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The forebrain ventricular-subventricular zone (V-SVZ) continuously generates new  
neurons throughout life. Neural stem cells (type B1 cells) along the lateral ventricle 
become activated, self-renew, and give rise to proliferating precursors which progress 
along the neurogenic lineage from intermediate progenitors (type C cells) to neuroblasts 
(type A cells). Neuroblasts proliferate and migrate into the olfactory bulb and differentiate 
into different interneuronal types. Multiple factors regulate each step of this process. 
Newly generated olfactory bulb interneurons are an important relay station in the olfactory 
circuits, controlling social recognition, reproductive behavior, and parental care. Those 
behaviors are strongly sexually dimorphic and changes throughout life from puberty 
through aging and in the reproductive age during estrous cycle and gestation. Despite 
the key role of sex hormones in regulating those behaviors, their contribution in modu-
lating adult neurogenesis in V-SVZ is underestimated. Here, we compare the literature 
highlighting the sexual dimorphism and the differences across the physiological phases 
of the animal for the different cell types and steps through the neurogenic lineage.

Keywords: ventricular-subventricular zone, sexual dimorphism, estrogens, testosterone, neural stem cells, 
puberty, estrous cycle, pregnancy

inTRODUCTiOn

The subventricular zone-olfactory bulb (V-SVZ-OB) system has fascinated scientists for over than 
25 years. In fact, this region harbors, in many mammals, a huge neurogenesis persisting until aging 
(1). In rodents, this process involves multiple steps, each one of them representing a model for 
different biological and pathological processes with unique features. In fact, this neurogenic pro-
cess encompasses a germinal layer located in the ventricular-subventricular zone of the forebrain 
(V-SVZ), along the ventricle in which neural stem cells undergo self-renewal (2) and differentiation 
to intermediate progenitors (type C cells), then to immature neurons (type A cells) (3–5). Newly 
generated, type A, cells undergo tangential migration along the rostral migratory stream (RMS) 
up to the OB (6, 7). There, they migrate radially to the appropriate cell layer and differentiate into 
interneurons (8). Neurogenesis is thus a complex process consisting in proliferation, migration, 
apoptosis, and differentiation occurring in each of those levels with specific features (9, 10). The 
proper turnover enforced by proliferation, migration as well as apoptosis in the OB, is essential for 
optimizing olfaction [(11); Figure 1]. Therefore, the study of V-SVZ is capital for many purposes: 
understanding unregulated cell growth in tumor formations (12, 13), preventing or replacing cell 
loss in aging (1, 14, 15), decreasing neurodegenerative disease risks (16–18), and improving stroke 
treatments (18).
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FigURe 1 | Schematic drawing summarizing adult neurogenesis in the V-SVZ/OB system. Adult neurogenesis is a multiple-step process, occurring in three different 
subregions: the ventricular-subventricular zone (V-SVZ), the rostral migratory stream (RMS), and the olfactory bulb (OB). Sex hormones reaching the lateral ventricle 
(LV) through the choroid plexus (CP) or blood vessels (BV) modulate each of those steps either directly on neurogenic lineage or indirectly through other component 
of the stem-cell niche or the parenchyma.
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Despite a huge interest on the endogenous and exogenous 
factors affecting adult neurogenesis in V-SVZ-OB system (19), 
few studies have focused on the role of gonadal hormones. This 
flaw is surprising since steroids have a key role in hippocam-
pal neurogenesis both during development and in adulthood 
(20–22). Furthermore, V-SVZ-OB system is involved in social 
and reproductive behaviors, which are strongly regulated by 
sexual steroids (23, 24) and are targets for xenoestrogens (25–27). 
Moreover, estrogen receptors (ERs) and enzymes involved in the  
biosynthesis of steroids such as aromatase, the enzyme converting 
testosterone (T) into estradiol, are expressed in the V-SVZ (28) 
and in the OB of adult (29, 30) and developing (31) rats and mice 
(32). However, while the importance of steroids in the regula-
tion of adult neurogenesis in the hippocampus has been widely 
studied, its role in the V-SVZ-OB system is more debated. Here, 
we want to focus on the available data in order to encourage a 
discussion addressing the open questions in the field.

SeXUAL DiMORPHiSM  
in v-SvZ-OB SYSTeM

Sexual dimorphism in the V-SVZ-OB system is an open question. 
Only few studies compared the two sexes and most of them are 
limited to a few ages. Indeed, the extent of neurogenesis in this 
region changes along life and it is likely to be affected by changes 
in the endocrine system.

Neurogenesis is more prominent in adult female mice com-
pared with males. In 3-month-old C57/BL6J mice, females 
dis played higher proliferating rates in V-SVZ, RMS, and OB, 
and lower apoptotic cells in V-SVZ in both estrus and pregnancy 
(33) than males. Similarly, the number of neuronal progenitors 
(SOX2+) in the V-SVZ of females was higher than males in young 
adults but not in pups (34).

On the other hand, in other studies, the density of apoptotic 
cells in accessory (AOB) and main (MOB) OB was similar in the 
two sexes (35). Some differences affect transiently specific fea-
tures of the V-SVZ-OB system. For instance, peripubertal males 
displayed higher rates of apoptosis (33), as well as of proliferation 
in the V-SVZ compared with females (35), but, in 2-month-old 
animals, the proliferation rate in the V-SVZ is similar in the two 
sexes and 1 month later there was a similar supply of newly gene-
rated cells in both the MOB and the AOB (35).

Multiple factors may explain the discrepancy among the data.  
From a technical point of view, the methods used to assess cell 
proliferation may highlight a different subset of the cycling popu-
lation. In fact, while the total number of cycling cells identified 
with PCNA was measured by Diaz (33), the study of Nunez-Parra 
(35) highlighted only the cells in the S-phase, labeled by BrdU  
2 h after the injection of the marker. Thus, it may reflect diffe-
rences in the cell-cycle length between the two ages, or differences 
in the composition of the V-SVZ, e.g., a decrease in the number 
of type C cells, which have a longer S-phase length compared 
with type A cells (4, 5) or even differential sensitivities of BrdU 
antibodies (36), although the use of two different anti-BrdU anti-
bodies by Nunez-Parra et al. is likely to have decreased this issue. 
Moreover, since different subregions in the V-SVZ give rise to 
different interneurons in the OB (37), it is possible that sexual 
dimorphism is limited to some of them. In addition to that, the 
extent of neurogenesis is dissimilar in different mouse strains  
(38) and it might be differently regulated. In fact, other reports 
indicate that the higher number of proliferating cells in the  
V-SVZ of females is limited to mature animals, i.e., 6–8 months 
old (39). Interestingly, this dimorphism is abolished (SJL/J) or 
reverted (BALB/C) in different strains (39). Accordingly, in two 
months old C57BL6 mice, the density of newly generated cells 
is higher in the AOB of males than females, while no sexual 
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TABLe 1 | Sexually dimorphic features in the subventricular zone-olfactory  
bulb (V-SVZ-OB) system.

Model Feature Higher in: where Reference

Prepubertal  
Wistar rats

Proliferation rates
Volume of the 
granule cell layer
Newly generated cells

Males
Males

Males

V-SVZ
Anterior AOB

Anterior AOB

(41)
(42)

(42)

Peripubertal  
mice

Apoptotic cells Males V-SVZ (33)

P60 C57/BL6  
mice

Newly generated cells Males AOB (34)

P90 C57/BL6  
mice (estrous  
and pregnancy)

Proliferation rates

SOX2 + progenitors

Females

Females

V-SVZ, RMS, OB

V-SVZ, RMS, OB

(33)

(34)

P180-P240  
C57/BL6 mice

Proliferation rates Females V-SVZ, RMS, OB (39)

P180-P240  
BALB/c mice

Proliferation rates Males V-SVZ, RMS, OB (39)
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dimo rphism has been reported for MOB (34). Similarly, no sexual 
dimorp hism was observed in the number of newly generated  
cells in the AOB of young-adult CD1 mice, although the age of 
those mice was not specified (40).

In Wistar rats, males exhibited a higher number of proliferat-
ing cells than females and this sexual dimorphism was already 
established before puberty (41). The higher proliferation at the 
level of the ventricle does not lead to a sex difference in the den-
sity of newly generated cells in the MOB, but only in the volume 
of the granular layer in the anterior part of the AOB, larger in 
males than in females [(42); Table 1].

Beside the cells belonging to the neurogenic linage, neural 
stem-cell niche encompass other structures, namely blood vessels 
(43, 44), microglia (45, 46), and choroid plexus (47). Both blood 
vessels (48), microglia (49, 50), and choroid plexus (51) are deeply 
affected by sex steroids. These structures, thus, may mediate the 
effect of sex steroids on adult neurogenesis (Figure 1).

Moreover, V-SVZ neurogenesis may also be modulated in 
a trans-synaptic way by other neuronal circuits which may be 
sensible to sexual steroids, e.g., serotonin or dopamine system 
(52, 53), and cholinergic neurons (54).

In general, estrogens are neuroprotective and stimulate diffe-
rentiation and proliferation while progestins and androgens 
stimulate differentiation and cell survival (21). However, the 
V-SVZ-OB system has its unique features. In conclusion, a num-
ber of factors can affect adult neurogenesis in the V-SVZ-OB 
system, and it is likely that some of them are sexually dimorphic 
and change throughout lifetime. In this picture, the endocrine 
system may play a key role.

HORMOnAL RegULATiOn OF v-SvZ 
neUROgeneSiS in ADULT FeMALeS

Circulating hormone levels dramatically change during the life  
of female rodents, during both estrous cycle and pregnancy. These 
changes may affect neurogenesis. In particular, E2 levels control 
the estrous cycle, pregnancy, and sexual behavior (32, 55).

Since OB has a key role in mother’s offspring recognition, it  
is not surprising that the rate of neurogenesis in V-SVZ transi-
ently increase during pregnancy (56). Indeed, two peaks of cell 
prolif erations were observed at gestation day 7 and at postpar- 
tum day 7, while at delivery the neurogenic rate is similar to 
matched aged virgin females (56). The first peak is evident also 
in females mated with sterile males, so it depends on maternal 
hormonal levels rather than on the embryo. However, this effect 
is mediated by prolactin rather than E2 or progesterone (56, 57).  
However, E2 may have an indirect role, since it stimulates prolac-
tin release (58).

In the adult female mouse, E2 has an inhibitory effect on 
V-SVZ-OB neurogenesis in both V-SVZ and OB. First, it dec-
reases cell proliferation in the V-SVZ in different models. The 
number of proliferating cells in the V-SVZ is lower during estrus, 
than proestrus (39). Moreover, in ovariectomized females, acute 
E2 supplementation for one day, with a dose comparable to the 
estrus, decreases cell proliferation in the V-SVZ (59). On the 
other hand, this effect was not detected by long-term treatment 
[3 weeks (60)] or with a lower dose of E2 (61), comparable with 
diestrus (62). Differences in the effect of ovariectomy may be due 
to an interplay of many component of the neural stem-cell niche. 
In fact, ovariectomized mice express both ERα and ERβ, but E2 
supplementation selectively upregulates ERβ (51). T meta bolite 
5α-dihydrotestosterone (5αDHT) decreases the expression of  
AR in the choroid plexus of ovariectomized mice (51).

Male pheromones stimulate the production of ovarian hor-
mones (63) as well as the neurogenesis in adult females (35, 64, 65).  
However, E2 does not increase neurogenesis (66), nor cell proli-
feration in V-SVZ or neuroblasts density in OB, but it decreases 
cell survival in AOB, but not in MOB (24).

In the OB, E2 has different effects depending on the region. 
In the MOB, in adulthood rather than during development, E2 is 
able to impair the survival of newly generated cells (59) and MOB 
functionality (60). Interestingly, as demonstrated in aromatase-
KO mice, developmental E2 has the opposite effect in the AOB: 
the absence of E2 during development decreases the survival of 
adult generated cells in the AOB. This phenotype can be reverted 
by adult E2 treatment. On the contrary, the lack of estrogens dur-
ing development neither alters cell proliferation in the V-SVZ, 
nor its response to E2 (60).

In contrast to mice, the proliferation rate in the rat V-SVZ  
does not change during pregnancy, while it increases at deliv-
ery (67). As for mice, E2 role in female rat is highly debated. 
Proliferation in the V-SVZ is not affected neither by ovariectomy 
nor by acute T or E2 supplementation (41). No studies are avail-
able on the long-term effects of ovariectomy despite it deeply alter 
choroid plexus transcriptome which may indirectly affect the 
neural stem-cell niche (68). However, E2 decreases the survival of 
newly generated cells in the AOB, but not in the MOB [(29, 30); 
Figure 2; Table 2].

The different effects of E2 in mice and rats may be related with 
the lack of ERα and ERβ in the mouse V-SVZ (76) and with the 
presence of ERα receptor in the rat (28), although other pathways 
may be involved (21). For example, no information is available at 
the moment, concerning the expression of membrane ER (GPER) 
in rodent V-SVZ.
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TABLe 2 | Summary of the hormonal regulations in the subventricular zone-olfactory bulb (V-SVZ-OB) system of adult male and female rodents.

Hormone effect where Reference

Hormonal regulation of v-SvZ neurogenesis in adult females

Mouse Estrogen ↓ Proliferation V-SVZ (39)
↑ Proliferation (indirectly) V-SVZ (56, 57)
↓ UV-induced apoptosis In vitro (34)
↑ Stroke-induced neurogenesis V-SVZ (61, 69, 70)
↓ Cell survival MOB (59)
↓ Functionality MOB (60)

Mouse, rat 5α-dihydrotestosterone ↓ Expression AR Choroid plexus (51)
↓ Cell survival AOB (29, 30, 66)

Hormonal regulation of v-SvZ neurogenesis in adult males

Mouse Castration ↑ Proliferation V-SVZ (39)
↓ Apoptosis V-SVZ (39)

Estrogen ↓ UV-induced apoptosis In vitro (34)
↑ Stroke-induced neurogenesis V-SVZ (61, 69, 70)

Type 1 diabetes mouse model ↑ Proliferation V-SVZ (71)
↓ Cell survival AOB (72)

Rat 5α-dihydrotestosterone ↓ Expression AR Choroid plexus (51)
castration ↑ Expression ERβ Choroid plexus (51)

↓ Proliferation V-SVZ (41)
Estrogen ↑ Proliferation V-SVZ (41)

↑ Stroke-induced neurogenesis V-SVZ (73, 74)
↑ DCX + cells after stroke V-SVZ (73)
↓ Cell death V-SVZ (74)

Testosterone ↑ Proliferation V-SVZ (41)
Progesterone ↓ Proliferation V-SVZ/OB (75)

↓ Neurogenesis RMS (75)

FigURe 2 | The role of sex hormones in adult neurogenesis for females (left) and for males (right). On the top, steroid hormones induce an increase (↑) in the 
reported actions; on the bottom steroid hormones induce a decrease (↓) in the reported actions. Estradiol (E2); progesterone (P4); testosterone (T).
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HORMOnAL RegULATiOn OF v-SvZ 
neUROgeneSiS in ADULT MALeS

The effect of sexual steroids is complex also in males. In fact,  
castration increased the number of proliferating cells and dec-
reased the number of apoptotic ones in the V-SVZ of C57BL6  
and SJL/J adult males, i.e., 6–8 months old (39).

Neurogenesis is influenced by pheromones related to aggres-
sive (35) and paternal behavior (77, 78). In fact, the response 
to pheromones is sex specific and affected by hormonal levels. 

Indeed, female pheromones stimulate neurogenesis in adult males 
(64), although the survival of newly generated cells in the AOB in 
males does not change after opposite sex pheromones exposure, as 
in females (65). Interestingly, male pheromones as well as female 
ones, enhance proliferation in the V-SVZ of males (35), although 
it did not change the ratio of SOX2 cells among the BrdU labeled 
ones (64). However, low T levels feminize neurogenic response, 
increasing newly generated cell survival in the AOB, following 
male pheromone exposure, without affec ting cell proliferation in 
RMS and V-SVZ, leading to attraction to male cues (72).
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E2 have a neuroprotective effect on V-SVZ precursors. In fact, 
it is able to restore proliferation in a type 1 diabetes mouse model 
(71). Only a few choroid plexus genes are altered by castration in 
rats (68): ERβ expression increased when compared with sham 
operated rats (51), while ARs expression decreased after 5αDHT 
treatment (51).

Unlike in females, T or E2 are required for maintaining phy-
siological neurogenic rate in the V-SVZ of peripubertal rats (41). 
In fact, the number of proliferating cells and the number of type 
C progenitors is restored by hormonal treatment in castrated rats, 
but this effect is restricted to the lateral wall of the V-SVZ (41).

Progesterone and its metabolites, decrease cell proliferation  
in the V-SVZ-OB of adult rats [2 months old (75)]. The number 
of newly generated cells in the final part of the RMS is decreased 
by progesterone metabolites. It is not clear, however, whether this 
effect is due to a reduction in cell proliferation, of cell survival  
or, less likely, in the migration rate (Figure 2; Table 2).

HORMOnAL RegULATiOn OF v-SvZ 
neUROgeneSiS in PATHOLOgiCAL 
COnDiTiOnS

Beside an effect in physiological conditions, sex steroids may have a 
neuroprotective role after different insults. In fact, while no effect 
of sex steroid treatment was observed on cell death in vitro, E2 pre-
vented apoptosis after UV insults in both male- and female-derived 
V-SVZ cells, whereas no T effect was reported [(34); Table 2].

Stroke induced an increase in the number of newly gener-
ated cells, which was significantly higher in females. As for 
UV-induced apoptosis, E2 enhances neurogenesis after ischemic 
stroke, in vivo, in mice of both sexes (61, 69, 79) and rats (73).  
This increase is present 96 h but not 24 h after stroke (61). The 
presence of ERα and ERβ, as well as AR is required for the stro-
ke-induced neurogenesis in female mice, since it is abolished in 
transgenic mice lacking those receptors (69). Interestingly, those 
receptors are not directly expressed in the V-SVZ (61) sugges- 
ting that they may act indirectly through other cells.

Gonadal hormones are supposed to have a key role also in 
many diseases which display a different incidence and severity in 
the two sexes (80). V-SVZ neurogenesis may have a prominent 
role in some of them as: Parkinson disease (17, 81), Multiple  
sclerosis (82, 83), Alzheimer disease (84), autism (85), schizoph-
renia (86), and in psychiatric and cognitive disorders (87). 
However, only limited data are available on the effect of neuro-
active steroids on the V-SVZ neurogenesis in those diseases. 
Moreover, many studies report controversial data on changes  
in the V-SVZ neurogenesis that may be related on the experi-
mental model as in Parkinson disease (17).

COnCLUDing ReMARKS

Despite the huge amount of studies on adult neurogenesis in 
the V-SVZ-OB system, still few data focus on its regulation 
by steroids. The role of steroids on V-SVZ-OB neurogenesis is 
highly complex. Generally, neurogenesis is more affected by T 
in males, while E2 has a higher influence on females. However, 
the same hormone may determine a different effect depending 
on sex, age, strain, brain region, and neurogenic process. It 
is also possible that the different extent of V-SVZ-OB neuro-
genesis may reflects behavioral differences described among 
many strains of mice (88) as observed in other brain regions 
(89, 90). Those differences may be genetic (91, 92) or depend 
on a lack of maternal care during development (93). Profound 
differences exist between males and females. Some of them 
are actively determined by steroids levels in adults, while 
others are established during development. Moreover, sexual 
hormone’s levels changes along life. Important species-specific 
differences exist between different rodent models. Despite 
some similarities, adult neurogenesis is regulated by different 
factors in the V-SVZ-OB system compared with the SGZ of 
the hippocampus. Furthermore, different cell populations, or 
different steps of the neurogenic lineage may be sensible to a 
specific hormone.

The extent of adult neurogenesis in the V-SVZ-OB changes 
along with each of the above mentioned parameters. However, 
it is not clear which features are directly or indirectly involved. 
It is, thus, important to consider all those parameters altogether.
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