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Abstract

Background: Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous
system (CNS) driven by demyelination and gray matter neurodegeneration. We previously reported an experimental
autoimmune encephalomyelitis (EAE) MS mouse model with elevated serum CXCL1 that developed severe and
prolonged neuron damage. Our findings suggested that CXCR2 signaling may be important in neuronal damage,
thus implicating neutrophils, which express CXCR2 in abundance, as a potential cell type involved. The goals of this
study were to determine if CXCR2 signaling in neutrophils mediate neuronal damage and to identify potential
mechanisms of damage.

Methods: EAE was induced in wild-type control and neutrophil-specific Cxcr2 knockout (Cxcr2 cKO) mice by
repeated high-dose injections of heat-killed Mycobacterium tuberculosis and MOGss_ss peptide. Mice were examined
daily for motor deficit. Serum CXCL1 level was determined at different time points throughout disease
development. Neuronal morphology in Golgi-Cox stained lumbar spinal cord ventral horn was assessed using
recently developed confocal reflection super-resolution technique. Immune cells from CNS and lymphoid organs
were quantified by flow cytometry. CNS-derived neutrophils were co-cultured with neuronal crest cells and
neuronal cell death was measured. Neutrophils isolated from lymphoid organs were examined for expression of
reactive oxygen species (ROS) and ROS-related genes. Thioglycolate-activated neutrophils were isolated, treated
with recombinant CXCL1, and measured for ROS production.

Results: Cxcr2 cKO mice had less severe disease symptoms at peak and late phase when compared to control mice
with similar levels of CNS-infiltrating neutrophils and other immune cells despite high levels of circulating CXCL1.
Additionally, Cxcr2 cKO mice had significantly reduced CNS neuronal damage in the ventral horn of the spinal cord.
Neutrophils isolated from control EAE mice induced vast neuronal cell death in vitro when compared with
neutrophils isolated from Cxcr2 cKO EAE mice. Neutrophils isolated from control EAE mice, but not Cxcr2 cKO mice,
exhibited elevated ROS generation, in addition to heightened Ncfl and //1b transcription. Furthermore, recombinant
CXCL1 was sufficient to significantly increase neutrophils ROS production.

Conclusions: CXCR2 signal in neutrophils is critical in triggering CNS neuronal damage via ROS generation, which
leads to prolonged EAE disease. These findings emphasize that CXCR2 signaling in neutrophils may be a viable
target for therapeutic intervention against CNS neuronal damage.
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Background

Multiple sclerosis (MS) is a chronic debilitating immune-
mediated disease of the central nervous system (CNS) that
affects nearly 1 million adults > 18 years of age in the USA
[1]. MS symptoms range from common (e.g, pain,
spasms, fatigue [2, 3], and muscle weakness [4]) to rarer
and more severe (e.g., vision loss [5, 6], physical paralysis,
and neurologic disabilities [7, 8]). Immunomodulatory
drugs are very effective at shortening the duration of acute
flares, decreasing relapse frequencies, and providing symp-
tomatic relief, but there is no cure for MS.

MS has long been considered a white matter disease based
on observations of immune-mediated demyelinating lesions
in the CNS, but gray matter neurodegeneration is now also
appreciated as a major contributor to worsening and per-
manent disability [9, 10]. Gray matter neuronal pathologies
including neuronal apoptosis [11], axonal injury [12], and
dendritic spine loss [13] have been observed in the CNS of
MS patients. Similarly, gray matter abnormalities have been
recapitulated in various animal models of MS, particularly
experimental autoimmune encephalomyelitis (EAE) [14],
cuprizone toxic demyelination [15], and Theiler’s murine en-
cephalitis virus-mediated demyelination [16] models.

MS disease is believed to be autoimmune in origin,
arising when myelin-specific T cells initiate an inflam-
matory cascade resulting in demyelination and axonal
damage [17, 18]. While T cells are recognized as the
main driver of MS, elevated numbers of other peripheral
leukocytes have been observed in the CNS, suggesting
they may also have effector functions in MS. Specifically,
a recent report demonstrated that MS patients have a
higher circulating neutrophil-to-lymphocyte ratio com-
pared to healthy controls, and the ratio increases with
relapse and aggravated disability [19, 20].

Rodent studies have revealed several mechanisms by
which neutrophils contribute to disease development.
Neutrophils are key regulators of blood-brain barrier per-
meability, allowing further infiltration of leukocytes into
the CNS parenchyma [21, 22]. Neutrophils found in the
CNS at the onset of EAE also produce proinflammatory
mediators, including TNF-a and IL-1p, which are thought
to contribute to the inflammatory cascade within the CNS
by stimulating endothelial cell cytokine production and
antigen-presenting cell (APC) maturation [23, 24]. Add-
itionally, neutrophils can function as APCs themselves,
thereby directly regulating antigen-specific T cell re-
sponses [25]. However, their role in neuronal damage has
not been rigorously assessed in EAE disease.

CXCR?2 is thought to be the main receptor in regulat-
ing neutrophil chemotaxis [26] and effector function
[27] during inflammation. CXCR2 signaling can be acti-
vated by receptor ligand CXCL1 which has been shown
to be increased in MS patients [28]. Genetic deletion of
CXCR2, a chemokine receptor predominantly expressed
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by neutrophils, prevents development of hindlimb par-
esis or demyelination in animals subjected to EAE [29]
or cuprizone-induced toxic demyelination [30], respect-
ively. The same studies demonstrated that passive trans-
fer of CXCR2-expressing neutrophils to Cxcr2™/~ mice is
sufficient to restore susceptibility to EAE and cuprizone
demyelination. Further, we and others have reported
that administering a CXCR2 antagonist ameliorates EAE
symptoms [31, 32]. In this study, we used neutrophil-
specific Cxcr2 conditional knockout (Cxcr2 cKO) mice
to demonstrate for the first time that CXCR2 signaling
in neutrophils is critical for ongoing EAE disease via
CNS neuronal damage.

Methods

Animals

MRP8Cre (021614) and Cxcr2™ mice (024638) were
purchased from The Jackson Laboratory. MRP8Cre-
Cxcr2™ (Cxcr2 cKO) mice were bred in our animal fa-
cility. Healthy 6-8-week-old male Cxcr2 cKO and
Cxer2™ (control wild type) mice were randomly se-
lected and used in this study. All mice were group-
housed (2-5 mice per cage) in a specific pathogen-free
facility with a 12-h light—dark cycle and were fed regular
chow ad libitum. This study was approved by the Uni-
versity of Illinois at Urbana-Champaign Institutional
Animal Care and Use Committee (protocol no. 19171).

EAE induction

To induce EAE disease, complete Freund’s adjuvant, CFA
(#F5881, Sigma) containing 400 ug Mycobacterium tuber-
culosis, Mtb (#DF3114-33-8, Fisher), and 100 pg myelin
oligodendrocyte glycoprotein 35_s5 peptide (MOG35-55,
United Peptides) were subcutaneously administered at 0
and 7 days post-induction (dpi). Pertussis toxin (200 ng/
mouse) (#181, List Biological Laboratories, Inc.) was ad-
ministered on days 0, 2, and 7 dpi. Clinical signs of EAE
were scored daily for 40 days in a blinded fashion as fol-
lows: 0.5, partial tail limpness; 1, tail limpness; 1.5, revers-
ible impaired righting reflex; 2, impaired righting reflex;
2.5, paralysis of one hindlimb; 3, paralysis of both hin-
dlimbs; 3.5, paralysis of both hindlimbs and one forelimb;
4, hindlimb and forelimb paralysis; and 5, death. We pro-
vided water gel and powdered food when the score
reached 2 to avoid body weight reduction due to the in-
ability to reach food and water. Disease scoring was per-
formed at midday (during the light cycle).

ELISA measurement of serum CXCL1

Blood was collected via submandibular bleeding from
control mice and EAE-induced diseased mice at 9, 21,
and 40 dpi. These time points were selected to represent
disease onset, disease peak time, and disease late phase,
respectively. Serum was isolated and stored at —80°C
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until CXCL1 measurement with a mouse CXCL1/KC
Duo set ELISA kit (#DY453, R&D Systems).

Golgi-Cox neuron staining

At 63 dpi, mice were fixed by 4% paraformaldehyde/PBS in-
fusion, and spinal cords were harvested. Tissue samples were
processed using a FD Rapid Stain kit (#NC0292960, FD Neu-
rotechnologies) following the manufacturer’s instructions,
embedded in Tissue-tek OCT compound (#23-730-571,
Sakura Finetek), and stored at — 80 °C until sectioning. Spinal
cords were transversely cut into 50-pum sections using a cryo-
stat (Reichert Jung Cryocut 1800 Cryostat) and mounted
onto poly-L-lysine-coated glass slides. After overnight drying,
at least 8 sections were developed for Golgi-Cox neuronal
staining performed according to the manufacturer’s protocol.
After drying, slides were covered with resinous promount
and 0.17-pm coverslips.

Confocal reflection super-resolution (CRSR) acquisition
Samples of Golgi-Cox-stained spinal cords were imaged
using a Nikon Al confocal scanning microscope under
the confocal modality and CRSR modality (with mini-
mized pinhole at 0.3 AU) using 20x/0.8 NA objective
and 100x/1.49 NA oil objective, respectively [33]. A 405-
nm continuous wave laser was used, and the reflectance
mirror (BS 20/80) was applied. Images were acquired
using 100x/1.49 NA Oil (for dendritic spine analysis)
and Plan-Apochromat 20x/0.8 NA (for soma volume
analysis) objectives. For dendritic spine analysis, z-stacks
of at least 150 intervals were acquired. Pixel dimensions
were as follows: x, 0.0628 um; y, 0.0628 um; and z,
0.075 um. Four to eight z-stacks of spinal cord ventral
roots from four to eight individual 50-pum-thick spinal
cord sections per animal were visualized. A total of 220
dendrites (in 3—4 animals per condition) were included
in our analyses (naive, 60 dendrites; control EAE, 80
dendrites; Cxcr2 cKO EAE, 80 dendrites) using the fila-
ment tracer autopath function (Imaris), as previously
described [33, 34]. Importantly, Gaussian filter and back-
ground subtraction were applied to z-stacks of cropped
individual dendrites prior to tracing filaments. For
neuron soma size analysis, neuron soma sizes were de-
termined by individual analysis of soma volumes based
on 40-pum z-stacks of Golgi-Cox-stained slices from the
ventral horn of the lumbar spinal cord using the Imaris
software surface application. Six z-stacks of spinal cord
ventral roots from six individual 50-um-thick spinal cord
sections per animal were visualized. A total of 628
neuron somas (in 3—-4 animals per condition) were in-
cluded in our analyses (naive, 133 neurons; control EAE,
254 neurons; Cxcr2 cKO EAE, 241 neurons) using the
surface rendering function (Imaris).
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Mononuclear cell isolation

Brains, spinal cords, spleens, and draining lymph nodes
(inguinal and axillary lymph nodes) were harvested from
mice at 26—29 dpi. Brains and spinal cords were individu-
ally transferred into 5-mL collagenase D (1 mg/mlL)
(#11088866001, Sigma) solution in 6-in petri dishes,
chopped into small pieces using a metal blade, and incu-
bated at 37°C for 30 min. Tissue slurries were filtered
through 70-um cell strainers. Cells were pelleted by cen-
trifugation at 1500 rpm for 5min at 4°C and then sus-
pended in PBS containing 2% FBS. To isolate
mononuclear cells from the brains and spinal cords, 70%/
30% Percoll gradients were used as previously reported
[35]. Spleens and lymph nodes were mashed using frosted
glass slides in 5mL PBS containing 2% FBS, filtered
through fine mesh, and pelleted by centrifugation at 1500
rpm/1685¢g for 5min at 4°C. Cells were washed with
hemolysis buffer, pelleted again by centrifugation, and re-
suspended in PBS containing 2% FBS. Cells were then
counted using trypan blue and a hemocytometer.

Ibal immunohistochemistry

Spinal cords were harvested from PBS-perfused and 4%
paraformaldehyde-fixed mice at chronic disease (33 dpi).
Spinal cords were post-fixed in 4% paraformaldehyde
overnight and then cryoprotected by immersion in 30%
sucrose solution for 24-h. Samples were frozen in OCT
compound and stored at — 80 °C until cryostat sectioning.
Transverse sections (30 um) of spinal cords were mounted
on poly-L-lysine-coated glass slides. Mounted samples
were permeabilized with 0.05% Triton-X for 15 min at
room temperature, blocked with 2% BSA for 2 h at room
temperature, incubated overnight at 4 °C with goat poly-
clonal AIF-1/Ibal primary antibody (#NB100-1028, Novus
Biologicals) diluted in PBS, and incubated with chicken
anti-goat Alexa 647 secondary antibody (#A21469, Invi-
trogen) for 2 h. Labeled samples were dried, covered with
mounting media (Prolong Gold Antifade Mountant,
#P36930, Invitrogen), and sealed with a coverslip. Tissue
sections (3 images of ventral roots from individual L4-L6
lumbar spinal cord sections per animal) were visualized
using a Nikon Al confocal scanning microscope at 20x
magnification. A total of 2338 Ibal” cells (in 3 animals per
condition) were included in our analyses of soma size
(control naive, 222 Ibal* cells; control EAE, 1236 Ibal*
cells; Cxcr2 cKO EAE, 880 Ibal™ cells) using the Image]
morpholibj plugin, as previously reported [36].

Flow cytometry

To stain immune cells for flow cytometry, cells were incu-
bated with Fc-Blocker (purified anti-mouse CD16/32 anti-
body, #101302, Biolegend) in 96-well plates for 7 min and
then incubated with fluorochrome-conjugated antibodies
for 20 min on ice. Data acquisition was performed on a



Khaw et al. Journal of Neuroinflammation (2020) 17:49

flow cytometer (Cytek Aurora) and analyzed with Fcs Ex-
pression software 6 (De Novo Software). Information from
30,000 gated mononuclear cells was acquired for analysis.

Neutrophil isolation

Neutrophils from lymphoid organs (spleen and lymph
nodes) were isolated by first removing T, B, and DC popula-
tions using biotin-labeled anti-CD4 (#100404, Biolegend),
anti-CD8 (#100704, Biolegend), anti-CD19 (#115504, Biole-
gend), and anti-CD11c antibodies (#117304, Biolegend) with
streptavidin beads (#19860, Stemcell Technologies), followed
by neutrophil positive selection using a biotin-labeled anti-
Ly6G antibody (#127604, Biolegend) and dextran-coated
magnetic particles (#18556, Stemcell Technologies). Isolated
neutrophils were used for reactive oxygen species (ROS)
quantitation, co-culture, and qPCR studies.

Neuronal cell death detection in N2a cells

N2a cells were a gift from Dr. Keith Kelly (UIUC). N2a
cells (1 x10% cells/well) were cultured on cover slips in
24-well plates in 1% FBS/DMEM before initiating co-
culture to initiate neuron differentiation [37]. After 3 days,
neutrophils were added to N2a neuron culture triplicates
at a 2:1 cell ratio and incubated for 18 h at 37 °C with 5%
carbon dioxide circulation in a sterile incubator. After 18
h, cells were stained for apoptosis using the FITC Annexin
V Apoptosis Detection kit with 7-aad (#640922, Biole-
gend). Cells were post-fixed in 4% paraformaldehyde. Cov-
erslips were mounted on glass slides with Prolong Gold
and stored at 4 °C until image acquisition. A total of 15,
007 N2a cells were included in our analyses of 7-aad+
N2a cells (control naive, 2965 N2a cells examined; control
EAE, 4259 N2a cells examined; Cxcr2 cKO EAE, 7852
N2a cells examined) by manual counting from a blinded
experimenter. To evaluate neutrophil-mediated neuronal
cell death, value of cell death signal in neuron culture
alone was subtracted from that of cell death signal in co-
culture of neuron with neutrophil.

Neutrophil ROS detection

Isolated neutrophils were stained with neutrophil
markers (Ly6G, CD11b) and a ROS marker in duplicates
to detect oxidative stress (CellROX deep red reagent,
#C10422, Invitrogen) according to the manufacturer’s
protocol. Data acquisition was performed on a flow cyt-
ometer (Cytek Aurora) and analyzed with Fcs Expression
software 6 (De Novo Software).

Recombinant CXCL1 treatment to neutrophil in vitro

Wild-type mice were treated with thioglycolate solution
(3%, 2 ml/mouse) via i.p. injection. At 24 h after injection,
we isolated cells from peritoneal lavage, and isolated neu-
trophils from them by beads selection, as mentioned
above. Then, neutrophils were seeded in a 96-well-plate at
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3 x 10° cells/wells. Neutrophils were treated with vehicle
(negative control), rCXCL1 (10 or 30 ng/ml, #573702, Bio-
legend), and LPS (100 ng/ml, positive control, #4391,
Sigma) for 2 h prior to staining with CellROX deep red re-
agent (Invitrogen). Data acquisition was performed on a
flow cytometer (Cytek Aurora) and analyzed with Fcs Ex-
pression software 6 (De Novo Software).

RNA and cDNA preparation for gPCR analyses

Neutrophil total RNA was extracted with an RNeasy Kit
(#74106, Qiagen). cDNA synthesis was performed with
qScript ¢cDNA SuperMix (#101414-106, VWR). qPCR
was performed using KiCqStart SYBR Green qPCR
ReadyMix (#250RXN, Sigma Millipore) with an initial
denaturing step of 95 °C for 2 min, followed by 40 cycles
of denaturation at 94 °C for 3 s and annealing and exten-
sion at 60 °C for 30s. Relative amounts of qPCR tripli-
cates were determined with the AACt method to
compare relative expression of target genes and house-
keeping genes. Expression of the gene encoding [-actin
was used as an internal control.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.
All results were evaluated with two-tailed unpaired Student’s
t tests and p values. Data is expressed as mean +* standard
error of mean (SEM). A p value <0.05 was considered sig-
nificant. Animals were randomly used for experiments. All
behavior experiments were performed in a blinded fashion.
No statistical methods were used to predetermine sample
sizes, but our sample sizes are similar to those generally
employed in the field [31, 38].

Results

Neutrophil-specific Cxcr2 knockout ameliorates EAE
disease

We performed repeated induction of EAE in control wild-
type (cont) and neutrophil-specific Cxcr2 cKO mice, a
procedure shown to cause prolonged disease with severe
neuronal damage involving CXCR2 [31]. Experimental de-
sign is shown in Fig. la. Disease onset and severity of
motor disturbances were similar in Cxcr2 cKO mice and
control mice at an early disease phase (12—14 dpi) (Fig. 1b).
In contrast, Student’s ¢ test revealed that control mice
showed significantly severe motor disturbances (*p < 0.05)
from 15 dpi up to 40 dpi when compared with Cxcr2 cKO
mice that showed weak disease at peak and late phases
(Fig. 1b). Repeated induction of EAE induced significant
increase in serum CXCLI1 levels in EAE-induced mice
when compared with non-induced control mice as indi-
cated by data point at 0 dpi (before EAE induction). Not-
ably, at 21 dpi (around peak time), serum levels of CXCR2
ligand CXCL1 were significantly higher than at 9 dpi (on-
set) and were higher still at 40 dpi in control mice (Fig. 1c).



Khaw et al. Journal of Neuroinflammation (2020) 17:49

Page 5 of 12

-

A EAE induction «

) §

6-8 wk ol ! ' CXCL1 serum quantitation (Fig. 7)

Spinal cord sample prep. for

* * * Golgi-Cox staining  (Fig. 2)
I<—EIAE clinical scoring (Fig. 7)—>I . . ' .
DAY 0 10 20 30 40 50 60 70
A
Immune cell population analysis Spinal cord
Neutrophil isolation: co-culture & ROS detection Iba1 IHC
gPCR analysis (Fig. 4)
(Fig. 3, 5,6)
B - C *
Kky wkk KRk X 10007 |a|:J|_u
IGE:
g 3 'E\ 800 :]B_J g y
3 260018 I
y 2 .
L Q 4007
-e-Control EAE O
2007
~0-Cxcr2 cKO EAE
| | | -
0 10 20 30 40 0 (I) 1IO 2|0 3|0 4|0
Time (day) Time (day)
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cKO EAE, n=10. ¢ Serum CXCL1 levels in control non-induced mice (as indicated by 0 dpi) and EAE-induced mice at 9, 21, and 40 dpi. Note: error
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These results suggest that CXCR2 in neutrophils is crucial
for EAE disease maintenance and that its function is pos-
sibly attributable to highly circulating CXCL1 at peak and
late phases.

CXCR2" neutrophils mediate spinal cord neuronal
abnormalities at late phase of EAE

We assessed neutrophil Cxcr2-dependent morphological
changes in Golgi-Cox-stained neurons within the ventral
horn of lumbar spinal cord samples in control and Cxcr2-
cKO mice. At low magnification, we observed gross neur-
onal anatomical differences between control and Cxcr2
cKO mice (Fig. 2a). Using our recently developed confocal
reflection super-resolution (CRSR) technique [33], Stu-
dent’s ¢ test revealed that control EAE mice exhibited sig-
nificantly larger (*p <0.05) neuronal somas than Cxcr2
cKO EAE mice during late phase disease (Fig. 2b—d). Con-
sistent with abnormalities reflective of neuronal damage

and inflammation, neurons from control EAE mice exhib-
ited fewer dendritic spines than control naive and Cxcr2
c¢KO EAE mice (Fig. 2e, f). This suggests that CXCR2 in
neutrophils is crucial for CNS pathology during EAE.

CXCR2* neutrophils are not required for CNS infiltration
of immune cells at late phase of EAE

Student’s ¢ tests were performed to reveal that total im-
mune cell counts and counts of various immune cell
types in the brain and spinal cord were not significantly
different (p > 0.05) between control and Cxcr2 cKO mice
at late-phase disease (Fig. 3a, b). We also found no sig-
nificant differences in immune cell counts in spleens
and lymph nodes from control and Cxcr2 cKO EAE
mice (Fig. 3¢, d). Thus, the contribution of CXCR2-
expressing neutrophils to EAE disease maintenance was
not dependent upon neutrophil CXCR2-mediated migra-
tion of immune cells into the CNS.
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CXCR2" neutrophils are not required for microglial
activation at the late phase of EAE

We asked if depletion of neutrophil CXCR2 influences
microglia activation during EAE. Student’s ¢ test was per-
formed to reveal that Ibal™ cells in the ventral horn of
lumbar spinal cords from control and Cxcr2 cKO mice at
late-phase disease were not significantly different (»p >
0.05) in soma size (Fig. 4a, b). Thus, neutrophil CXCR2
does not affect microglia activation during EAE, indicating
that amelioration of disease severity and spinal cord path-
ology in Cxcr2 cKO mice is independent of this process.

CXCR2* neutrophils are required for neuronal damage

in vitro

We carried out co-culture of neuronal cell line N2a with
neutrophils isolated from control and Cxcr2 cKO mice
at late-phase disease. Student’s ¢ test revealed that co-
cultures with control neutrophils exhibited significantly
higher levels of 7-animoactinomycin D (7-aad) (*p <
0.05), a marker of neuronal cell death, than co-cultures
with Cxcr2 cKO neutrophils (Fig. 5a, b), implying neu-
trophil expression of CXCR2 is necessary to induce
neuronal cell death.
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spleen and d lymph nodes of control or Cxcr2 cKO mice. Control EAE, n=5; Cxcr2 cKO EAE, n=7. *p < 0.05, two-tailed unpaired Student’s t test

CXCR2" neutrophils contribute to the proinflammatory
phenotype during EAE

We measured ROS, a well-defined trigger of neuronal dam-
age and cell death [39-42]. At late-phase disease, Student’s
t test revealed that there was a significantly higher percent-
age of splenic ROS-expressing neutrophils (*p <0.05) in
control EAE samples relative to control naive mice, control
EAE mice, and Cxcr2 cKO EAE mice (Fig. 6a). To confirm
CXCR2 activation signal in neutrophil induces ROS, we
isolated thioglycolate-activated neutrophil from naive WT
mice and stimulated with recombinant CXCL1. As ex-
pected, CXCL1 treatment increased percentage of ROS-
producing neutrophils (Fig. 6b). Further, we measured
expression of neutrophil cytosolic factor 1 (NcfI) and mye-
loperoxidase (Mpo), both involved in ROS generation [43],
in neutrophils isolated from spleens and lymph nodes of
naive control, control EAE, and Cxcr2 cKO EAE mice at
EAE. Neutrophil treatment of liposaccharide (LPS) was a
positive control condition. Consistent with ROS results,
neutrophils from control EAE mice exhibited significantly

higher expression of Nc¢fI mRNA than neutrophils from
control naive mice (Fig. 6¢). However, we observed no dif-
ferences in Mpo mRNA levels (Fig. 6¢). Neutrophils from
control EAE mice significantly exhibited higher expression
Il1b than neutrophils from control naive mice and Cxcr2
cKO EAE mice. Tnfa gene expression levels was not signifi-
cant different among all three conditions (Fig. 6¢). These
results demonstrate that CXCR2 in neutrophils is necessary
and sufficient for EAE-induced ROS production, revealing
a potential mechanism for the observed neuronal damage.

Discussion

We investigated the role of neutrophil-specific CXCR2
signal in EAE development. Our initial speculation was
that CXCR?2 signaling in neutrophils is important for initi-
ating disease because neutrophils, which express abundant
CXCR?2, are early responders during EAE-associated neu-
roinflammation [23, 44, 45]. However, neutrophil-specific
ablation of Cxcr2 did not suppress early-phase disease de-
velopment but did affect peak and late phases of EAE.
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Importantly, we found a large increase in plasma levels of
CXCL1, a CXCR? ligand, during peak and late-phase dis-
ease, suggesting that CXCR2 signaling in neutrophils is
important at those stages instead of early phase in this
neurotoxic EAE model. Because CXCL1 was upregulated
in the serum and cerebrospinal fluid of a subset of MS pa-
tients [28], CXCR2 signals in neutrophils likely contribute
to MS disease.

We previously reported that severe CNS neuronal dam-
age and elevated serum CXCL1 [31] are induced during
EAE resulting from repeated immunization, the EAE induc-
tion method used in this study, hinting that CNS pathology
might be affected by neutrophil CXCR2. To test this, we
examined the lumbar spinal cord ventral horn because it is
the residential address of lower motor neurons and inter-
neurons, both indispensable for normal functioning of
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hindlimbs [46, 47]. Further, neutrophils are more abun-
dant in the ventral spinal cord than in lateral areas [48].
Neutrophil-specific Cxcr2 ablation markedly improved
spinal cord neuron morphology, as measured by neuron
soma size and dendritic density, at late-phase EAE.
Changes in neuron sizes are thought to reflect their in-
flammation state. Increased soma sizes, sometimes also re-
ferred to as neuronal swelling [49], have been observed in
disease-vulnerable motor neurons during ALS progression
[50]. These significant alterations in neuron morphology
correlate with the prolonged motor impairments observed
in control mice exposed to repeated EAE, which occur up
to 40 dpi. Because dendritic spine loss was also reported
in MS patients and EAE models [14, 51, 52], we also quan-
tified spine density of dendrites that reside in the ventral
horn. Similar to the phenotype of soma enlargement, loss
of spines induced by EAE was blunted by neutrophil-
specific ablation of Cxcr2. Therefore, CXCR2" neutrophils
contribute to CNS neuronal damage.

To address the mechanism underlying the role of CXCR2
in neutrophils during EAE, we focused on immune cell in-
filtration because neutrophils influence migration of other
immune cells into the CNS in this model [53, 54]. However,
deletion of neutrophil Cxcr2 did not affect immune cell mi-
gration to the CNS. This result is consistent with a previous
study demonstrating no deficit in neutrophil recruitment to
the CNS in cuprizone-fed mice with global ablation of
Cxcr2 [30]. Additionally, another study demonstrated no
change in the number of infiltrating neutrophils to sites of
inflammation after administration of a CXCL1 inhibitor
[55]. Therefore, CXCR2-mediated neutrophil migration is
not implicated in EAE.

Neutrophils are reported to mediate neurotoxic effects by
activating CNS resident microglia in cell contact-dependent
and cell contact-independent manners [56]. For example,
depleting CNS neutrophils significantly decreases in vivo
maturation of microglia and infiltrating monocytes, result-
ing in impaired leukocyte trafficking to the CNS [23] and
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reduced levels of microglial activation marker CD68 [57].
However, neutrophil-specific loss of Cxcr2 did not affect
microglia activation as evaluated by increases in soma size.
Thus, amelioration of spinal cord pathology in Cxcr2 cKO
mice cannot be attributed to changes in microglia effector
function.

Neutrophils can be direct inducers of neuron damage via
enhanced secretion of neurotoxic elastases [58], ROS [59],
and extracellular traps [23]. Understanding the range of ef-
fector functions that neutrophils can exert upon neurons is
important because neutrophils invade CNS parenchyma in
multiple contexts of neuroinflammation, including MS,
Alzheimer’s disease, and ischemic CNS damage [60]. We
found that neutrophils isolated from control EAE mice in-
duced severe neuronal cell death in vitro, and deleting neu-
trophil Cxcr2 rescued this effect. Our results suggest that
neutrophils may have a direct effect on neuronal damage,
and CXCR?2 signal is a key regulator of their neurotoxicity.

Neutrophils generate large amounts of ROS, which can
trigger neuronal cell death [61]. Exogenous ROS-induced
neuronal cell death was shown to be induced via
mitochondria-dependent oxidative burst [62]. In this study,
deletion of Cxcr2 in neutrophils suppressed ROS production
in neutrophils during EAE. We also found that CXCR2 signal
activated by rCXCL1 is sufficient to induce ROS production,
which agrees with a previous finding that identified CXCL1
as being a mediator for ROS production in vivo [27]. We also
showed that Ncfl is upregulated in neutrophils of control
EAE mice and suppressed in neutrophils of Cxcr2 ¢KO mice.
NCF-1 is crucial in the production of ROS [63, 64]. In
addition, [/1b mRNA is also upregulated in the neutrophil of
control EAE mice, but not in Cxcr2 cKO EAE mice. IL-1f
are known to drive direct neuronal damage by activating
neuronal apoptosis signaling [65], inducing glutamate excito-
toxicity [66]. IL-1B also orchestrates neuron damage by pro-
moting T cell pathogenicity [67, 68] and endothelial cell
inflammatory cytokine secretion [69]. Therefore, CXCR2"
neutrophil-derived IL-1p may also mediate CNS neuronal
damage in EAE. Our study provides evidence of neutrophil-
driven neuronal swelling and synaptic loss via CXCR2 signal-
ing which is a key regulator in ROS production.

Conclusion

Our data provide experimental evidence that neutrophil-
specific Cxcr2 deletion is sufficient to rescue severe disease
development and neuronal damage during EAE via prevent-
ing ROS generation, implying that neuronal damage results
from a CXCR2-mediated ROS generation in neutrophils.
We hope that this study will lead to effective therapeutics for
preventing CNS neuronal damage in MS patients.
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