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CASP8: Caspase-8
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MLKL: Mixed-lineage kinase domain-like

Nec-1: Necrostatin-1

NLRP3: Nucleotide-binding oligomerization domain-like receptor

family pyrin domain-containing 3

NSA: Necrosulfonamide

PCD: Programmed cell death

PRR: Pattern recognition receptor

RIPK1: Receptor-interacting serine/threonine-protein kinase-1

RIPK3: Receptor-interacting serine/threonine-protein kinase-3

TAK1: TGF-b–activated kinase-1

ZBP1: Z-DNA binding protein-1
Background: Allergic bronchopulmonary aspergillosis (ABPA)
is a rare airway disorder primarily affecting patients with
asthma and cystic fibrosis. Persistent airway inflammation
brought on by Aspergillus fumigatus exacerbates the underlying
condition and can cause significant respiratory damage.
Treatments center on reducing inflammation with the use of
corticosteroids and antifungals. PANoptosis is a new concept in
the field of cell death and inflammation that posits the existence
of cross talk and a master control system for the 3 programmed
cell death (PCD) pathways, namely, apoptosis, pyroptosis, and
necroptosis. This concept has revolutionized the understanding
of PCD and opened new avenues for its exploration. Studies
show that Aspergillus is one of the pathogens that is capable of
activating PANoptosis via the Z-DNA binding protein 1 (ZBP1)
pathway and plays an active role in the inflammation caused by
this organism.
Objective: This article explores the nature of inflammation in
ABPA and ways in which PCD could lead to novel treatment
options.
Method: PubMed was used to review the literature surrounding
Aspergillus infection–related inflammation and PANoptosis.
Results: There is evidence that apoptosis and pyroptosis protect
against Aspergillus-induced inflammation, whereas necroptosis
promotes inflammation.
Conclusion: Experimental medications, in particular,
necroptosis inhibitors such as necrosulfonamide and
necrostatin-1, should be studied for use in the treatment of
ABPA. (J Allergy Clin Immunol Global 2024;3:100298.)
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Allergic bronchopulmonary aspergillosis (ABPA) is a rare
airway disorder characterized by persistent inflammation in
response to infection by fungi from the genus Aspergillus.
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Although other fungi, such as Candida albicans and Shizophyl-
lum commune, are capable of causing ABPM, Aspergillus is the
most common and best-studied fungus associated with this
disease.1,2 ABPA has an estimated prevalence of 2.5% in sub-
jects with asthma and 8.9% in subjects with cystic fibrosis.
These numbers may be as high as 22.4% and 25%, respectively,
depending on the diagnostic criteria used, and underdiagnosis of
the disease is speculated.3-6 ABPA primarily affects patients
with chronic airway diseases, although cases without underlying
respiratory problems do occur.7-9 ABPA exacerbates airway
symptoms and causes hemoptysis, a productive cough with
mucus plugs, and dyspnea.5 Its diagnosis is based on laboratory
and radiologic findings, including blood eosinophilia, elevated
level of specific IgG to A fumigatus, elevated total and specific
levels of IgE, and bronchiectasis on computed tomography.5,6,10

These criteria make ABPA significantly easier to diagnose than
the other ABPMs. Treatment strategies include systemic gluco-
corticosteroids and antifungals, which reduce inflammation and
fungal load, with targeted biologics emerging as alternative
therapeutic options.11,12

ABPA-associated inflammation occurs via the TH2 cell
inflammatory pathway, in which TH2 cells produce IL-4, IL-5,
and IL-13, which in turn activate downstream pathways.13,14

IL-33, which is located in the nuclei of epithelial cells, activates
cytokines and enhances production of IL-4, IL-5, and IL-13 in
conjunction with the other critical epithelial-derived TH2 inflam-
matory cytokines, IL-25 and thymic stromal lympopoietin
(TSLP).14-17 IL-33 binds to IL-1 receptor-like 1 (IL1RL1 [also
known as ST2]) during allergic inflammation, signaling the
formation of a heterodimer between ST2L, the transmembrane
isoform of ST2, and IL-1 receptor accessory protein (IL-1
RAcP). The result is a signaling cascade that activates the
transcription of proinflammatory molecules, including nuclear
factor-kB.18 This leads to the activation of eosinophils and other
cells involved in allergic inflammation.
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Aspergillus and other fungal allergens contain proteases
capable of cleaving IL-33 into a more mature form, increasing
its bioactivity compared with that of the full-length form.19

Increased levels of IL-33 in ABPA and other Aspergillus spp in-
fections make it a potential target for future ABPA therapies.20,21

Inhibition of the IL-33 signaling pathway in a mouse model of
ABPA significantly reduces inflammation in invasive aspergil-
losis and Aspergillus–sensitive asthma, making it likely that the
increased bioactivity from IL-33 cleavage is the source of this
inflammation.22,23 Thus, it can reasonably be concluded that inhi-
bition of this signaling pathway may similarly reduce ABPA
inflammation.
METHODS
PCD pathways

Apoptosis is the best-known and best-understood programmed
cell death (PCD) pathway. It proceeds through 2 methods:
intrinsic and extrinsic. The intrinsic pathway is activated when
there is an absence of prosurvival molecules, such as growth
factors, or the presence of proapoptotic molecules, such as
reactive oxygen species. These molecules trigger the release of
mitochondrial proteins into the cytoplasm capable of activating
apoptotic protease activating factor 1 (APAF1), which assembles
into an oligomer known as the apoptosome. The apoptosome
activates procaspase-9, which subsequently activates procaspase-
3, the final executioner of apoptosis. The extrinsic pathway
involves death signals released from natural killer cells and
macrophages, such as TNF-a and Fas ligand (Fas-L). Binding of
these death ligands to a death receptor allows the recruitment and
activation of procaspase-8, which is able to dimerize and activate
procaspase-3.24

Pyroptosis is governed by inflammasomes, which form when
pattern-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) are detected by NOD-
like receptors (NLRs), absent in melanoma 2 (AIM2), and
other pattern recognition receptors (PRRs).25 Interaction of
these PRRs with adapter apoptosis-associated speck-like pro-
tein containing a caspase recruitment domain (ASC) and
procaspase-1 generates an inflammasome. The inflammasome
can produce activated caspase-1 molecules, which cleave gas-
dermin D (GSDMD). The N-terminal of GSDMD inserts pores
into the cellular membrane, causing secretion of the proinflam-
matory molecules IL-1b and IL-18, thereby activating
pyroptosis.26

Necroptosis is the least-understood cell death pathway.
Initiation is similar to the extrinsic pathway of apoptosis in
that it relies on the death signal, TNF, to activate TNF receptor 1
(TNFR1). This causes the formation of a complex that includes
the molecules TNFR-associated factors (TRAF), receptor-
interacting serine/threonine-protein kinase-1 (RIPK1), cellular
inhibitor of apoptosis protein 1 (cIAP1), cellular inhibitor of
apoptosis protein 2 (cIAP2), Fas-associated via death domain
(FADD), and TNFR superfamily member 1A -associated via
death domain (TRADD). The cIAPs and TRAF work together to
ubiquitinate RIPK1. FADD recruits procaspase-8, and RIPK1
recruits receptor-interacting serine/threonine-protein kinase-3
(RIPK3).26 The ubiquitination process is opposed by the deubi-
quitinating molecule, cylindromatosis (CYLD). If RIPK1 is
deubiquitinated and caspase-8 is not present, RIPK1 and
RIPK3 will complex to activate mixed-lineage kinase domain-
like (MLKL), which permeabilizes the cell membrane and
causes cell death.26 The requirement that caspase-8 (CASP8)
be absent has led to the hypothesis that necroptosis is meant to
be a backup cell death pathway for cells incapable of undergoing
apoptosis. Table I summarizes the molecules involved in
apoptosis, pyroptosis, and necroptosis.
The PANoptosome
The term PANoptosis, which was first coined in 2019 (with the

initial data dating back to as early as 2016), is an emerging
concept in understanding cell death pathways.27-29 Underlying
this concept is the hypothesis that pyroptosis, apoptosis, and nec-
roptosis involve cross talk regulated by a master controlling com-
plex, the PANoptosome.29 Research on PANoptosis has opened
up many avenues in cell death related–research, in particular, in-
fectious organisms such as A fumigatus.30,31

Two critical molecules at the top of the PANoptosis pathway
are Z-DNA binding protein 1 (ZBP1) and TGF-b–activated ki-
nase 1 (TAK1).29 A 2020 study demonstrates that the ZBP1mole-
cule plays a role in inflammation related to Aspergillus
infections.32

ZBP1 contains a Za domain capable of detecting Z-nucleic
acids derived from infectious pathogens.29 This domain is
rarely found in mammals and is shared only endogenously,
with the molecule adenosine deaminase acting on ribonucleic
acid (RNA) 1 (ADAR1), an inhibitor of ZBP1.33 Activation
of this domain in concert with type 1 interferon signaling is
essential for its activation.34 After activation, ZBP1 can then
interact via its RIP homotypic activation motif (RHIM) with
RIPK3, which forms a complex with CASP8 to induce down-
stream PCD pathways.29 RIPK3 interacts with MLKL to
induce necroptosis, CASP8 induces apoptosis, and the com-
plex interacting with nucleotide-binding oligomerization
domain-like receptor family pyrin domain-containing 3
(NLRP3) induces pyroptosis.29 Evidence suggests that deletion
of the ZBP1 gene prevents the activation of PCD pathways in
influenza A–infected cells.34 In contrast, deletion of the gene
in the presence of C albicans and Aspergillus fumigatus infec-
tion results in reduced, but not absent, PCD.32 Therefore,
either alternative PANoptosis pathways are involved in acti-
vating the PANoptosome or activation of the individual PCD
pathways by variance virulence factors plays a significant
role in fungal infections.

TAK1 has an effect opposite that of ZBP1 by inhibiting the
PANoptosis pathway. Activity of this molecule prevents forma-
tion of RIPK1-FADD-CASP8 complexes, which function as a
PANoptosome similar to ZBP1-RIPK3-CASP8, activating PCD
pathways in the same way.29 Inactivation of this molecule results
in unregulated activity of PCD, allowing exploitation by infec-
tious organisms, such as Yersinia. Yersinia spp produce toxins
capable of blocking TAK1 activity to promote their pathogen-
esis.29 Experiments in a Drosophila model indicate that Asper-
gillus may produce a cyclopentanediol analog capable of acting
on this pathway (Fig 1). However, further investigation is neces-
sary to confirm this fact.35 If such a virulence factor were discov-
ered, it could become a target for future therapeutic agents with
the benefit of having a low side effect profile because of its target
specificity.



TABLE I. Molecules involved in PCD

Molecule name Abbreviation Pathway Function

Absent in melanoma 2 AIM2 Pyroptosis Pattern recognition receptor that starts the pyroptosis cascade

Apoptotic protease activating factor 1 APAF1 Apoptosis (intrinsic) Activator of procaspase-9

Apoptosis-associated speck-like protein

containing a caspase recruitment domain

ASC Pyroptosis Recruits procaspase-1 to the inflammasome

Caspase-1 CASP1 Pyroptosis Cleaves GSDMD

Caspase-3 CASP3 Apoptosis Executioner caspase that triggers apoptosis

Caspase-8 CASP8 Apoptosis (extrinsic),

necroptosis

Initiator caspase of the extrinsic apoptosis pathway; activates

procaspase-3; its presence inhibits necroptosis

Caspase-9 CASP9 Apoptosis (intrinsic) Initiator caspase of intrinsic apoptosis pathway; activates procaspase-3

Cellular inhibitor of apoptosis protein 1 cIAP1 Apoptosis (extrinsic),

necroptosis

Ubiquitinates caspase-8, allowing necroptosis to proceed

Cellular inhibitor of apoptosis protein 2 cIAP2 Apoptosis (extrinsic),

necroptosis

Ubiquitinates caspase-8, allowing necroptosis to proceed

Cylindromatosis CYLD Apoptosis (extrinsic),

necroptosis

Deubiquitinates caspase-8 to inhibit necroptosis

Fas-associated via death domain FADD Apoptosis (extrinsic),

necroptosis

Recruits procaspase-8

Fas ligand Fas-L Apoptosis (extrinsic),

necroptosis

Binds death receptor to initiate extrinsic apoptosis or necroptosis

Gasdermin D GSDMD Pyroptosis Perforates cell membrane to allow release of IL-1b and IL-18

Mixed-lineage kinase domain like MLKL Necroptosis Final executor of necroptosis; permeabilizes cell membrane

Receptor-interacting serine/

threonine-protein kinase 1

RIPK1 Apoptosis (extrinsic),

necroptosis

Recruits RIPK3; can form apoptotic complex

Receptor-interacting serine/

threonine-protein kinase 3

RIPK3 Necroptosis Activates MLKL

TNF-a TNF-a Apoptosis (extrinsic),

necroptosis

Binds death receptors to trigger extrinsic apoptosis or necroptosis

TNF receptor 1 TNFR1 Apoptosis (extrinsic),

necroptosis

Activated by TNF-a to initiate extrinsic apoptosis or necroptosis

TNF receptor–associated factor TRAF Apoptosis (extrinsic),

necroptosis

Ubiquitinates caspase-8, allowing necroptosis to proceed

TNF receptor superfamily member

1A–associated via death domain

TRADD Necroptosis Recruits procaspase-8
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RESULTS
PCD and A fumigatus

A fumigatus contains multiple virulence factors involved
in inducing PCD. The 2 major players in apoptosis are
dihydroxynapthalene-melanin and gliotoxin.31 Dihydroxynapth
alene-melanin activates protein kinase B (PKB/Akt), an inhibitor
of caspase-9 and other molecules involved in the extrinsic
apoptosis pathway, allowing Aspergillus to produce conidia.
Once they germinate and grow hyphae, A fumigatus produces
gliotoxin, a molecule capable of activating the intrinsic pathway
via c-Jun N-terminal kinase (JNK).31 The pyroptosis pathway is
induced via interaction of the fungal cell wall component b-
glucan with NLRP3 accompanied by activation of the PRR dec-
tin-131,36 Toll-like receptor 2 (TLR2) associates with dectin-1
in A fumigatus recognition and influences Treg cell differentia-
tion.37 Chitin is a common component of fungal cell walls and
binds Toll-like receptor 2 to trigger inflammation.38 Because
this antigen is also found in A fumigatus, it is most likely an
important component of the pyroptosis pathway in ABPA.39 On
the basis of the mechanisms of inflammasome activation seen in
other fungi, it is also suspected that ergosterol is involved in acti-
vating pyroptosis.31,40 On the basis of studies with Candida, it is
hypothesized that dectin-1 activation plays a role in necroptosis
that is similar to its role in pyroptosis (Fig 2).31,41
The varying activation of the PCD pathways by A fumigatus in-
fluences the level of inflammation that the organism causes,
particularly through varying amounts of IL-33 released. Death
by apoptosis results in decreased IL-33 signaling owing to cas-
pase 3– and caspase 7–induced cleavage of the C-terminal portion
of IL-33, rendering it inert.17 Alternatively, necroptosis induces
the release of uncleaved IL-33.42 Although less active than the
mature form seen following fungal protease cleavage, the full-
length IL-33 can produce an immune response. Finally, although
a direct connection between IL-33 release inAspergillus infection
and pyroptosis is not established, there is evidence that it plays a
protective role. There is increased susceptibility to invasive asper-
gillosis in AIM2 and NLRP3 knockout mice (AIM2 and NLRP3
being 2 genes involved in the pyroptosis pathway).43 These find-
ings suggest that whereas pyroptosis and apoptosis promote clear-
ance of Aspergillus infection, necroptosis plays a pivotal role in
promoting Aspergillus infections, and thus ABPA. Whether tar-
geting the PANoptosis pathwaywould be beneficial or deleterious
is unclear. Today, there is no evidence that deletion of ZBP1 in-
creases or decreases the incidence of aspergillosis. It is possible
that inhibition of PANoptosis would block most inflammation
and thus allow asymptomatic colonization, given the fact that
Aspergillus, a ubiquitous organism, often colonizes the respira-
tory tract without inducing any pathology. However, reduced



FIG 1. PANoptosis is suspected to be induced by A fumigatus. Evidence suggests there may be a cyclopen-

tanediol analog produced by A fumigatus that serves as an inhibitor of TAK1. In addition, direct activation

can occur through an unknown Z-DNA ligand binding to ZBP1. The PANoptosome complex formed from

either pathway can then go on to induce the 3 modalities of cell death, namely, apoptosis, pyroptosis,

and necroptosis. ASC, Adapter apoptosis-associated speck-like protein containing a caspase recruitment

domain; CASP8, caspase-8; FADD, FAS-associated via death domain.
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ability to clear the pathogen may allow for unchecked prolifera-
tion, eventually causing more severe disease. One thing is clear:
therapies directed toward inhibition of the necroptosis pathway
should be considered.
DISCUSSION
Necroptosis inhibitors as novel therapeutics to
treat ABPA

Therapeutic agents that target the necroptosis pathway are
available and are being evaluated to treat cancer, stroke, acute
coronary syndrome, and other diseases.30,44,45 Necrosulfonamide
(NSA) is an inhibitor of MLKL that demonstrates efficacy in
slowing breast tumor growth in xenografted mice.46 Because
MLKL is involved only in necroptosis and not in apoptosis or py-
roptosis, it would be an ideal target for therapy. However, the pre-
clinical animal model studies required before human testing
would be difficult to perform because NSA does not bind to the
mouse variant of MLKL.47 Additionally, NSA may also bind
GSDMD from the pyroptosis pathway, inhibiting its activa-
tion.48-50 There are also data to suggest that NSA has an inhibitory
effect on apoptosis, further reducing the potential clinical signif-
icance of this compound.51

Necrostatin-1 (Nec-1) is a drug that targets necroptosis via
inhibiting autophosphorylation of RIPK1. RIPK1 dimerizes
and autophosphorylates to form a complex with RIPK3 to
activate MLKL.52 Because it is upstream in the necroptosis
pathway, targeting RIPK1 over MLKL has its own issues.
Namely, RIPK1 also serves as a driving force in the apoptosis
pathway, although there is an RIPK1-independent apoptotic
pathway.52 The inhibitory effect of Nec-1 may be a promising
area for clinical trials in the treatment of ABPA. There is ev-
idence to suggest that in the absence of TAK1, necroptosis
can also be activated in an RIPK1-independent manner.53

This pathway may reduce the potential efficacy of Nec-1 as
a treatment option for ABPA.

Although these 2 compounds are not the only PANoptosis
regulators that may treat ABPA, they demonstrate the potential
of this pathway and its complexity. Because of the cross talk
among the 3 PCD pathways seen in PANoptosis, even drugs
targeting a particular PCD pathway may show unexpected
effects, as demonstrated by NSA potentially influencing



FIG 2. A fumigatus–induced cell death. Solid lines represent known relationships, dashed lines represent

suspected relationships based on studies in C albicans. A fumigatus conidia inhibits apoptosis through

the secretion of dihydroxynapthalene-melanin (DHN-melanin). Once it has germinated, A fumigatus has

multiple virulence factors capable of inducing the 3 different cell death pathways. Gliotoxin serves as an

activator of apoptosis. Ergosterol and chitin are known virulence factors of A fumigatus but have not

been directly shown to activate the pyroptosis pathway in aspergillosis. Activation of dectin-1 via b-glucan

has been demonstrated to play a role in the pyroptosis pathway but is currently only suspected in

necroptosis.
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apoptosis despite targeting a relatively downstream necroptosis
molecule.49 These cascading effects spilling over into the other
PCD pathways also highlights the importance of targeted
localization of these drugs. Although this article highlights
necroptosis inhibitors as potential treatments, apoptosis and
pyroptosis inhibit the release of IL-33 and could therefore be
targeted by activators rather than by inhibitors. This would
be associated with a greater risk of triggering cell death in
otherwise healthy cells if sufficient drug localization could
not be achieved. mAbs are also becoming treatment options
for managing ABPA.54,55 The mAb targeting IL-33 tozoraki-
mab may be another promising candidate to treat ABPA.56 Ad-
vancements in research open the door to development of new
therapeutic options, and PANoptosis may be the next step in
research on ABPA.
Conclusion
ABPA is a rare disease of the airways primarily affecting

subjects with asthma and cystic fibrosis. Research demonstrates
that PCD pathways play a role in ABPA; however, the emerging
concept of PANoptosis and cross talk between these pathways
provides a new avenue for understanding and possibly treating
this disease. Studies show that pyroptosis and apoptosis reduce
disease burden whereas necroptosis promotes pathology. Novel
drugs that target elements of these pathways are under study and
show promise as new treatment options for ABPA. The drugs
NSA and Nec-1 are being explored to treat of other diseases, such
as intervertebral disk degeneration and ischemia-reperfusion
injury; they demonstrate how necroptosis inhibitors could be
effective to treat ABPA. Additionally, other elements in these
pathways, such as Aspergillus-produced virulence factors that in-
fluence TAK1 activity, are worth exploring. Blocking a potential
TAK1 inhibitor may be a way of targeting PANoptosis as a whole
order to inhibit the capacity of Aspergillus to induce inflamma-
tion. For this reason, depending on what future experiments in
ZBP1-deficient mice show, ZBP1 also may be a worthy therapeu-
tic target. As research on PANoptosis progresses, even more op-
tions for targetable pathways may be discovered.
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Clinical implications: Necroptosis inhibitors and other thera-
peutic agents targeting PANoptosis should be explored as treat-
ment options for ABPA.
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