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ABSTRACT

Several methods exist for predicting non-coding RNA
(ncRNA) genes in Escherichia coli (E.coli). In addition
to about sixty known ncRNA genes excluding tRNAs
and rRNAs, various methods have predicted more
than thousand ncRNA genes, but only 95 of these
candidates were confirmed by more than one study.
Here, we introduce a new method that uses automatic
discovery of sequence patterns to predict nhcRNA
genes. The method predicts 135 novel candidates.
In addition, the method predicts 152 genes that over-
lap with predictions in the literature. We test sixteen
predictions experimentally, and show that twelve of
these are actual ncRNA transcripts. Six of the twelve
verified candidates were novel predictions. The relat-
ively high confirmation rate indicates that many
of the untested novel predictions are also nhcRNAs,
and we therefore speculate that E.coli contains more
ncRNA genes than previously estimated.

INTRODUCTION

Non-coding RNAs (ncRNA) are transcripts, whose function
lies in the RNA sequence itself and not as information carriers
for protein synthesis. Although long believed to be a minor
gene class, recent discoveries have revealed that ncRNA genes
are far more prevalent than previously believed and that they
have other important roles beyond protein synthesis (rRNA
and tRNA) (1-5).

In Escherichia coli, the number of experimentally verified
small RNA (sRNA) genes (ncRNA genes excluding rRNA
and tRNA) has increased rapidly. Only 10 sRNA genes
were known in 1999 (6), whereas a recent survey listed 55

known sRNA genes (7). Subsequent RNA cloning experiments
increased the number of known sSRNA genes to 62 (8).

Most of these SRNA genes were identified in six studies
describing systematic searches for new sRNA genes (9-14).
All but one of these studies (14) used computational methods to
predict SRNA genes. The computational methods ranged from
analysis of sequence (9,10) and structure (11) conservation;
to promoter and terminator identification (9,13); and machine
learning based on sequence composition, known ncRNA
motifs and RNA secondary structure stability (12). Together,
these six studies have predicted ~1000 non-redundant SRNA
candidates that are yet to be confirmed (7). Note, however, that
only 95 candidates were predicted by more than one study.

We describe a method that uses automatic discovery of
sequence patterns to predict ncRNA genes in E.coli’s inter-
genic regions. The main strengths of the method as compared
to other methods are that (i) it uses the DNA sequence directly
as input, which helps to reduce any potential bias from input
feature selection and encoding (12); (ii) it works well with a
much larger number of intergenic sequences (negative exam-
ples) than known ncRNA sequences (positive examples) (12);
(iii) it is very robust when it comes to noise in the training data,
as for instance intergenic regions that actually are ncRNAs;
and (iv) it does not rely on sequence conservation to predict
ncRNA genes.

The method predicts several hundred intergenic regions
to contain ncRNA genes, and over half of these overlap
with previous predictions. We test the 10 top-scoring candid-
ates and verify 9 of these by northern analysis. In addition, we
test six candidates of varying prediction confidence; three of
these are confirmed by northern analysis. Only 6 of these 12
new ncRNA genes have been predicted by previous methods.

Our results indicate that the number of ncRNA genes in
E.coli is larger than what has previously been estimated (15).
This is because the estimates of Zhang and colleagues were
partly based on the number of ncRNA genes predicted by more
than one method, which, until now, was 95. We have extended
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this list by 44%, which is a significant increase. In addition,
we have shown that our method detects ncRNA genes that
have not been predicted by other methods.

MATERIALS AND METHODS
Sequence data

We downloaded the E.coli K-12 genome sequence (16)
(U00096.1) and its annotations (release 73) from EMBL’s FTP
server (http://www.ebi.ac.uk/genomes/bacteria.html). Based
on annotations and previous studies (9-11), we collected a
set of 154 experimentally verified ncRNA sequences. These
sequences consisted of 86 tRNAs, 22 rRNAs and 46 other
SRNA genes. Note that one of these SRNAs was the strain-
dependent uptR gene (17). The list of ncRNA sequences is
given in the Supplementary Material.

Based on the positions of known ncRNA genes and protein
coding sequences (CDS), we constructed a set of intergenic
sequences (INT) by removing all parts of the genome contain-
ing ncRNAs and CDSs, along with 100 nt on each side. This
resulted in 942 subsequences totaling 144 520 nt, which
increased to 1884 sequences of 289 040 nt when we added
the complement of each sequence.

Each ncRNA and INT sequence was then divided into 50 nt
sequence windows with 25 nt overlap. If the final window in a
sequence had <50 nt, we adjusted the overlap so that the final
window also had 50 nt. For example, 90 nt sequences were
divided into three 50 nt sequence windows consisting of nuc-
leotides 1-50, 26-75 and 41-90. The 50 nt window size was
chosen because the smallest ncRNA in our dataset was 53 nt
(dicF). This procedure gave 1795 ncRNA sequence windows
and 10 663 INT sequence windows; removing duplicates in the
form of identical sequences reduced the number of ncRNA and
INT sequence windows to 840 and 10 572. Of the 840 unique
ncRNA sequence windows, 53% were from rRNAs, 30% from
sRNAs and 17% from tRNAs.

Algorithms

We use a machine learning algorithm called GPboostg., to
create classifiers that predict whether or not a sequence is an
ncRNA gene. The algorithm has previously been used to pre-
dict the efficacy of short oligonucleotides in RNAi and anti-
sense experiments (18,19). In the following, we will only give
a basic description of the algorithm; interested readers should
consult Setrom (18) and the references therein for a complete
description.

GPboostg,, takes as input a set of positive and negative
sequences and creates a classifier that predicts whether or
not an unknown sequence belongs to the positive set. Here,
the positive and negative sequences are the ncRNA and INT
sequence windows described in the previous section. Thus, the
classifier created by GPboostr., can predict whether or not a
given sequence comes from an ncRNA.

To create the classifiers, GPboostg, combines genetic pro-
gramming (GP) (20) and boosting algorithms (21). GP uses
simulated evolution in a population of candidate solutions to
solve problems, and here, each individual in the population
is an expression in a formal query language (whitepaper avail-
able on request). GP evaluates how well each candidate solu-
tion separates between the positive and negative sequences

and uses this fitness information to guide the simulated evolu-
tion. That is, our GP solution iteratively (i) selects candidate
solutions based on fitness such that more fit solutions have a
higher chance of being selected; (ii) introduces random
changes in the selected solutions by exchanging subparts of
two candidate solutions (crossover) or randomly changing a
subpart of a candidate solution (mutation); and (iii) updates the
solution population by replacing the old population with the
randomly changed candidate solutions. We repeat this process
a fixed number of iterations and choose, as the final solution of
the GP run, the candidate solution that gave the best perform-
ance on the training set.

The classifiers created by our GP algorithm are sequence
patterns that can only give binary answers. That is, given a
sequence, each pattern answers either ‘yes’ (1) or ‘no’ (—1), as
to whether the pattern matches parts of the sequence or not.
To improve the confidence of our predictions, we combine the
GP algorithm with a boosting algorithm. Boosting algorithms
join several classifiers into a final weighted average of the
individual classifiers such that the performance of the final
classifier is increased compared to each of the single classi-
fiers. To do this, the boosting algorithm guides each GP run’s
search for good solutions by adjusting the relative importance
of each sequence in the training set. Then the boosting algo-
rithm assigns a weight to the best expression from the GP run.
This weight is based on the expression’s performance in the
corresponding training set and is assigned such that the output
of the final classifier ranges from —1 to 1. As a result, the
classifiers created by our algorithm are the weighted average
of several different sequence patterns. We will occasionally
refer to these classifiers as models. Note that GPboostge, uses
regularized boosting (22) to handle noise in the training set.

To reduce the time needed to evaluate each individual
expression in the GP population, we use a special purpose
search processor designed to provide orders of magnitude
higher performance than comparable regular expression
matchers (23). The increased performance becomes important
when the datasets are large, or when many expressions must be
evaluated, for instance, in cross-validation experiments or
when GP is used as the base learner in a boosting algorithm.

Quality measures

When a model is evaluated on a positive and negative set of
sequences, four statistics (counts) can be defined: the number
of true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN). These represent the positive hits
in the positive set, positive hits in the negative set, negative
hits in the negative set and negative hits in the positive set,
respectively. Several quality measures can be defined from
these counts (24). This study uses the Matthews correlation
M (Equation 1), false positive rate FP, (Equation 2) and
sensitivity Se (Equation 3):

FP-TN +FP-FN
/(TN +FN) - (TN + FP) - (TP + FN) - (TP + FP)

FP
FPy=—— 2
FP+TN
TP
Se—— 1 3
“TTP+FN
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Strain and growth conditions

Escherichia coli K-12 strain MG1655 cells (from overnight
cultures were diluted 1/50 in Luria—Bertani (LB) medium and
subsequently grown at 37°C) were grown in LB broth and used
for inoculation of liquid cultures. Cells were grown in 100-ml
batch cultures in 500-ml Erlenmeyer flasks at 37°C with aera-
tion by rotary shaking (250 r.p.m.). The culture media used
was LB as described elsewhere (25). Growth was monitored at
600 nm on a Shimadzu UV-1601 UV-visible spectrophoto-
meter. Cells were harvested in four different growth phases:
lag (ODggp < 0.2), log (0.2 < ODgpo < 1.0), early stationary
(1.0 < ODgqp < 2.0) and late stationary phase (ODgpo > 2.0).

RNA isolation

Total RNA was isolated from the cells using a procedure
based on trizol reagent combined with RNeasy microcolumns
(Qiagen). One milliliter of trizol was added per 10° cells and
stored at room temperature for 5 min; 0.2 pl chloroform was
added per ml of trizol and the sample was shaken for 15 s. The
sample rested before centrifugation for 15 min at 12000 g
and 4°C. The aqueous phase was slowly added 1:1 to 70%
EtOH to avoid precipitation. The sample was further loaded to
the RNeasy column and washed and DNase treated according
to the RNeasy protocol (Qiagen). Isolated RNA was resuspen-
ded in RNase-free water and quantitated using Eppendorf
BioPhotometer.

Oligonucleotides

The complete list of oligonucleotides used to generate probes
for northern analysis and primer extension experiments is
provided as Supplementary Material.

Northern analysis

RNA samples (~10 pg) were denatured for 10 min at 60°C
in a buffer containing 95% formamide, separated on urea—
polyacrylamide (8%) gels, and transferred to nylon membranes
by electroblotting. Radiolabeled strand-specific RNA probes
were synthesized using in vitro transcription according to
MAXIscript™ (Ambion). Hybridization signals were visual-
ized on Typhoon 9410 (Amersham).

Primer extension assay

Primer extension assay was carried out with AMV reverse
transcriptase (Promega), on ~10 g total RNA and 5’ end-
labeled primers. The primers were end-labeled by using
[y**-P]JATP and polynucleotide kinase. Products of the
extension reactions were separated on 8% polyacrylamide
sequencing gels alongside sequencing reactions performed
on the corresponding PCR products from the intergenic
regions. Sequencing reactions were carried out with a Thermo
Sequenase Radiolabeled Terminator Cycle Sequencing Kit
(USB, Amersham).

RESULTS
ncRNA gene predictions

We used a variant of 10-fold cross-validation to train and test
our machine learning algorithm (26,27). More specifically,
we randomly divided the sets of ncRNA and INT sequence

Nucleic Acids Research, 2005, Vol. 33, No. 10 3265

windows into 10 non-overlapping subsets. Then, we iteratively
trained classifiers on 8 of the subsets and tested the classifiers
on the remaining 2 subsets. We used one of these test subsets
to estimate the optimal value of the regularization parameter in
the GPboostg., algorithm and the other test subset as a com-
pletely independent test set. We ran this training and testing
procedure for 10 iterations such that all the 10 subsets had been
used as the independent test set.

To estimate the optimal regularization value, we tried
several different values and used the one with the highest
average correlation in the 10 ‘parameter estimation’ test sub-
sets. These optimal models had an average correlation of 0.58
on the complete test set, and predicted on average 22 false
positive sequence windows in the test subsets. This resulted in
an average false positive rate of 2.1%. The models’ average
sensitivity was 54%. The following sections will examine the
predictions in the original ncRNA set, the true positives and
false negatives, and the potential new ncRNA genes, the false
positives.

The algorithm identifies nearly 80% of the sRNAs in the
database. As we used two subsets to test the classifiers, there
was some overlap between each of the test sets (each unique
sequence was present in two different test sets for two different
models). The test set consisted of 840 unique sequences for a
total of 1680 sequences: 913 of these were predicted as true
positives and 767 were false negatives. When duplicates were
removed from these sets, 564 of 840 were positive predic-
tions and 491 of 840 were negative predictions. In other
words, 215 sequences were predicted as being both positive
and negative. This means that 42% of the sequences were
strongly predicted by two models, and 26% were weakly pre-
dicted by a single model.

Two of 46 sSRNA sequences were completely matched by
the models and 10 were completely missed. The complete
matches were the partially overlapping rydB and tpe7 found
by Wassarman et al. (10) and Rivas et al. (11), and the misses
were micF, oxyS, rybB, ryeE, ryhA, spf, sraB and sraE, and
the overlapping ryhB and sral found by Wassarman et al.(10)
and Argaman et al. (9).

306 potential new ncRNA genes of which 152 confirm
previous predictions. The models predicted a total of 438
false positive sequence windows; 57 of these were predicted
by two models. Several of the predicted sequence windows
overlapped or were located next to each other. When these
were joined and treated as one continuous sequence, a total of
306 sequences remained.

A cross-reference of the 306 candidate ncRNA sequences
with the list of predicted but unconfirmed ncRNA genes
presented in (7) identified that 171 of the sequences over-
lapped with previous predictions; 152 of these were predicted
to be on the same strand. Most of the predictions overlapped
with the predictions of Carter and colleagues (12). This was
expected, not only because their predictions were the most
abundant in our INT set, but also because they base their
predictions on the common sequence characteristics of
ncRNAs, which is also the essence of our method.

Accounting for the number of predictions made by other
methods that were significantly represented (>10 sequences)
in our INT set, our predictions support 35, 51, 28 and 41%
of the predictions of Rivas et al. (11), Carter et al. (12),
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Chen et al. (13) and Tjaden et al. (14). Thus, there is relatively
good correspondence between our predictions and the predic-
tions of these four methods.

Our results confirm several previous predictions that were
not supported by other methods. In total, the intergenic regions
in our dataset contained 288 sequences that have been predicted
by only one previous method to be part of an ncRNA gene. Our
predictions overlapped 123 of these 288 sequences. Exclud-
ing the predictions that were unique to the Carter algorithm,
our predictions supported 42 of the remaining 166 sequences.
Thus, although our predictions increased the list of candidates
that are unique to a single study by 15%, we increased the
list of candidates predicted by more than one study from 95
to 218 (7). Even when excluding the Carter specific sequences,
we increased the list of candidates predicted by more than one
study by 44% (7). This is a significant increase.

Table 1 shows the 10 highest scoring intergenic sequence
windows (the complete list of predictions are available as
Supplementary Material). The table is sorted according to
the model output for the highest predicted window in the
sequence.

After we started our experiments, several new ncRNA genes
in E.coli have been identified. Table 2 lists the ncRNA genes
that were not included as known ncRNAs in our training set,
but that were included with at least 50 nt in our set of intergenic
sequences. That is, they were falsely included as negative
sequences in the training set. The genes were mainly collected
from the E.coli genome project’s (www.genome.wisc.edu)

Table 1. Top ten predictions sorted by prediction confidence

ID  Position Length Strand Score Annotation

1001 271879 100 + 022 271880-272035 + Carter et al.
1002 4230937 150 - 0.22  4230927-4231086 — Carter et al.
1003 719883 75 + 0.21  719854-719973 + Carter et al.
1004 3766615 50 + 0.21  Novel

1005 303544 50 - 0.19  Novel

1006 262270 82 - 0.18  Novel

1007 4626216 75 + 0.17  Novel

1008 1702671 75 + 0.16  1702604-1702818 + Tjaden et al.
1009 1859481 125 + 0.16  1859567-1859646 + Carter et al.
1010 4527911 50 + 0.15  4527862-4527941 + Carter et al.

The given position is the 5’ end for predictions in the positive strand, and the
3’ end for predictions in the negative strand. The score is the classifier output for
the highest scoring sequence window in a sequence.

Table 2. Known ncRNA genes included in the set of intergenic sequences

Gene Overlap Strand Prediction Previous
predictions (7)

C0067 (12) 60 of 124 + Not predicted n/a

rdlA (30) 66 of 66 + Predicted 50 nt (—) 211), — (12)

rdIB (30) 65 of 65 + Not predicted ?7(11), — (12)

rdIC (30) 67 of 67 + Not predicted ?7(11), — (12)

1S061 (13) 60 of 157 — Not predicted n/a

1S092 (13) 116 of 159 — Not predicted n/a

rygC (10) 76 of 150 + Predicted 50 nt (+ and —) + (13), — (12)

SroG (8) 110 of 147 — Predicted 89 nt (—) —(12)

rdID (30) 63 of 63 + Not predicted — (14), — (12)

SroH (8) 61 of 159 — Not predicted + (13)

The overlap is the number of nucleotides from the ncRNA included as
an intergenic sequence. The last column lists the strand and the reference to
previous predictions overlapping the gene.

ASAP database (28) (E.coli K-12 Strain MG 1655 version m54)
and from Refs (7,8).

Although, as Table 2 shows, our method only predicts 2 of
the 10 genes to be on the correct strand, the performance is not
poorer than that of other methods. For instance, the method
of Carter and colleagues (12), which is comparable to our
method, predicts only one gene (SroG) correctly. Thus, these
genes may be too different to be predictable without combin-
ing several of the available methods.

We also cross-referenced our predictions with the uncon-
firmed transcripts in the cDNA library of Vogel et al. (8).
Table 3 lists the transcripts that were included with at least
50 nt in our set of intergenic sequences. As the table shows,
we predict 5 of the 7 transcripts to be ncRNA genes with the
correct orientation. Again, our predictions are comparable to
or slightly better than other methods.

Finally, Kawano et al. (29) describes several new ncRNA
genes. Not all these new ncRNAs were present in our dataset;
of the three genes that were present, our predictions match one
(RyfB). The other two genes (SokE and SokX), like rdlA, rdIB,
rdIC and rdID, may be involved in anti-sense regulation of
hok and ldr (29-31). As these ncRNAs’ function is closely
linked to their targets’ sequences, they may not share many
sequence characteristics with other ncRNAs. This can explain
why our method has problems predicting these hok/ldr-related
ncRNAs.

ncRNA gene validations

To test our predictions, we selected 16 predictions for experi-
mental validation. These included all the top 10 predictions
from Table 1 and 6 additional predictions with varying pre-
diction confidence (summarized in Table 4). We chose the 6

Table 3. Unconfirmed transcripts from (8) included in the set of intergenic
sequences

Contig Overlap Strand  Prediction Previous
predictions (7)

Contig_440 68 of 105 + Predicted 50 nt (+)  + (13), — (12)
and 50 nt (—)

Contig_68 76 of 157 + Predicted 49 nt (+)  + (14), — (13)

Contig_606 83 of 103 + Predicted 63 nt (+)  + (14), — (12)
and 50 nt (—)

Contig_223 80 of 141 — Predicted 50 nt (=) — (12)

Contig_496 73 of 73 + Predicted 61 nt (+) —(14), £ (12)
and 49 nt (—)

Contig_286 102 of 102 + Predicted 50 nt (—) + (14)

Contig_181 43 of 43 — Not predicted ?7(11), + (13)

See Table 2 for header explanations.

Table 4. Six predictions with varying confidence experimentally tested in the
lab

ID  Position Length Strand Score Annotation

1014 4373943 60 — 0.14  Novel

1016 1218274 50 - 0.14  Novel

1035 914278 100 + 0.1 914218-914571 * Rivas et al.
914259-914378 + Carter et al.

1044 4366175 50 + 0.1  Novel

1209 4006562 50 + 0.025 4006513-4006565 — Carter et al.

1211 214141 50 - 0.025 Novel

See Table 1 for details on the prediction position.
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Figure 1. Northern hybridizations of selected predictions against total RNA from lag, log, and early and late stationary phases confirm 12 of 16 selected transcripts.
The figure shows the complete northern blots after low stringency wash. The boxed bands indicate the bands that were still present after repeated washes of higher
stringency, but the resulting blots are excluded because of poor resolution and picture quality. The indicated sizes are only approximate sizes because these are
individual blots lined up together; see Supplementary Figure 2 for size estimates based on each individual blot. Note that most blots have a ~120 nt band that

corresponds to 5s RNA.

additional predictions to have both high and low prediction
confidence, and to be a mix of previously predicted and novel
candidates. These 6 additions represented a more varying
spectrum of predictions than did the top 10 predictions.
Figure 1 shows the results of northern hybridization with
strand-specific probes from 12 of the 16 predictions against
total RNA from the E.coli lag, log, and early and late
stationary phases (see Materials and Methods). Most of the
12 confirmed transcripts were differentially expressed in
the four phases, which is in agreement with previously
known ncRNAs in E.coli (8—10). We did not detect transcripts
from the four predictions not shown in Figure 1 (data not
shown). The absence of detectable transcripts do, however,
not imply that the predictions are wrong as some ncRNAs are
only expressed under certain conditions [see for example
(2,8,10)]. We also tried to map the 5 start of 4 of the 12

verified transcripts (1001, 1002, 1004 and 1014, chosen because
these were a mix of high and low confidence, and previous
and novel predictions). We identified potential 5 start sites
for all four transcripts (see Supplementary Material). Based on
these results, we estimated the size of three of the transcripts;
see Table 5 for additional information.

As Figure 1 shows, we detected more than one band for six
of the predictions. These instances of multiple bands were
either (i) a large sequence with one or two additional smaller
sequences (1002, 1003 and 1006); (ii) two large sequences
(I014); or (iii) two small sequences (I007 and 1044). One
possible explanation is that the multiple bands are processed
or degraded forms of a single transcript. This may be the
case for 1002 and 1014, as we saw only one 5’ start point for
each region in the primer extension. These transcripts could
be specifically processed by catalytically active enzymes,
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Table 5. Transcripts detected by primer extension

Transcript Strand 5’ start Predicted distance Size 5" gene 3/ gene

1001 + 271804 75 75 b0257 + ykfC +
1002 - 4231116 179 310 b4024 (‘lysC’) - b4025 (‘pgi’) +
1004 + 3766359 256 n/a 0153 (‘yibG’) + yibH —
1014 — 4374139 196 300 0188 (‘efp’) + 0155 (‘sugE’) +

The table lists the transcripts’ 5 ends; their orientation; the distance between the 5" ends and the predicted transcripts; the transcripts’ estimated size; and the name and
orientation of 5" and 3’ flanking genes (relative to the + strand). Note that the 1004 5’ start point overlaps prediction HB_200 of Carter and colleagues (12), but we did

not detect any northern signal that corresponded to this 5 start (see Figure 1).

or unspecifically processed by ribonucleases. Several known
ncRNAs in E.coli are specifically processed (32), and our
results are similar to previously predicted and verified ncRNAs
thought to be specifically processed (9).

It is possible that some of the larger transcripts detected
could be processed 5’ or 3’ ends of neighboring mRNAs; e.g.
1002 overlaps the 5" CDS of 1lysC by 6 nt. The neighboring
genes that the other large transcripts can and do overlap with
(we did not establish the 5" ends of 1003 and 1006, but 1014
overlaps 4 nt in the 5’ CDS of efp) are on the opposite strand of
the verified transcripts. Thus, it is possible that these tran-
scripts can regulate their neighboring genes through an anti-
sense mechanism.

Because the transcripts we have tested have not previously
been detected, these transcripts may be unstable or of low
abundance and therefore difficult to detect. Such instability
may also explain some of the multiple bands. Another possible
explanation could be that the strand-specific probes bind to
other transcripts, but a Blast (33) search of the probes against
the complete E.coli genome did not give any matches with
E-values below 0.1, except for the intended target sites. Thus,
it is unlikely that the multiple bands in the northern blots are
caused by the probes hybridizing to other complementary
transcripts.

Excluding tRNAs and rRNAs improves specificity

Our initial database of ncRNA genes was slightly biased
towards rRNA and tRNA genes. As our main focus was to
identify other small RNA genes, we did a separate analysis
where we trained classifiers exclusively on the sRNA
sequences. In this analysis, we used the query language and
methodology from Saetrom (18), i.e. a classifier was the
average of 10 GPboost runs instead of a single run as in our
previous experiments.

Using this approach, we predicted 135 of 255 sRNA
sequence windows, which included sequence windows from
all but the micF and sraE genes. In addition, the approach
identified 140 potential ncRNAs, 69 of which were novel.

A cross-reference of the potential ncRNAs identified by this
method with the list of known genes (see Table 2) showed
that it had correctly identified the rygC, SroG and rdID genes.
On the other hand, only Contig_496 of the sequences in
Table 3 was correctly identified; two other predictions over-
lapped Contig_440 and Contig_286, but these were on the
opposite strand.

As a comparison, we ran an experiment where we again
used the approach of Saetrom (18), but also included the
tRNAs and rRNAs. We now identified all the ncRNAs in
the training set except spf, sraB, sraD and micF, and predicted

401 potential ncRNAs; 168 of these were novel. Although this
approach identified slightly fewer of the SRNA genes in the
training set compared to the classifiers that were trained only
on the SRNA sequences, it identified all the tRNAs and rRNAs;
the sRNA-based classifiers only identified 15 of 22 rRNAs
and 21 of 86 tRNAs. Thus, as expected, when the rRNAs
and tRNAs are excluded from the training set, the resulting
classifiers become more specific. In accordance with this, the
classifiers trained on the complete ncRNA set identified four of
the known ncRNAs in our set of intergenic sequences (rdlA,
rygC, SroG and rdID), and seven of the nine contigs from
Table 3 (Contig_440 and Contig_286 were identified on the
wrong strand).

DISCUSSION

We have described a novel method for finding non-coding
RNA genes and proved its applicability by analyzing E.coli
intergenic regions, and testing and experimentally confirming
9 of the top 10 scoring predictions and 3 other predictions with
lower score. Several groups have searched for new ncRNAs
in E.coli (8-14), which have resulted in a list of about ~1000
non-redundant and untested candidates (7). Our predictions
mostly confirm the predictions of the other methods, but we
also predict several new ncRNA genes, and, as our experi-
mental verifications show, at least six of these new predictions
are genuine ncRNAs: 12 of the 16 tested candidates, includ-
ing 6 novel predictions, were verified. It would therefore be
surprising if none of the other candidates are ncRNAs.

Northern analysis and primer extension showed that our
method could not completely identify the true transcript of
the verified predictions. That is, the algorithm either only
predicted a portion of the transcript or misplaced its start
and stop site. There are three main reasons for these errors.
First, our data set consisted of 50 nt sequence windows with
25 nt overlap. Consequently, we could only predict the correct
start and stop site if these regions aligned with any of the
sequence windows in our data set. Here, we would expect
that only 1 of 25 start sites would align by chance. Second,
our algorithm did not recognize all the sequence windows of
the known ncRNAs in the training set. We would therefore be
surprised if it correctly predicted the complete sequence of
any new transcripts. Third, our algorithm is biased in the sense
that it will only detect regions that are similar to regions in the
known ncRNAs. Thus, the algorithm would have trouble
detecting the novel domains in the new transcripts.

Because of these three shortcomings, we did not expect
the algorithm to correctly identify the complete sequence of
any new transcripts. Rather, we developed the algorithm as



a complementary tool to the existing ncRNA prediction
algorithms, which use other features to predict ncRNAs.
As an analogy to standard protein coding gene prediction,
our algorithm can be considered a content analyzer (34). To
get more reliable predictions of complete ncRNAs, we can for
example combine our algorithm with algorithms that look
for signals such as transcription initiation and termination
(9,13). We are currently looking into this.

When comparing our predictions to those of other methods
and to the known ncRNAs included in our set of intergenic
sequences (see Table 2), we found that some of our predictions
were on the opposite strand. In addition, 47 of our predictions
overlapped predictions that our algorithm made on the oppos-
ite strand (see Supplementary Material). Thus, it appears that
the algorithm has problems identifying the correct strand for
some transcripts. These results are, however, related to the
above discussion on the algorithm’s bias: the algorithm will
only detect domains that have a similar sequence to those in
the known ncRNAs. An ncRNA’s function often lies in its
secondary structure, however, and in general, several different
sequences can fold into the same secondary structure. In par-
ticular, for certain sequences both the original and reverse
complementary sequence fold into similar secondary struc-
tures. Thus, if the reverse complementary of such sequences
more closely resembles the known ncRNAs than does the
original sequences, our algorithm will predict the reverse com-
plementary sequence to be an ncRNA domain. This is for
instance the case for rdlA in Table 2. Our algorithm incorrectly
predicted the reverse complementary sequence of rdlA to be an
ncRNA, but the secondary structures of the correct sequence
mirrors that of the reverse complementary (data not shown).

A recent study uses the sequence conservation of known
ncRNA genes and intergenic regions to estimate the number of
SRNAs (ncRNAs other than tRNA and rRNA) in E.coli to be
between 118 and 260 (15). The authors then argue that because
the number of SRNA genes that either have been experiment-
ally verified or predicted by at least two different studies in
E.coli were 150 (at that time), their estimates may be an upper
limit to the number of SRNA genes in E.coli (15). Following
their logic, our results indicate that the number of SRNA genes
in E.coli may be closer to their highest estimate than to their
lowest. This is because we have significantly extended the list
of ncRNAs predicted by more than one method, and because
we have shown that our method predicts new ncRNAs that
have remained undetected by other methods.

To summarize, we have shown that our approach for
ncRNA prediction is both accurate and complementary to
existing methods. That is, it identifies genuine ncRNA genes,
some of which have not been predicted by any other methods.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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