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Gouty arthritis is a common inflammatory disease. The condition is triggered by

a disorder of uric acid metabolism, which causes urate deposition and gout

flares. MicroRNAs are a class of conserved small non-coding RNAs that bind to

the 3’ untranslated region (UTR) of mRNA and regulate the expression of a

variety of proteins at the post-transcriptional level. In recent years, attention

has been focused on the role of miRNAs in various inflammatory diseases,

including gouty arthritis. It is thought that miRNAs may regulate immune

function and inflammatory responses, thereby influencing the onset and

progression of the disease. This article mainly reviewed the roles of miRNAs

in the pathogenesis of gouty arthritis and prospected their potential as

diagnostic and prognostic relevant biomarkers and as possible

therapeutic targets.
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1 Introduction

Gouty arthritis (GA) is an inflammatory joint disease with a prevalence of 3.9% of all

adults in the United States, 5.2% for men, and 2.7% for women (1). As a disorder of uric

acid metabolism, this disease is mainly caused by the deposition of monosodium urate

crystals (MSU) in the joint capsule, bursa, bone, and cartilage, ultimately causing joint

damage and even deformity (2). With gout flares, the pain increases and seriously affects

the patient’s quality of life. In addition, gout is closely associated with metabolic

comorbidities that can lead to myocardial infarction, type 2 diabetes, chronic kidney
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disease, and premature death (3, 4). The treatment of gouty

arthritis attacks is mainly to control pain and suppress joint

inflammation, such as the use of non-steroidal anti-

inflammatory drugs, glucocorticoids, etc. The long-term

management of patients with gouty arthritis focuses on uric

acid-lowering therapy to reverse hyperuricemia and thus prevent

gout attacks (5, 6). Despite new treatment strategies and a good

understanding of the pathogenesis of gouty arthritis, recurrent

attacks continue to occur after treatment (7).

MiRNA is a conserved short-stranded non-coding RNA of

approximately 23nt in length, and they were first identified in

Caenorhabditis elegans in 1993 (8). miRNAs are first transcribed

in the nucleus as longer primary miRNAs (primary miRNA, pri-

miRNA), then processed in the nucleus by Drosha into hairpin

RNAs of 60-70 nucleotides, i.e. precursor miRNAs (miRNA

precusor, pre-miRNA), which are transported out of the nucleus

with the help of the Exprotin-5 complex and sheared in the

cytoplasm by Dicer to become mature miRNAs (9, 10).Current

studies have shown that miRNAs are highly conserved

evolutionarily (11). A miRNA can regulate the activity or

stability of multiple target genes by recognizing and inducing

the assembly of the RNA silencing complex (RISC) with the

miRNA response element (MRE) in the mRNA 3’ untranslated

region (UTR) region of the target gene, and multiple microRNAs

can also synergistically regulate the same target gene (12, 13).

More than 1,000 miRNAs have been identified in human cells,

while more than 500 microRNAs in the human body (14).

Although the functions of miRNAs are not fully understood,

relevant studies have shown that miRNAs are involved in

various processes, including cell differentiation, metabolism,

and inflammation (15).

Recent research has demonstrated that miRNA plays an

essential role in the pathogenesis of common nonautoimmune

inflammatory diseases, including gouty arthritis (16). Although

some studies have attempted to elucidate the crucial role of

miRNAs in the pathogenesis of gouty arthritis, their analyses

have always been conducted in a single direction. They have not

diversified to integrate multiple fields of study. Therefore, this

paper reviews the various regulatory mechanisms of miRNAs in

developing gout, including its relationship with uric acid

metabolism, classical inflammatory signaling pathways, and

bone erosion. On this foundation, we considered the promise

of miRNA as a potential diagnostic and prognostic marker for

gout and as a therapeutic target.
2 Overview of gouty arthritis

Gouty arthritis (GA) is characterized by swelling and heat

pain in one side of the joint, causing joint dysfunction,

deformity, and even disability (17). Epidemiology reports the

current range of gout incidence at 0.6-2.8 per 1000 people per

year. The prevalence of gout has continued to increase
Frontiers in Endocrinology 02
worldwide in recent decades, probably due to the aging of

society’s population and changes in dietary patterns (18–20).

The development of gout is based on four pathophysiological

stages, the first two of which are hyperuricemia and the

formation and deposition of sodium urate crystals, the leading

causes of which are disorders of purine metabolism and

dysregulation uric acid secretion (Figure 1). The latter two

components are mainly gout flares triggered by acute

inflammatory reactions and irreversible bone erosion caused

by the deposition of tophi in advanced gout (21).

Usually, the intake of purines is converted by xanthine

oxidase in the liver to uric acid, which is excreted mainly

through the kidneys (22). The renal tubular transporters such

as OAT4 and GLUT9 are responsible for the reabsorption of uric

acid (23, 24), while ABCG2 and ABCC4 are responsible for the

secretion of uric acid (25, 26). And once a high purine diet such

as alcohol, seafood, and meat is accompanied by impaired renal

excretion function, it will lead to hyperuricemia. Once a high

purine diet is accompanied by inadequate excretion by the

kidneys, it can lead to hyperuricemia (27, 28).

Due to the high concentration of urate, along with other

physical and chemical environments, MSU is generated and

deposited in the joint cavity, which in turn acts as foreign bodies

to recruit neutrophils and macrophages and initiate toll-like

receptor (TLR) and NLRP3 inflammasome signaling pathways

to activate innate immunity (29–31). Current studies suggest
FIGURE 1

Four stages in the pathophysiological development of gouty
arthritis.
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that the acute flares of gout depend on two switches, one of

which is the activation of the TLR2/4-NF-kB signaling pathway

within macrophages or monocytes, which promotes the

synthesis of pro-IL1-b and significant components of the

inflammasome, and that this activation is associated with the

influence of large amounts of free fatty acids, intestinal flora or

other microorganisms (32, 33). Stimulating sodium urate

crystals is another critical point of activation of gout

inflammation, which activates the NLRP3 inflammatory

pathway by promoting the assembly of inflammatory vesicles,

thereby promoting the conversion of pro-caspase-1 to caspase-1

and the release of large amounts of pro-inflammatory factors

such as IL-1b (34–36).

These pro-inflammatory factors recruit more neutrophils to

exacerbate the inflammatory response; however, along with the

inflammatory death of large numbers of neutrophils, activated

neutrophils release extracellularly depolymerized chromatin and

intracellular granule proteins, called neutrophil extracellular

traps (NETs), to trap and break down inflammatory factors to

relieve gout flares (37, 38). This chronic inflammatory response

develops into the advanced disease characterized by tophi

(Figure 1), a microenvironment of adaptive and innate

immune cells, MSU, and fibroblasts, promoting bone

resorption by osteoclasts and reducing bone formation

osteoblasts, and ultimately causes bone erosion (39, 40).
3 The function and mechanism of
miRNAs in GA

Extensive studies illustrate that abnormal expression in

miRNAs occurs during the pathophysiology of gouty arthritis

(15, 41, 42). Only 10% of the population with high uric acid has

positive signs of gouty arthritis, which may be associated with

different genetic backgrounds, and miRNA sequence alterations

affect the genetic susceptibility background (43). In addition to

this, human genome-wide association studies (GWAS) have

identified many loci associated with hyperuricemia and gout,

and these single nucleotide polymorphism (SNP) loci are mainly

associated with the coding of uric acid transporter genes (44, 45).

Further studies have illustrated the ability of miRNAs to regulate

inflammatory immune-related processes in gouty arthritis

(46, 47).

Over the past years, attempts have been made to identify

aberrantly expressed MiRNAs in gout to explore the role of these

molecules in the pathogenesis of gout. In 2014 Tae-Jong Kim

et al. first investigated the role of Mir-155 in acute gouty arthritis

(48). So far, studies on gouty arthritis have been divided into

omics-based high-throughput studies and in vitro cellular

models stimulated with MSU or in vivo animal models. A

large number of meaningful results have now been identified.

Therefore, we will summarize the relationship between miRNAs
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and gout pathogenesis in terms of hyperuricemia, inflammatory

immunity, and bone erosion and look at their diagnostic and

therapeutic value based on the last five years of publication and

older but more classic literature
3.1 Involvement of miRNAs in
the hyperuricemia

Hyperuricemia (HUA) is the prodromal stage of gout attack

and a common clinical feature in the course of gouty arthritis.

The inability to excrete uric acid from purines promptly leads to

a series of disturbances in the metabolic environment and can

even cause damage to liver and kidney function (49). As the

body’s primary urate handling organ, the kidney generally relies

on renal tubular urate transport proteins, such as URAT1,

GLUT9, and ABCG2, to regulate uric acid excretion (26, 44).

It was reported that C421A polymorphism enhanced the

degradation of ABCG2 in a miRNA-dependent manner and

that the use of inhibitors of miR-519c and miR-328 reversed this

translational repression (50). Sun, W. et al. reported that Xie-

Zhuo-Chu-Bi-Fang could upregulate miR-34a and downregulate

URAT1 to treat hyperuricemia (51). In addition, miR-143-3p

can directly target the 3’UTR of GLUT9 in renal tubular

epithelial cells to reduce uric acid reabsorption and

inflammatory response (52). In a clinical study, miR-155 was

elevated in the serum of HUA patients, and subjects with urate

deposition had higher miR-155 than those without deposition

findings (53). In vitro experiments also revealed that miR-155

was elevated in high-uric acid-stimulated venous endothelial

cells (HUVEC) and inhibited eNOS expression causing

endothelial cell dysfunction (54).

Similarly, hyperuricemic stimulation led to the downregulation

of miR-92a, thereby inhibiting vascular neogenesis through the

KLF2-VEGFA axis (55). Hong Q et al. also found that miR-663

could act on the transcript of TGF-b1 to regulate PTEN to inhibit

endothelial cell migration (56). These studies also suggest that high

uric acid causes cardiovascular damage and explains the

correlation between gout and cardiovascular disease such as

myocardial infarction. And miRNAs also play a precise

regulatory role in liver and kidney function damage caused by

excessive uric acid. Uric acid damages renal interstitial fibroblasts

by downregulating miR-9 and causing activation of NF-KB and

JAK-STAT pathways (57). Besides, Chen, S et al. also reported that

overexpression of miR149-5p inhibited FGF21 expression and

attenuated uric acid-induced lipid deposition in hepatocytes (58).

Chi, K et al. found that HOTAIR competitively binds miR-22 in

hyperuricemia to regulate NLRP3 inflammasome activation to

promote endothelial cell pyroptosis and exacerbate renal injury

(59). Recent studies have also reported a decrease in miR-30b and

an increase in IL-6R in serum urine and kidney tissue in a mouse

model of HUA (60). The above study we summarized in the

Table 1. In summary, miRNAs are involved in the development of
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hyperuricemia and play an important role, and targeting miRNA

processing may provide new insights for the future treatment

of hyperuricemia.
3.2 Role of miRNAs in the regulation of
immune-inflammatory responses

3.2.1 miRNAs and TLR2/4/MyD88/NF-KB
pathway in GA

The onset of gouty arthritis results from an inflammatory

immune response triggered by MSU deposition. Two pathways

mediate the main molecular mechanisms: activation of the

TLR-related NF/KB signaling pathway and activation of the

inflammatory vesicle NLRP3, respectively. The former is

mainly microbial or free fatty acids activating Toll-like
Frontiers in Endocrinology 04
pattern recognition receptors, mainly TLR2/4, recognizing

the downstream signaling molecule myeloid differentiation

factor 88 (MyD88) for intracellular signaling and finally

leading to the activation of NF-KB (31, 35, 61). Numerous

studies have illustrated the significant correlation between

miR-192 and NF-KB pathway. For example, miR-192-5p

effectively alleviated tumor progression by inhibiting the

IRAK1/NF-kB pathway in endometrial cancer (62, 63).

Recently, Lian, C et al. found that miR-192-5p in MSU-

treated synovial fluid mononuclear cells (SMFCs) and THP-1

could target TLR4 to inhibit NF-KB pathway activation

reducing TNF-a and IL-1b release (Figure 2) (64). MiR-146a

is the first regulator that is involved in innate immunity. It has

been reported that miR-146a can regulate key downstream

adaptor molecules of TLR in sepsis by complementary pairing

with the 3’UTR base sequence of TNF receptor-associated
TABLE 1 The miRNAs involved in Hyperuricemia.

miRNA Result model reference

miR-22-3p↓ NLRP3 inflammasome↑, pyroptosis↑ In vivo and in vitro (59)

miR-30b↓ IL-6R↑ In vivo (60)

miR-34a↑ URAT1↓ in vivo (51)

miR-149-5p↑ FGF21↓, hepatocytes lipid accumulation↑ In vitro (58)

miR-143-3p↓ GLUT9↑ In vitro (52)

miR-9↑ NF-KB↓, JAK-STAT↓, injury in NRK-49F↓ In vitro (57)

miR-92a↓ KLF2↑, VEGFA ↓, Angiogenesis↓ In vitro (55)

miR-663↑ TGF-b1↓, PTEN↓, migration↓ In vitro (56)

miR-155↑ eNOS↓, endothelial dysfunction In vitro (54)
fro
a “↑” indicates elevated expression or facilitation.
b “↓” indicates reduced expression or inhibitory effect.
FIGURE 2

Mechanisms of miRNAs in gouty arthritis regulating inflammatory pathways in monocytes/macrophages.
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factor 6 (TRAF6) and IL-1 receptor-associated kinase 1

(IRAK1) genes, thereby inhibiting the activity of TLR

signaling pathway and thus inhibiting NF- kB signaling

pathway to exert inflammatory suppressive effects (65).

Another study indicates miR-146a alleviates inflammation in

acute gouty arthritis in rats via TLR4/MyD88/NF-KB signaling

pathway. And further study demonstrated that miR-146a

knockout mice promoted the development of gouty arthritis

by upregulating TRAF6 and IRAK-1 expression compared to

wild type (Figure 2) (66, 67). Ma, T et al. illustrated that

MicroRNA-302b could directly bind to the 3’ UTR of IRAK4

and EphA2 in an in vivo and in vitro model of gout to inhibit

activation of the NF-KB pathway to reduce IL-1b (Figure 2)

(68). Therefore, targeting the TLR-mediated NF-KB pathway

via miRNA can be a promising approach for GA treatment.

3.2.2 miRNAs and NLRP3 inflammasome
pathway in GA

NLRP3 is the most comprehensive subfamily studied in the

nucleotide-binding oligomerization domain-like receptor (69).

NLRP3 inflammasome comprises NLRP3, recruitment domain,

an adaptor protein, apoptosis-associated spot like protein (ASC),

and caspase-1, expressed in many immune cells. In gouty

arthritis, MSU crystal acts as a ligand to bind and activate

NLRP3 inflammasome. After the conformational change of

NLRP3 protein, it polymerizes with ATP to form a protein

oligomer. It then recruits pro-caspase-1 and ASC through its

effector domain PYD, The caspase-1 precursor was

automatically catalyzed into the active form, and proIL-1b was

enzymolysis into IL-1b (70, 71). Current studies have confirmed

that miRNAs are critical regulators of the NLRP3 inflammasome

pathway (72). In recent years, it has been reported that

circHIPK3 can act as a molecular sponge to adsorb miR-561

to competitively bind NLRP3 mRNA to reduce inflammation in

GA (64). Upregulation of miR-20b expression and

downregulation of NLRP3 protein was also found in

macrophages with HOTAIR knockdown (73). Wang, X et al.

reported that miR-223-3p and miR-22-3p could reduce

inflammatory effects in monocytes and mouse models of gout

by interacting with the 3’ untranslated region segment of NLRP3

mRNA (74). And Tian, J et al. also found that miR-223 could

target NLRP3 mRNA in MSU-induced rat models and

fibroblast-like synoviocytes to inhibit inflammation and

cellular pyroptosis. Further studies confirmed that miR-223

deficiency exacerbated the swelling index of MSU-induced

joint inflammation and intensified inflammatory cell

infiltration and cytokine release, including IL-1b and MCP-1,

compared to WT mice (75, 76). Similarly, the expression of

NLRP3 was dramatically upregulated in Bone marrow-derived

macrophages (BMDMs) from miR-146a KO mice (67). Besides,

the active ingredients of some Chinese traditional medicines also

exert anti-inflammatory effects in GA by regulating the miRNA/

NLRP3 axis. Total glucosides of paeony alleviate in vitro MSU-
Frontiers in Endocrinology 05
induced inflammation in macrophage THP-1 via the MALAT1/

miR-876-5p/NLRP3 cascade pathway. Wang Y et al. also

reported that Tripterine alleviates GA by modulating miR-

449a to act directly on NLRP3 mRNA and inhibit its

expression (Figure 2) (77, 78).

3.2.3 miRNAs and other mechanisms of
inflammation in GA

In GA, when inflammatory pathways in macrophages are

activated, they are polarized toward the M1 phenotype and

release large amounts of pro-inflammatory factors such as

TNF-a, IL-1b, and MCP-1. miRNAs also play a regulatory role

in this process. MiR-449a and miR-192-5p can target NLRP3

and epiregulin (EREG) to inhibit macrophage M1 polarization

in gout (77, 79). Apart from this, miRNA-488-3p and -920 both

can interact with the 3’UTR of IL1-b to exert anti-inflammatory

effects (80). Li, G. et al. also reported that miR-221-5p represses

IL1-b expression in acute gouty arthritis to regulate the

inflammatory response (81). Although Jin, H. M et al.

reported that overexpression of miR-155 in vitro reduced

SHIP-1 levels and promoted MSU-induced TNF-a and IL-1b
production (Figure 2), it was later indicated that there was no

remission of GA in miR-155 knockout mice compared to wild

type (48, 82). Inflammatory factors tend to infiltrating immune

cells, such as neutrophils, which on the one hand,

worsen inflammation.

On the other hand, large numbers of neutrophils accumulate

inflammatory death, chromatin remodeling, and ejection outside

the cells to form NETs, called NETosis. These aggregated NETs

can trap pro-inflammatory factors and act in conjunction with

some anti-inflammatory factors to reduce the development of

inflammation. Yet, few studies on the relationship between

miRNAs and NETs in gout. Recently, it has been shown that

MSU stimulation can significantly increase miR-3146 expression

in neutrophils, accompanied by the formation of many NETs. In

contrast, treating rats with antagomir-3146 reduced NETs

formation and relief of joint swelling and inflammation,

suggesting that early NETs formation exacerbates GA and that

miR-3146 plays a role vital role before NETs formation (83).

However, the current research on NETs is still inadequate, and

how miRNAs regulate the development of NETs in gout is still

unclear. Further studies are needed to reveal the potential

mechanisms to help people understand gout and identify

potential therapeutic targets. We conclude with a summary of

miRNAs involved in inflammatory immunity. (Table 2)
3.3 The regulatory role of miRNAs in
bone erosion

There is irreversible joint damage and deformity in advanced

gout, mainly due to local cartilage damage and bone erosion

caused by tophi (40). The primary mechanism is that MSU
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disrupts the balance between osteoblasts for bone formation and

osteoclasts for bone resorption, decreases the activity of

osteoblasts, promotes the aggregation and differentiation of

osteoclasts, and promotes the development of inflammation

and bone damage (84–86). Extensive studies have confirmed

the involvement of miRNAs in the development of bone erosion.

For instance, miR-20a targets RANKL through the TLR4/p38

pathway, hindering osteoclast proliferation and differentiation

(87). Sujitha, S et al. found that miR-23a altered the expression

level of LRP5 through RNA interference and contributed to a

decrease in bone loss and an increase in calcium retention (88).

In addition, Najm, A. et al. also demonstrated that miR-17

inhibits the autocrine effects of the IL-6 family in vivo by directly

targeting JAK1 and STAT3 to exert anti-inflammatory and anti-

bone erosion effects (89). There are few studies on miRNAs

affecting bone erosion in gouty arthritis. Only An L et al.

reported that miR-192-5p could inhibit MSU-induced EREG

expression in GA mice to alleviate bone erosion (79). This

case suggests that the underlying molecular mechanisms of

miRNAs affecting bone erosion in GA remain to be explored.
4 Application of miRNAs in clinical
diagnosis and treatment of GA

First of all, miRNA widely exists in a variety of body fluids,

such as whole human blood (90), urine (91) saliva (92).

Secondly, miRNA is stable in body fluid in a specific secretion

mode, and it is easy to extract tissue samples without invasion.

Even under changing environmental conditions, miRNA can
Frontiers in Endocrinology 06
stably exist. Because of its specificity, sensitivity, and stable

expression in a wide range of diseases, MiRNA has early

diagnostic capabilities and is rapid and accurate (92). In

studies of gouty arthritis, several miRNAs are up-or down-

regulated, and some of these miRNAs also vary with the

extent of the disease. BohatáJ et al. found elevated levels of five

circulating miRNAs, miR-17, miR-18a, miR-30c, miR-142, and

miR-223, in the plasma of patients with GA and HUA (93). In

addition, it has been reported that miR-221 is lowly expressed in

the serum of AGA patients and the receiver operating curve

(ROC) applied to the diagnostic value analysis showed an area

under the curve of 0.884 (81). Therefore miRNAs have the

potential to become markers for gout diagnosis.

The treatment of GA is mainly divided into anti-

inflammatory and analgesic, and uric acid lowering. The

primary treatment for gout attacks is cortisol, non-steroidal

anti-inflammatory drugs (including selective and non-selective

COX2 inhibitors), and low-dose colchicine to control pain and

lessen inflammation (94–97). Although IL-1 inhibitors can

effectively control gout attacks, they are usually reserved for

patients with intolerable side effects or contraindications to first-

line anti-inflammatory therapy (98, 99). The first-line uric acid-

lowering therapy drug is allopurinol, a xanthine oxidase

inhibitor. Still, patients who do not respond to or are

intolerant of allopurinol are treated with febuxostat (6, 100).

Probenecid, sulfinpyrazone, and benzbromarone can be used as

monotherapy or combined with xanthine oxidase inhibitors by

promoting uric acid excretion (101, 102). Liu, P et al. found that

colchicine upregulated mir-223-3p and downregulated IL-1b,
and etoricoxib treated AGA by upregulating miR-451a and

downregulating COX-2 (103). A recent study reported that
TABLE 2 The miRNAs involved in inflammatory immunity.

miRNA target gene/pathway Role in GA model reference

miR-223-3p NLRP3/NF-KB – In vivo and in vitro (74–76)

miR-449a NLRP3 – In vivo and in vitro (77)

miR-22-3p NLRP3 – In vivo and in vitro (74)

miR-3146 SIRT1 + In vivo and in vitro (83)

miR-876-5p NLRP3 – In vitro (78)

miR-20b NLRP3 – In vitro (73)

miR-561 NLRP3 – In vitro (64)

miR-192-5p TLR4
EREG

– In vivo and in vitro (64, 79)

miR-221-5p IL1-b – In vitro (81)

miR-146a TLR4/MyD88/NF-KB
TRAF6/IRAK1/NLRP3

– In vivo (66, 67)

miR-155 SHIP-1 + In vivo and in vitro (48, 82)

miR-302b IRAK4
EphA2

– In vivo and in vitro (68)

miR-488-3p IL1-b – In vitro (80)

miR-920 IL1-b – In vitro (80)
fro
a “-” indicates an inhibitory role during disease progression.
b “+” indicates a promoting role during disease progression.
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two novel hexapeptides (GPAGPR and GPSGRP) found in

Apostichopus japonicus hydrolysates inhibit uric acid

biosynthesis and reabsorption. The expression profiles of

GPSGRP-treated HUA model mice were analyzed, and 21

differentially expressed miRNAs were identified (104).

Chinese medicine or natural products have been developed

to treat gout arthritis in recent years. The drugs for acute gout

arthritis have severe adverse reactions such as bone marrow

suppression, liver cell damage, and gastrointestinal bleeding

(105). Traditional Chinese medicine has some advantages in

terms of low toxicity and adverse reactions. Wang Y et al.

indicated that both Chuan Hu Tong Feng Compound and

Allopurinol upregulated miR-486-5p, miR-339-5p, and miR-

361-5p expression and decreased CCL2 and CXCL8 protein

levels in patients with chronic gouty arthritis (106). Another

research proved that benzbromarone and Xiezhuo Chubi

Decoction reduced uric acid levels by increasing the expression

levels of miR-34a and miR-146a (107). In addition, like

Tripterine (77), Total glucosides of paeony (78) and

Epigallocatechin (57) were also reported to regulate the

expression of miR-449a, miR-876, and miR-9, respectively, to

alleviate the progression of GA. Similarly, Li, X et al. reported

that Noni (Morinda citrifolia L.) fruit Juice also modulates

miRNA and pro-inflammatory factors to treat MSU-induced

AGA in mice (108).

Although miRNA has much fundamental research on the

treatment of arthritis, there are still many problems in the

transition from mechanism research to clinical application.

Therefore, miRNAs related to gout treatment need further

exploration and development.
5 Future expectation

Since the discovery of miRNAs, their wide range of

biological effects have been gradually revealed, also indicating

that they play an important regulatory role in various cellular

activities. Based on recent research results in related fields, in this

section, we will look at the future directions of miRNA research

and the prospects of clinical applications.

Exosomes, a cellular vesicle structure widely found in body

fluids, have been identified for the presence of miRNAs. In recent

years, several studies have demonstrated that miRNAs regulate

inflammatory immunity and tumor progression through

exosomes as vectors. Jiang, K et al. found that peripheral-

derived exosome-mediated miR-155 promoted the polarization

and proliferation of macrophage M1 and activated the NF-KB

pathway to promote the release of inflammatory factors TNF-a
and IL-6 in an acute lung injury model in mice (109). Similarly,

Yingying Cao et al. reported that Enterotoxigenic Bacteroides

fragilis (ETBF) promotes intestinal inflammation and

malignancy by inhibiting exosome-encapsulated miR-149 (110).

Naïve bone marrow-derived macrophages produce exosomes
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with anti-inflammatory miRNAs that target receptor

macrophages to promote their M2 polarization and alleviate

inflammation (111). Therefore, it is natural to speculate that

circulating exosomes contain miRNAs that may influence the

development of GA by regulating macrophage polarization or

other key molecules of inflammation. Furthermore, such

exosome-derived miRNAs have great application in both the

diagnosis and treatment of GA.

In addition, nanomaterials as carriers of drug-targeted

delivery systems have become a hot research topic due to the

development of the interdisciplinary intersection of materials

science and medicine in recent years. Since miRNA mimics are

not resistant to nucleic acid endonucleases and are prone to

degradation in circulation, nanomaterials can be used to wrap

miRNAs for targeted therapy. Wang, F et al. reported that

microRNA-31 bound to adriamycin-loaded mesoporous silica

nanoparticles would be used to target tumor cells high in MTEF4

expression to promote mitochondrial apoptosis (112).

Moreover, Ahir, M. et al. also reported that the use of

mesoporous silica nanoparticles as co-delivery carriers of miR-

34a-Mimic and antisense-miR-10b on tumor cells effectively

inhibited tumor growth and metastasis in triple-negative breast

cancer (113). Although nanomaterials are being studied as

potential therapies for tumors and inflammatory diseases, they

may still cause an immune response in the body and exacerbate

inflammation. Therefore the development of low inflammatory

response nanomaterials for the treatment of inflammatory

diseases remains a great challenge. With the development of

basic science and technology, gene-editing technology is

becoming more and more mature and is expected to be used

for the treatment of many diseases. CRISPR/Cas9 technology,

which won the Nobel Prize, has brought a revolution to the life

science field. Recently, Zhou, W et al. reported that CRISPR/

Cas9-mediated knockdown of miRNA-363 effectively promoted

apoptosis in diffuse large B-cell lymphoma cell lines in response

to adriamycin-induced apoptosis (114). And, Yu Toyoda et al.

also utilized CRISPR/cas9 to construct knockout mice to identify

the role of GLUT12 in regulating blood urate levels (115).

Therefore, the use of CRISPR/cas9-mediated miRNA

knockdown to suppress inflammation in gouty arthritis still

holds great promise for research.
6 Conclusion

In recent years, miRNAs have become a hot topic in

biomedical research. Current studies have shown that miRNAs

are closely associated with the development and progression of

gouty arthritis, and miRNAs play an essential role in the post-

transcriptional regulation process of genes. Despite the large

number of studies reporting miRNA regulation of the gouty

inflammatory process, there is still a significant gap in gouty

arthritis, especially in bone erosion.
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The underlying mechanisms of self-remission of gout as a

recurrent chronic disease and the formation of gouty stones

remain unclear. What is neutrophil-associated NETosis

in the inflammatory process, and is it the culprit that

exacerbates inflammation or relieves it leading to recurrent

gout attacks?

Although gout is already a treatable rheumatic disease, the

side effects of drugs are still evident, and targeting miRNAs may

provide a new idea and insight for gout treatment. In the future,

miRNA is expected to be a marker for diagnosing gouty arthritis

or a target for drug therapy. However, further studies are still

needed. Therefore, the search for relevant miRNAs and further

study of their mechanisms are essential for diagnosing and

treating gouty arthritis.
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