choice behavior of patients. For solving the proposed model,
a three-stage dynamic scheduling method is designed, in which an improved Q-learning algorithm is employed to achieve
the optimal schedule. Numerical experimental results show that this Q-learning-based scheduling algorithm outperforms two
traditional scheduling algorithms significantly, as well as the balance of the three conflicting sub-costs is kept and the service
efficiency is improved.
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Introduction

With a growing high demand for medical services, the prob-
lem of overcrowding in the healthcare system becomes more
prominent. It is noticeable that the high-quality medical ser-
vice resources, such as the experienced specialists and the
advanced medical equipment, are always concentrated in the
large hospitals rather than the grass-root medical institutions.
This phenomenon has intensified the problems that medical
treatment is difficult and expensive for the masses [1–4].
Recently, a telemedicine medical system has newly been
generated in China and termed as cloud healthcare system
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(CHS), which enables to accomplish the sharing of medi-
cal resources between the large hospitals and the community
ones. In CHS, the IT-based medical platform can provide the
telemedicine service from the specialists in the large hospitals
for the patients. This newhealthcare system is able to improve
the service quality in the grass-root medical institutions and
helpful to solve the above-mentioned problems effectively.

In recent years, a lot of researchers have begun to focus
on the effect of telemedicine in the medical service systems
[5–7]. Jnr et al. pointed out that telemedicine can not only
effectively improve medical efficiency and reduce patient
waiting time, but also help to reduce the spread of virus in
the COVID-19 era [8]. Pal et al. indicated that telemedicine
has great potential in increasing rural people’s access to
health care in China [9]. Kumar et al. confirmed that the
application of telemedicine technology not only helps to
improve the efficiency of medical service while maintaining
the same high service quality, but also results in improving
cost and time savings for patients and healthcare providers
[10]. However, it is noticeable that patient choice behaviors,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00776-9&domain=pdf
http://orcid.org/0000-0002-8954-0876


4604 Complex & Intelligent Systems (2022) 8:4603–4618

i.e., appointment preference and appointment break, has
to be considered when making a schedule decision in this
telemedicine service based CHS. As reported in the existing
literature [11–13], the telemedicine patients in CHS always
break an appointment in a much larger probability than those
in the traditional medical service systems.

Therefore, we will investigate the influence of patient
choice behavior upon the optimal scheduling decision of
CHS, which can be regarded as a special resource scheduling
problem in a multi-station queueing network, in this paper. A
Markov decision model with multi-types patients and multi-
servers (i.e., specialists) is first developed with the objective
of minimizing the total medical costs of CHS. The total med-
ical cost consists of the online medical cost of patients, the
waiting time cost, and the penalty cost of unmet patients’
choice preferences. Two decision variables are included in
the model: (1) decide the matching relationship between
patients and specialists, and the appointment slot according
to patients’ preference; (2)make the service rules of each spe-
cialist in their available appointment slots. Then, an improved
Q-learning algorithm is designed to achieve the optimal
scheduling strategy according to the properties of the devel-
oped Markov model. Finally, the proposed Q-learning algo-
rithm is verified its validity over two traditional scheduling
algorithms, that is, first-come-first-service (FCFS) and prior-
ity service policy (PSP), in a series of numerical experiments.

The rest of this paper is organized as follows. In
Section “Literature review”, a comprehensive review on rel-
evant literature is given. In Section “Problem description and
model”, the CHS resource scheduling problem considering
patient choice behavior is modeled as a Markov model in a
multi-station queueing network according to the operation
characters of system. In Section “Solution method”, a three-
stage dynamic scheduling method is proposed for solving
the investigated problem, in which a Q-learning algorithm
with an improved ε-greedy policy is designed to optimize
the scheduling rule. In Section “Experimental results and
analysis”, a series of numerical experiments are carried
out to examine the performance of this Q-learning-based
scheduling algorithm and to analyze the impact of different
algorithmic parameters. In the final section, we summarize
this paper and give some managerial insights drawn from the
conclusions.

Literature review

The new medical reformation in China has put forward to
build the basic healthcare and complete the community-
targeted health service system since 2009. Finding an effec-
tive service mode is a problem that the government and
managers have been exploring since the implementation of
the health care policy reform, and although some effects have

been obtained, the problem of difficult and expensive access
to the public is still serious. Supply-side reform of medical
reported that the key problem of medical service is supply
structure and quality instead of the total supply. In 2016,
the policy document of “Suggestions” encouraged to build
the medical environment of an Internet-based appointment
triage,making cloud healthcare system (CHS) stuck out from
the online medical platform.

CHS differs from the traditional medical system and other
types of online consultation platforms. The existing online
consultation platform is provided by a single, isolated third-
party service platform without continuity between services,
for instance, if the medical process is changed from online to
offline, patients need to undergo some routine tests repeatedly
before diagnosis [8–10]. Conversely, the medical process of
patients inCHS involvesmultiple participants such as doctors
from community hospitals and specialists from general hos-
pitals, and the patients’ visit records and examination reports
can be shared among different hospitals.

We review some literature associated with our study in
this paper. The comprehensive reviews and analysis about
the scheduling problem in healthcare service system are
provided by [14–16]. Recently, the development of CHS
has brought about the widespread attention in the field of
healthcare system. As a viable and significant assistant
measure to the healthcare, it has achieved remarkable
results in improving the service quality and medical costs of
community hospitals, and contributing to the sustainability
of health systems [17–19]. The provision of telemedicine
services does not mean that these services will be fully
utilized, more effort is needed to pay more attention for
the resources management to accommodate the maximum
number of service requests [20]. Some researchers have put
forward that telemedicine has a good effect on the diagnosis
and treatment of diabetics [21, 22]. Saghafian et al. studied
a telemedicine system to decide whether to transfer online
patients to the offline by the knowledge of triage nurses
in community hospitals [23]. Erdogan et al. proposed the
patient scheduling problem with a maximum appointment
limit in the telemedicine system [24]. Buvik et al. pointed
out that the key to the cost-effectiveness of telemedicine lies
in the management of workload [25]. Recent studies have
shown that machine learning approaches have the potential
to achieve better medical results in knee joint diagnosis [26].

Patients’ choice behavior has a profound effect on the
service efficiency and performance of CHS. However, the
research of the patients’ preference in the telemedicine
system is largely inadequate. The current research concerns
traditional medical service mode. For instance, Tang et al.
studied the choice behavior of patients with anxiety level
in hospital [27]. Wang et al. described a framework for
designing a next generation appointment system, which
could dynamically learn and update patients’ preferences,
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and used this information to improve appointment decision-
making. In medical decision-making modeling, it is an
important problem to evaluate patients’ preferences for var-
ious health states [28]. Liu et al. examined the preferences
and choices of patients in appointments of medical service
to improve the patient experience by balancing speed and
quality of service [29]. The capacity management problem
faced by clinics was to decide which reservation requests
to accept to maximize revenue. Gupta et al. established a
Markov decision process model for the reservation problem,
in which the patients’ choice behavior was explicitly mod-
eled to determine the optimal control strategy and maximize
the revenue of the system [30]. The study on patients’
decision behavior above has greatly improved in all respects,
such as the satisfaction of patients, the resource utilization,
the service quality and efficiency, but the research results
are not applicable for an integrated CHS with a complicated
structure. Therefore, the research in this paper fills in a gap
in the aspect on the influence of patient selection behavior
in CHS with multi-organizations cooperation together.

In CHS, one of themost important aspects is how tomatch
the requirements of patients with medical resources and
ensure the interests of all sites. As we all know, the customer
satisfaction is important in the field of global service manu-
facturing.At the same time,with the continuous development
of adaptive information technology, it is possible to develop
a scheduling method that contains information from real-
time environment to solve the complex dynamic scheduling
problem in stochastic environment [31, 32]. Shiue et al. used a

reinforcement learning algorithm based onmultiple schedul-
ing rules mechanism and offline learning module to maintain
the knowledge base of real-time scheduling system in the
dynamic environment. The scheduling results obtained by
this method are more effective than other metaheuristic algo-
rithms [33].Wang proposed aweightedQ-learning algorithm
based on dynamic greedy search to determine the optimal
scheduling rule about the problem of adaptive job shop
scheduling, solving the problem of blind search and improv-
ing the convergence and accuracy of the algorithm [34].

We consider a resource scheduling problem in a com-
plex healthcare service system, which is often encountered
in various fields. In this problem, CHS is composed of multi-
ple parts, involving community hospitals, general hospitals,
managers of third-party platform and patients. Referring to
the works on reinforcement learning algorithm in scheduling
problem, we try to apply a Q-learning algorithm to generate
optimal scheduling rules in CHS.

Problem description andmodel

As shown in Fig. 1, a simplified telemedicine service process
of patients based on an actual CHS is given. In this paper, we
focus on a scheduling problem regarding chronic diseases
patients. There are four main parts in CHS:

(1)Patient-side first-time patientsmust fill out the detailed
personal information such as name, age, illness, symptoms,
and currentmedications using themobile applicationofCHS;
while returning patients can perform the function of booking
register directly.

Fig. 1 The flow chart of the CHS
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(2) Online booking platform the manager attaches the
online shift rostered of specialists (service providers) in
advance, so that patients can make medical appointment that
suit their preferences about time and specialists by viewing
some information about the system status such as the wait
list and the available appointment slots for some specialists.
Meanwhile, specialists can also early access the informa-
tion about their own service queues and quickly master the
patients’ illness based on the information of booking or the
history diagnostic records.

(3) Telemedicine platform specialists provide two ser-
vice modes for patients by telemedicine platform. One is
by videos, audios, or graphics by the Internet technology;
another is to arrange patients for referral and provide face-
to-face medical service if specialists cannot provide precise
performance evaluation as the limitation of network or the
complexity of the illness.

(4) Management platform managers schedule the spe-
cialists’ resource and match it with patients by considering
patients’ choice behavior tominimize the total medical costs.

Obviously, specialists are the main suppliers for medical
service in the CHS, deciding how to schedule specialists and
service requests is an important decision process which bears
on the interests of patients and managers. Therefore, we pro-
pose a mathematical model to solve the medical resource
scheduling problem with a complex network structure. The
basic structural properties and some related assumptions of
CHS are given below.

Problem description

The queueing network of CHS is shown in Fig. 2. This paper
considers two types of patients including first-time patients
and returning patients, and the arrival process and service
process of these patients follow different arrival rate and ser-
vice rate respectively.

Due to the queueing process and the service process are
complicated and flexible, we give some related assumptions
of CHS before modeling as follows:

(1) Appointment is performed in pre-diagnosed by
telemedicine platform, and there is only one appoint-
ment request is permitted in an available slot of special-
ists.

(2) First-time patients or returning patients have the choice
of deciding specialists and slots according to their
own preferences. If the selected specialist or slot is at
capacity, they can wait for this specialist or consider an
alternative.

(3) The number of specialists and available slots are finite,
and the proposed scheduling policy aims at each slot
separately.

(4) Patients of appointment arrival are on time.

Fig. 2 The queuing network of patients in cloud healthcare system

The impatience behavior of patient

The impatience behavior of patients has a great influence
on the efficiency and the cost of the CHS, as a result, we
propose a cost–benefit function to describe the acceptable
queue length of patients as:

ε(t) � rs − c∗t ,

where rs refers to the profit of patients from services; c is the
waiting cost per unit time and t is the expected waiting time.
Patients enter the queue if and only if ε(t) ≥ 0, which can
help us to determine the number of patients arriving in unit
time. We assume that the arrival process of patients follows
the Poisson distribution with parameter λ, and the service
times obeys Exponential distribution with parameter μ. The
queue model in the CHS is a standard birth–death queue
model, let d be the number of specialists in the telemedicine
platform, thus the stationary probability that there are j
patients in the CHS can be represented as follows:

Pj �
⎧
⎨

⎩

(1−ρ)ρ j

1−ρd+1 , ρ �� 10 ≤ j ≤ d

1
d+1 , ρ � 10 ≤ j ≤ d

.
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Fig. 3 The function curve of f (μ) and f (μ)′ in unit time

The average missed number and average queue number
of patients in CHS per unit time obtained from the above
formula are λl � λPd and λi � λ(1 − Pd). Furthermore, the
system capacity can be calculated as:

V � Nm + 1 � μ × Tmax � μ × rs
c
, .

where ρ � λ
μ
, Pd and Nm are the loss probability of

patients and the maximum waiting queue of patients accept-
able respectively. One of the most important concerns of
managers is striking a balance between the revenue and the
cost which is closely related to the service rate μ. Therefore,
the relationship about the revenue of CHS and the parameter
μ can be presented as:

f (μ) � λm(1 − Pd) − ωμ,

where m denotes the average revenue of each patient, indi-
cating that the value of the revenue function depends on the
parameter μ, thus we solve the first-derivative of f (μ) to
obtain the optimal service rateμ and get the maximum value
of f (μ).

f (μ)
′ � λm

⎡

⎣− λρμt−1

μ2(1 − ρμt )
−

(1 − ρ)ρμt − 1
(
t log ρ − μt−1

μ

)

1 − ρμt

− (1 − ρ)ρμt−1ρμt (t log ρ − t)

(1 − ρμt )2

]

− ω.

Next,we design a small-scale computation case to validate
the correctness of f (μ). First, we set λ to 2, and let m � 14,
ω � 1, rs � 18, and c � 5, then the relationship between
the revenue function and the first-derivative of f (μ) along
time is shown in Fig. 3.

By solving the equation f (μ)
′ � 0, we can have that the

optimal service rate μ∗ is 2.511, f (μ)max � 22.700 and V
� 9. These results are almost same as the data provided by
managers. Based on this solution, we can also determine the
maximum appointment number of patients for each special-
ist, the service capability of the CHS for a finite time horizon,
which contributes to deciding the matching problem and to
ensuring the scheduling tasks performed correctly.

Problemmodel

The Markov model can be established using the following
notations.

The objective function can be written as follows:

Fπ (t) � min
t∈T

⎛

⎝

⎡

⎣
T∑

t�1

I∑

i�1

K∑

k�1

S(i)∑

s(i)

(
1

μi , k
ci Si (t)ys(i)(t) + xid (t)E2

)

+
T∑

t�1

E1(t)W (t)L(t)

])

.

The objective function minimizes the total costs, in which
the first term represents the online medical cost of patients,
the second term is the penalty cost of unmet patients’ choice
preferences, and the last term represents the waiting time
cost. The queueing model in CHS is a standard birth–death

Table 1 Notations

Sets

I A set of specialists in the CHS,i ∈ I

K A set of types of patients,k ∈ K

Si A set of patients served by specialist i , si ∈ Si

T A set of appointment slots every day in the
planning cycle,t ∈ T

Parameters

E1(t) The waiting time cost of the patients during the
slot t

E2 Penalty costs of unmet patients’ personal
preferences

ci Unit medical cost of specialist i

π Service rules π of specialists

λk(t) The arrival rate of the kth type of patient at the
beginning of the t th time period

μi , k The service rate of specialist i serving patients
with type j

Decision variables

xd(i)(t) 0 if the patient served by their own designated
specialist in time period t and 1 otherwise

Yd(i)(t) 1 if the patient is assigned to specialist i in time
period t and 0 otherwise
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Table 2 The structure of Q-table
State Action

a11 a12 a21 · · · aD2

(0, 0) Q(s00, a11) Q(s00, a12) Q(s00, a21) Q(s00, · · ·) Q(s00, aD1)

(1, 0) Q(s10, a11) Q(s10, a12) Q(s10, a21) Q(s10, · · ·) Q(s10, aD1)

· · · Q(· · · , a11) Q(· · · , a12) Q(· · · , a21) Q(· · · , · · ·) Q(· · · , aD2)

(M , 0) Q(sM0, a11) Q(sM0, a12) Q(sM0, a21) Q(sM0, · · ·) Q(sM0, aD2)

(M , 1) Q(sM0, a11) Q(sM0, a12) Q(sM0, a21) Q(sM0, · · ·) Q(sM1, aD2)

· · · Q(· · · , a11) Q(· · · , a12) Q(· · · , a21) Q(· · · , · · ·) Q(· · · , aD2)

(M , N ) Q(sMN , a11) Q(sMN , a12) Q(sMN , a21) Q(sMN , · · ·) Q(sMN , aD2)

process, we can gain the systemic state functions by steady-
state probability, which is helpful for us to solve the objective
function using reinforcement learning method in the next
section.

Solutionmethod

There are many challenges to solve the proposed model.
First, patients have personal choice behavior that they can
choose specialists or slots and even both. Second, there
are two types of patients with different arrival rates and
service rates. Third, the proposed model involves multiple
conflicting objectives, how to weight each sub-objective is
a difficulty mission. Reinforcement learning is a kind of
method framework of learning, forecasting and decision-
making that used to solve the problem that agents achieve
specific goals through learning strategies in the process of
interactionwith the environment,when considering sequence
problems, reinforcement learning has a long-term perspec-
tive and focus on the pursuit of long-term results. Therefore,
in this section, we design a Q-learning algorithm based on
an improved ε-greedy policy to solve the studied problem.
Six key information elements of Q-learning algorithm are
presented below.

(1) Environment the environment includes the whole struc-
ture and problem description of the CHS, as shown in
Section “Problem description and model”.

(2) Agent and state the agent refers to the CHS, and the
state of the agent is presented as coordinate matrix (a,
b), where a and b represent the number of first-time
patients and returning patients respectively.

(3) Action for each specialist, there are two kinds of action
for choosing, one is the first-time patients, the other is
the returning patients.

(4) Reward function a reward function is designed
below to ensure the accuracy and rationality
of the scheduling. The agent chooses the next
action and update the Q-table based on the fed

back value of R(t) for each round.R(t) �
1/

([ ∑T
t�1

∑I
i�1

∑K
k�1

∑S(i)
s(i)

(
1

μi , j
ci Si (t)ys(i)(t) +

xid (t)E2
)
+

∑T
t�1 E1(t)W (t)L(t)

])
.

(5) Q-table the structure of Q-table is presented as state ∗
action as shown in Table 2, the number of elements is
(M + N ) ∗ 2D, where D is the number of specialists in
the telemedicine system, and M + N is the number of
patients in a planning horizon

We use an improved ε-greedy policy to avoid getting the
local optimal solution. At a time, the agent performs an
action, or exploits a new actionwith probability ε, or searches
other actions with probability 1-ε. The expression of the ε can
be designed as:

ε � 0.5

1 + e
10×(episode−0.6×max_episode)

max_episodes

.

Then, the ε-greedy policy is:

μ(at |st ) �
{
random(A(st )), rand > 1 − ε

a∗, else
,

where a∗ indicates the current action st when the Q value
is maximum, and A(st ) represents a set of optional actions
in st state, the rand represents a sample value that obeys
standard normal distribution. Figure 4 describes the changing
rule about the values ε and 1 − ε with the iteration times.

Figure 4 shows that as the learning time increases the
value ε gradually decrease to 0, which means that the agent
has the probability of 50% to explore a new action at first,
then use the knowledge that have learned from the envi-
ronment to choose the best action that have learned. In this
section, we present a three-stage dynamic scheduling prob-
lem using the Q-algorithm to design scheduling rules and
service sequences for each specialist. At the first stage, allo-
cating the two types of patients to each specialist under the
patient’s personal preferences considered in each appoint-
ment slot. At the second stage, designing service rules for
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Fig. 4 The image of ε and 1 − ε varies with the number of iterations

Fig. 5 Pseudo-code of the Q-Learning algorithm

each specialist to maximize the objective function. At the
third stage, deciding the optimal service sequence of patients
for each specialist. The pseudo-code of the developed Q-
learning algorithm is shown in Fig. 5, and the pseudo-code
of the initialization process is shown in Fig. 6.

In this paper, the action refers to assigning different types
of patients to different specialists, and the specific action
selection process is as follows:

(1) Define action space: let action space be [a11, a12, a21,
a21, . . . , a1D , a2D].

(2) Initialize the system state as (0, 0), and the agent selects
an action based on ε-greedy policy, i.e., the agent has
the probability of ε to explore a new action, and has the
probability of 1-ε to use the current action to make the
next choice.

Fig. 6 Pseudo-code of initialization procedure

Fig. 7 Pseudo-code of the action selection process

(3) Judge whether the selected action meets the preference
of the patient.

(4) Detectwhether the state_next has been stored in the state
set, if not, add it to the set.

(5) Calculate the Q value of the action performed in the
current state and update the Q table at the same time.

(6) When state � state_termanal, the selection of action
ends and an episode is completed.

The pseudo-code for the action selection process is shown
in Fig. 7.

To calculate the reward function and update the Q-table
of each iterative result based on the above pseudo-code, we
can find the optimal scheduling policy when the Q-table
converges. To explain the effectiveness of the proposed Q-
learning algorithm more explicitly, we compare it with the
traditional scheduling algorithms in the next section.
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Experimental results and analysis

Implementation of the solutionmethods in Section “Solution
method” was implemented with Python 3.9. All experiments
were run on a Lenovo Linux server with 8 GB shared RAM.
To evaluate the computation performance of the developed
Q-learning algorithm, we design some test cases based on
six specialists and compare the Q-learning algorithm with
the well-known first-come-first-service (FCFS) policy and
priority service policy (PSP). PSP means that a patient must
be assigned to the specialist corresponding to the patient’s
choice preference, if the specialist is busy the patient has to
wait until there is a usable time slot. The related parameters
are set as shown in Tables 3 and 4.

We conduct several experiments with different parameters
λ to analyze the optimal queue length for appointment of
specialists in each booking slot to avoid patients waiting too
long, the results are shown in Fig. 8.

According to the simulation results, the maximum queue
length that different types of patients can accept is obtained
in Fig. 9.

The experimental results show that for the above cases, the
maximum queue length of specialists is 14, which is almost
consistent with the data 13 provided by the manager. Based
on this, we can also calculate the maximum service capacity
of the system in different states.

(1) FCFS scheduling rule

FCFS (first come first service) is that the scheduler always
gives priority to the jobs at the top of the ready queue, and
ignores any other factors. The most strength of FCFS is that
it is easy to implement and fair, but it does not consider the
comprehensive utilization of various resources in the system.

Table 3 Parameters about specialists

Specialists Service cost (RMB/hour)

Director A1 1000

Director A2 1000

Vice-director B1 800

Vice-director B2 800

Attending C1 600

attendings C2 600

To describe the effectiveness of Q-learning algorithm in
reducing patients’ waiting time and medical costs, we build
the objective function based on FCFS rules as:

Lπ (t) � min
t∈T

⎛

⎝

⎡

⎣
T∑

t�1

I∑

i�1

K∑

k�1

S(i)∑

s(i)

(
1

μi , k
ci Si (t)ys(i)(t)

)

+
T∑

t�1

E1(t)W (t)L(t)

])

.

The first term of the objective function represents themed-
ical cost of patients, and the second term is the waiting time
cost. Compared with the FCFS method, the scheduling strat-
egy of Q-learning method not only considers the patient’s
choice preference, but also realizes the optimal matching
between patients and specialists to reduce the online visit
time of patients. We schedule patients from different com-
munity hospitals in hours. Themedical time of patients varies
according to their conditions of illness, therefore, scheduling
patients based on the rules of FCFS may lead to inefficient
service due to improper matching. For example, a patient
only needs 5 min under the service of specialist A, but it may
take 8 min for specialist B. The specific experimental results
will be discussed in detail later.

(2) PSP scheduling rule

The assignment strategy of patients is performed to the
strictly according to their choice preference. While realiz-
ing the basic medical needs, considering the patient’s choice
behavior is very helpful to optimize the online medical
configuration. For example, patients on the haodf online con-
sultation platform (https://www.haodf.com/) can fully realize
the freedom of choosing specialists and visiting time. There-
fore, it is necessary to compare the scheduling method that
only considers the patient’s personal choice with the Q-
learning method that considers the patient’s choice behavior
and visit time at the same time. The experimental is carried
out using the parameters of FCFS.

(3) Parameters setting based on Q-Learning

The key parameters of learning algorithm are set as shown
in Table 5, where the greedy coefficient ε is determined by
the improved algorithmof action control in Section “Solution
method”.

Table 4 Parameters about
patients Types Medical time E1(t)(RMB/minute) E2(RMB/person) λk(t)

k � 1 15–20 15 220 1/(15–20)

k � 2 10–15 15 380 1/(10–15)
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Fig. 8 Simulation results of system capacity in different arrival rates

Fig. 9 Comparison of system
capacity in different arrival rates
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Table 5 Parameters about Q-learning algorithm

Parameters Values

Learning rate α 0.1

discounted factor γ 0.9

iteration times T 500

ε
ε � 0.5/

(

1 + e
10×( episode−0.6×max_episode)

max_ episodes

)

The numerical results

The work schedule of each specialist is shown in Table 6, in
which specialists consist of director, vice-director and attend-
ing.

Q-learning algorithm is used to learn the two rules for 500
rounds, and the training results are shown in Figs. 10 and 11,
where the X-axis represents the number of learning rounds,
and the Y -axis represents the total medical cost of each round
of learning results.

By observing the training results based on Q-learning
algorithm under six different schemes, it can be found that
in the first 400 rounds of iteration process, the learning tra-
jectory has some fluctuation due to the policies of selected
action are different which is helpful to trade-off the three
sub-objectives. The training results gradually converge and
remain stable after 400 iterations. At the same time, we can
determine the optimal scheduling strategy and corresponding
service rule. The experimental results based on Q-learning
algorithm, FCFS method and PSP are shown in Tables 7 and
8.

FromTables 7 and 8we can see that theQ-learningmethod
has a significant improvement in three sub-costswhichmakes
the total medical costs can be saved up to 38.7%, this means
that the Q-learning method can effective way to solve the
scheduling problem in complex CHS. The scheduling policy
of Q-learning method is not strictly following the patients’
choice preference compared with the PSP instead to balance
the preference and waiting time of patients. The PSP policy
allocates patients according to their personal choice, which

may lead to the idle of other specialists, thus increasing the
waiting time cost of patients.

Figures 11 and 12 show that the Q-learning algorithm is
better than FCFS method which ignores the patients’ choice
preference. Thewaiting time cost based on the FCFCmethod
is smallest because the patients are served according to their
arrival sequence, so the penalty cost is higher. The PSP is
strictly following the patient’s choice preference no matter
how the queue is long which makes the other resource can-
not be fully utilized and leads to a higher waiting time cost.
In Fig. 12, the penalty cost and waiting time cost gradually
decrease because the waiting time of patients decreases and
patients havemore opportunities to be assigned to the special-
ists they choose. However, the decreased slightly when the
working hours of specialists increase to some extentwhen the
number of patients is fixed. Above experiments can provide
the managers with effective decision-making references that
to balance the number of specialists and the medical costs.
Therefore, theQ-learningmethod is themost effectiveway to
balance the multiple conflicting sub-objective function. The
scheduling results based these three methods are shown as
Figs. 13, 14 and 15 respectively.

Figure 15 is the scheduling Gantt chart of scheme 6 after
500 rounds of learning. It not only reflects the matching rela-
tionship between specialists and patients, but also expresses
the personal choice preference of patients. In each appoint-
ment slot, we give priority to patients who have made an
appointment in the previous slot to reduce the waiting time
of patients. The right only shows the scheduling results of
some patients, and the numbers in this figure are marked
according to the arrival order of patients. It is obvious that
the matching between doctors and patients and the schedul-
ing results of patients are quite different from the results in
Fig. 13. This is because FCFS rules completely ignore the
patient’s personal choice preference, patient’s type and spe-
cialist’s service rate and other factors, and strictly schedule
according to the patient’s appointment time. Figure 14 is
the scheduling result of PSP, which follows strictly patient’s
choice preference, which leads to high waiting time cost and
resource waste. For example, the queue of specialist B1 is

Table 6 Schedule of working
hours for specialists Schemes Direc-

tor
A1

Direc-
tor
A2

Vice-
director
B1

Vice-
director
B2

Attending
C1

Attending
C2

Total
working
hours

Scheme1 2 2 2 2 2 2 12

Scheme2 2 2 2 3 3 3 15

Scheme3 3 2 3 3 3 3 17

Scheme4 4 3 4 3 3 3 20

Scheme5 3 3 4 4 4 4 22

Scheme6 4 4 4 4 4 4 24
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Fig. 10 The training result of Q-Learning algorithm for Scheme 1–6 (left-to-right)

longer in the beginning time slot 9:00–10:00 than that of
other specialists in the beginning time slot 9:00–10:00. The
above experiments indicate the effectiveness of the schedul-
ing results of Q-learning algorithms than the FCFS method
and PSP.

The experimental results can provide decision support
for managers, and help them to define the optimal match-
ing relationship and service rules of patients with personal
choice preference in the queuing system with multi-types of

patients and multi-server, this is also having the instructive
significance for other organizations with scarce resources.

The improved Q-learning algorithm

We improve the Q-learning algorithm by introducing the ε

(episode) function to make the agent has the equal chance
to select an action from the action sets. To verify the valid-
ity of the improved algorithm of action selection policy, we
conduct some comparative test follows the parameters value
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Fig. 11 Comparison of total
medical costs of different
methods
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Table 7 The experimental
comparison of Q-Learning
algorithm and FCFS method

Scheme Q-Learning FCFS Improvement
(%)

Medical
costs

E1(t) E2 Total medical
costs

Total medical
costs

Scheme 1 8374 14,306 4728 19,871 27,780 21.9

Scheme 2 9606 13,929 4360 27,895 36,571 31.1

Scheme 3 12,338 11,157 3183 26,678 36,269 26.4

Scheme 4 14,937 10,841 3002 28,782 40,082 28.2

Scheme 5 18,760 7970 2694 29,424 48,043 38.7

Scheme 6 22,852 7085 1506 31,443 45,323 30.6

Table 8 The experimental
comparison of Q-Learning
algorithm and PSP

Q-Learning PSP Improvement (%)

Scheme Total medical costs Total medical costs

Scheme 1 19,871 29,014 31.5

Scheme 2 27,895 39,905 30.1

Scheme 3 26,678 41,427 35.6

Scheme 4 28,782 42,809 32.8

Scheme 5 29,424 44,105 33.3

Scheme 6 31,443 44,682 29.6

with Table 5, and the other parameters shown in Table 9 about
the improved algorithm:

The experiments based the scheme 4–6 of Table 6 are
performed, we modify the selection policy of action ε that

assigned thevalue ε � 0.5/
(
1 + e

10×(episode−0.6×500)
500

)
and com-

pared the value of medical costs with the ε � 0.1. The results
obtained from different selection policy are shown in Fig. 16.

The simulation results from the several groups of exper-
iments indicate that the improved Q-learning method has
higher efficiency and faster convergence speed than the unim-
proved, aswell asmakes the performance rises at least 16.9%.

Take scheme 6 as an example, the reward value (rounded)
gradually increases of training result for each state in Q-table
with the change of color from blue to red which are shown
in Table 10:

Our experimental results show that compared with the
traditional FCFS rules and PSP, the improved Q-learning
algorithm proposed in this paper makes the performance
increased by at least 16.9% in solving the scheduling problem
of complex CHS. We present a state space with "urgency"
and a return function with "delay penalty" which take the
total medical cost of the system as the performance index,
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Fig. 12 The results comparison
between Q-Learning algorithm,
FCFS method and PSP
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Fig. 13 Scheduling Gantt diagram based on FCFS method
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Fig. 14 Scheduling Gantt diagram based on PSP
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Fig. 15 Scheduling Gantt diagram based on Q-learning algorithms

Table 9 Experimental parameters of improved Q-Learning algorithm

parameters values

Learning rate α 0.1

discounted factor γ 0.9

iteration times T 500

ε
ε � 0.5/

(

1 + e
10×( episode−0.6×max_episode)

max_ episodes

)

and design an action selection strategy with "more random
in the early stage" and "more accurate in the later stage" in
the whole learning process, to give an optimal scheme and
some scheduling rules at each appointment slot.
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Fig. 16 The function values for Schemes 4–6

Conclusions

In this paper, we investigate an optimal scheduling prob-
lem in cloud healthcare system (CHS) that is presented as a
multi-station queueing network. A Markov model is devel-
oped considering that the patients in CHS always have the
uncertain choice preference on the medical specialists and
appointment slots. To achieve the optimal CHS schedul-
ing decision, an improved Q-learning algorithm is proposed
and verified the validity by conducting a series of numeri-
cal experiments. The experimental results that the proposed
Q-learning algorithm has the better performance than two
traditional scheduling algorithms in terms of the acceptable
queue length and the service capacity limitation. According
to the analytical insights, the developed model and the pro-
posed algorithm in this paper can provide a good tool for
the managers in improving the medical service efficiency in
CHS.

There are some limitations to our study that present
opportunities for future research. In our proposed Q-learning
algorithm, Q-table would become very large with the growth
scale of the investigated problem and hard to converge.
Though the limitation of service capacity had been given in
the numerical experiments, it is an important future work
to hybridize intelligent optimization algorithms, such as
genetic algorithm, Tabu search and etc., into the framework
of Q-learning algorithm for solving the more large-scale
scheduling problem. Moreover, the basic assumptions are
simplified in the investigated system. Many factors, i.e., the
actual medical process of CHS, the patients’ choice behav-
iors and so on, would be more complicated in the real-world
scenario, which is also to explore future in the future.
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Table 10 Q-table results of improved Q-learning algorithm

240

-1
 a11 a12　　 a21 a22 a31　　 a32 a41 a42 a51 a52　　 a61 a62

(0,0) 134 48 99 65 243 58 117 69 72 37 130 50
(1,0) 163 70 178 80 225 57 152 11 107 67 74 73
(2,0) 101 106 118 115 215 33 104 64 114 74 128 112
(3,0) 132 99 122 72 214 109 145 121 156 128 100 167
(4,0) 90 223 59 112 53 113 34 128 74 83 90 77
(4,1) 70 79 76 125 52 203 80 114 54 111 103 139
(4,2) 18 221 88 144 75 87 68 141 65 114 111 120
(4,3) 50 125 93 210 57 82 77 99 60 99 61 89
(4,4) 35 194 61 63 100 81 118 100 68 93 89 111
(4,6) 44 26 183 46 98 38 38 70 76 48 100 25
(5,6) 111 39 108 128 102 100 56 52 109 39 122 175
(5,7) 155 44 21 50 47 75 69 51 65 98 49 46
(6,7) 17 90 16 80 35 36 40 108 56 154 61 107
(6,8) 47 62 60 55 77 65 80 67 4 91 120 51
(7,8) 33 32 32 55 39 30 59 42 62 27 107 42
(8,8) 40 35 35 46 25 40 53 112 61 34 40 80
(8,9) 35 46 24 24 30 41 41 86 42 56 15 38
(9,9) 0 9 0 7 12 9 0 0 7 11 0 62

(9,10) 16 18 27 26 26 20 32 30 61 31 36 32
(9,11) 0 2 -1 0 1 0 10 0 60 0 0 4
(10,11) 14 19 13 17 14 17 11 19 18 17 10 28
(10,12) 17 14 20 8 12 8 14 14 20 25 19 12
(10,13) 6 2 9 4 6 3 5 20 10 5 5 0
(4,5) 67 42 71 72 52 82 84 199 47 79 71 86

(10,14) 0 0 0 0 0 0 0 0 0 0 10 0
(6,6) 29 30 0 37 20 17 0 175 8 35 0 27

(8,10) 39 32 77 28 16 19 30 15 62 37 34 30
(9,8) -1 0 1 0 5 0 0 94 0 0 0 0

(10,9) 0 1 0 36 3 1 0 4 1 0 0 7
(10,10) 25 28 15 24 28 22 14 29 20 32 22 30
(8,11) 0 0 3 0 1 0 10 5 0 3 0 49
(4,7) 14 120 0 0 5 0 0 7 0 0 0 0
(4,8) 0 3 0 0 3 0 12 5 0 0 147 0
(4,9) 0 -1 0 5 0 0 0 23 0 0 0 0
(5,9) 0 -1 0 0 0 0 0 0 0 37 0 0
(5,11) 0 0 0 17 0 1 0 0 0 0 0 0
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