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Evolutionary history of any living organism is as fascinat-
ing as it is complex. The causative agent of plague, the
bacterium Yersinia pestis, is no exception. Having diverged
from the enteropathogen Yersinia pseudotuberculosis,
ancestral strains of Y. pestis spread all over Late-Neolithic
Eurasia. In their study, Andrades Valtue~na et al. (1) pre-
sent a tour de force by reporting 17 new prehistoric
Y. pestis genomes from Eurasian human burials (adding to
13 previously published) (1–7). Furthermore, their work,
together with previously published data, lays the founda-
tions for a new classification of Y. pestis strains and broad-
ens our insight into the dynamics of emergence and
spread of Y. pestis in prehistoric Eurasia.

Of the ancient genomes, the authors classify the two
oldest (previously published) genomes as the “preLNBA–”
(pre-Late Neolithic/Early Bronze Age) lineage and 26 others
as the “LNBA–” lineage (1). PreLNBA– genomes are from
Latvia and Sweden, dated, respectively, to 5,300 to 5,050
and 5,040 to 4,867 y B.P. The low number of reported pre-
LNBA– genomes suggests that these lineages may have
died out several centuries after their rise. In contrast to
preLNBA– lineages, LNBA– lineages were present over a
wide geographic area (from Lake Baikal to central Europe)
and existed for at least 2,500 y—from ca. 5,100 y B.P. until
2,736 to 2,457 y B.P. (the date of the latest genome).

The data reported by Andrades Valtue~na et al. (1) indi-
cate that the LNBA– lineage had a different evolutionary
story compared to later lineages, such as “Branch 1” caus-
ing the second and third plague pandemics, characterized
by phylogenetic and global focal diversity (8–10). Con-
versely, the LNBA– lineage is characterized by a genetic
monophyly, lacking distinct subbranches, containing many
evolutionary dead ends, and showing no correlation
between genetic and geographic distance (1). Interestingly,
the two earliest LNBA– genomes from central Siberia and
North Caucasus are both chronologically concurrent
(ca. 4,836 to 4,622 y B.P.) and phylogenetically positioned
together. Given the 4,600 km that separate these
genomes, it appears that the LNBA– lineage displayed a
fast and extensive spread, presumably facilitated first by
ox-hauled carts and, later, horse and camel domestication
(11–13). Overall, LNBA– strains may have 1) all evolved
from a single source deme, 2) spread with a high
geographic mobility, and 3) had a limited reservoir.

In addition to new “LNBA–” genomes, the authors report
a genome from El Sotillo (Spain), dated 3,361 to 3,181 y
B.P. This genome, together with the previously published
genome from the Volga region (Russia), dated 3,868 to
3,704 y B.P., represent two separate lineages that emerged
at the beginning of the second millennium BCE and desig-
nated as “LNBA+” because they acquired ymt, which
expands the range of mammalian hosts that sustain

flea-borne plague (14). Interestingly, the LNBA+ and LNBA–
temporally coexisted among themselves and with other
early lineages (0.PE7, 0.PE2, 0.PE4, and 0.PE5), emerging
successively in the later third and the second millennia
BCE and also harboring ymt (Fig. 1) (1).

Both LNBA– and LNBA+ acquired the loci (pla and caf)
important to produce different “modern” forms of plague
with high incidence: pneumonic plague transmitted by
aerosol between humans and bubonic plague transmitted
by fleas (15, 16). Also, LNBA+ would have evolved further
to become more virulent in mammals and fleas, notably
through the acquisition of the YPMT1.66c and ymt genes
(14, 17) (Fig. 1).

Some argued that the early clinical manifestation of
plague was the pneumonic form (2, 5). This rarest form
of plague requires a permanent close contact between
humans in densely settled environments to be main-
tained over space and time (18), which hardly character-
izes late Neolithic and Bronze Age Eurasia. While some
“proto-urban” sites in Eurasia, such as Cucuteni-Trypillia
(northeastern Romania, Moldova, and western Ukraine)
or Altyndepe (Turkmenistan) had high population densi-
ties (19, 20), most regions, especially the steppe, were
sparsely populated. Therefore, one may wonder whether
LNBA “–” and “+” lineages would have been more likely
transmitted by fleas (or even lice) rather than inhalation
of contaminated aerosols.

There are two models of flea-borne plague transmis-
sion. According to the “early-phase transmission” model,
the transmission occurs within a few hours or days after
an infectious blood meal and then quickly fades away if
uninfected meals are subsequently ingested (21). Accord-
ing to the “blocked-flea model,” transmission requires an
extrinsic incubation period of at least 4 to 5 d and occurs
even after the ingestion of uninfected meals over 1 mo
(22, 23). The mechanism of early-phase transmission is
unclear. By contrast, we know that the “blocked-flea trans-
mission” results from Y. pestis’ ability to form a solid mass
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in the foregut. This mass obstructs the ingestion of blood
into the gut during a feeding attempt and increases the
fleabite rate (due to the starving) and, therefore, favors the
regurgitation of Y. pestis into the mammalian host. The
transmission by “blocked” fleas sustains the long-term per-
sistence of the flea–mammal–flea cycle, which may not be
possible with early-phase transmission.

Both LNBA– and LNBA+ could, in theory, have been
transmitted by fleas. However, fundamental genetic differ-
ences between the two lineages imply that the chances of
transmission of the LNBA– by fleas is rather low and most
likely limited to early-phase transmission. Indeed, LNBA–
lineage has retained 1) a ureolytic activity killing >40% of
fleas within the first day of infection and 2) functional
ancestral genes that prevent the bacteria from producing
a carbohydrate polymer important for flea blockage (23,
24). Furthermore, it lacks ymt that expands the range of
mammalian hosts that sustains flea-borne plague (14).
This genetic pattern may explain the particular LNBA– phy-
logeny, characterized by a low level of genetic diversifica-
tion and numerous evolutionary dead ends, and evidently
an eventual extinction of this lineage, judging by its
absence from modern-day reservoirs.

The putative extinction of nonadapted flea LNBA– line-
age occurred at least 2,500 y after its rise. How did this lin-
eage survive and spread for such a long time? Is it possible
that it spread via the ingestion of contaminated food, con-
sidering it emerged from an enteropathogen? In the Late
Neolithic and Early Bronze Age, the Eurasian steppe
between the Black Sea and western China was settled pri-
marily by nomads, dwelling in proximity to a wider natural
world in which sylvatic rodents abounded. While there is,
at present, no paleodiet data on human consumption of

rodents, there is archaeological evidence of their hunting
and skinning, as well as using their teeth and bones for tools
and crafts in late Neolithic Central Eurasia (5, 25, 26). How-
ever, as evidence from 20th-century Central Asia shows,
primary outbreak of gastroenteritic plague in humans is con-
fined to local communities, rather than spread across
regions (27). Moreover, to maintain such a route of transmis-
sion would require constant contacts between infected
rodents and humans all over Eurasia—hardly a feasible
option. Finally, small migratory birds could be incriminated
for the dissemination of LNBA– strains, given that a limited
number of birds can be infected by Y. pestis and some may
spread Y. pestis-infected fleas (28).

But what about flea-adapted LNBA+ lineages which,
despite their theoretical capability to seed multiple reservoirs
and become genetically diversified, became extinct, judging
by their absence from modern-day reservoirs—in contrast to
0.PE branches, thriving today in different Asian foci (11, 29,
30)? All documented 0.PE2, 0.PE4, 0.PE5, and 0.PE7 genomes
(>100 in total) come from sparsely populated regions in Asia.
Could it be that local ecological and sociodemographic land-
scapes of 0.PE branches, marked by nomadic pastoralism,
meant that plague was confined primarily to rodents, attack-
ing humans only sporadically, and having less potential to
burn itself out than LNBA+, spreading over a much wider
geographic range, which included sedentary and more
densely populated landscapes of western Eurasia, and circu-
lating more intensively in humans? To appreciate why and
when LNBA+ branches, in contrast with 0.PE, eventually died
out, more genomes from various late Bronze and Iron Age
and contexts are needed.

The question of the context in which Y. pestis lineages
emerged, spread, evolved, and disappear is as important.
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Establishing the origins of the early lineages is, at present,
not feasible, but a hypothesis may be offered. Given that
the two earliest LNBA– genomes (RISE509 from central Sibe-
ria and RK1001 from North Caucasus) are both chronologi-
cally concurrent and phylogenetically positioned together,
despite being situated some 4,600 km apart, may indicate
that their common source was somewhere in between: in
Central Asia, a home to both several Bronze-Age 0.PE line-
ages and all Iron-Age and medieval 0.ANT branches. If the
preLNBA–, LNBA–, and LNBA+ branches arose in Central
Asia, then the local climatic context of their chronologies is
to be considered. The successive emergence of the three
earliest known lineages between ca. 5,600 and 5,100 y B.P.
as well as the 0.PE2, the two LNBA+ lineages and 0.PE4
between ca. 4,000 and 3,800 y B.P. (Fig. 1) occurred in the

context of excessively wet episodes in Central Asia (31–34).
Could it be that excessive rainfall, creating abundant grass
biomass and facilitating population growth of rodent hosts,
provided the optimal conditions for intense bacterial activity
leading to divergence events?

Overall, Andrades Valtue~na et al.’s (1) work opens the
door to some exciting big questions such as when, where,
how, and why ancestral strains have emerged, evolved,
spread, and sometimes counterselected to extinction, and
how they got transmitted from wildlife reservoirs to
human populations. The work also invites the question of
where we draw a border between attributes defining
Y. pestis and its ancestor Y. pseudotuberculosis. Future col-
laborative synergistic research will undoubtedly advance
our understanding of these fascinating questions.
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