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Simple Summary: The global threat that is imposed by the resistance the pathogens develop to
antimicrobial drugs is escalating. Tools to detect the resistance (with evidence on molecular and
cellular outcomes) would reveal intricate mechanisms through which novel drugs could be devel-
oped. Approaches such as metabolomics, which involve metabolite detection, provide scientific
evidence of metabolite expression of antimicrobial-resistant pathogens. The current study involved
metabolomics of antimicrobial-resistant Salmonella Typhimurium collected from various hosts (hu-
man, porcine, bovine) and were exposed to antimicrobial drugs—ampicillin, chloramphenicol, strep-
tomycin, sulfisoxazole, and tetracycline—as one set of the experiment. The same isolates were
also cultured with no drug exposure as a comparison. There are certain pathways of metabolite
expression that are impacted by drug exposure when compared to no drug exposure, meaning
that the expressed metabolites could be potential targets for drug companies for the treatment of
antimicrobial-resistant pathogens.

Abstract: Antimicrobial resistance (AMR) is a global public health threat, yet tools for detecting
resistance patterns are limited and require advanced molecular methods. Metabolomic approaches
produce metabolite profiles and help provide scientific evidence of differences in metabolite ex-
pressions between Salmonella Typhimurium from various hosts. This research aimed to evaluate
the metabolomic profiles of S. Typhimurium associated with AMR and it compares profiles across
various hosts. Three samples, each from bovine, porcine, and humans (total n = 9), were selectively
chosen from an existing library to compare these nine isolates cultured under no drug exposure
to the same isolates cultured in the presence of the antimicrobial drug panel ACSSuT (ampicillin,
chloramphenicol, streptomycin, sulfisoxazole, tetracycline). This was followed by metabolomic
profiling using UPLC and GC–mass spectrometry. The results indicated that the metabolite regulation
was affected by antibiotic exposure, irrespective of the host species. When exposed to antibiotics,
59.69% and 40.31% of metabolites had increased and decreased expressions, respectively. The most
significantly regulated metabolic pathway was aminoacyl-tRNA biosynthesis, which demonstrated
increased expressions of serine, aspartate, alanine, and citric acid. Metabolites that showed decreased
expressions included glutamate and pyruvate. This pathway and associated metabolites have known
AMR associations and could be targeted for new drug discoveries and diagnostic methods.

Keywords: antimicrobial resistance; metabolomics; metabolites; Salmonella Typhimurium; resistance
markers

1. Introduction

Antimicrobial resistance (AMR) in bacteria isolated from animal hosts is a major global
public health threat. The Centers for Disease Control and Prevention have determined
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that AMR is “one of the greatest public health challenges of our time” [1]. One of the
key goals for slowing or decreasing AMR identified by the White House in the National
Strategy for Combatting Antibiotic-Resistant Bacteria is to “accelerate basic and applied
research and development for new antibiotics . . . ” [2]. However, current tools for detecting
phenotypic resistance patterns are limited and require advanced molecular methods to
reveal associations with AMR patterns [3,4].

Metabolomics is a relatively new tool that can be used to construct metabolite profiles
and these metabolite patterns provide evidence of metabolite regulation at the cellular level.
When bacteria are exposed to antibiotics, this exposure can trigger cellular changes within
the bacterial cell that results in specific metabolic patterns that can help predict antimicrobial
drug resistance profiles. Such predictability can have an immediate impact on human and
animal health by leading to advancements in drug discoveries by targeting the expression
of certain metabolites, as well as diagnostic tools to screen large numbers of samples for
AMR. Identifying possible new drug targets would help pharmaceutical companies develop
more specific and effective antibiotics to combat AMR bacterial infections [4].

Recent studies have shown that bacteria produce specific metabolic fingerprints when
exposed to different classes of antibiotics. These fingerprints can help predict the mode
of action used by antibiotics [4] to help develop any novel therapies. For many years,
the development of antibiotic resistance could be partly explained by the synthesis of
novel analogues of existing compounds [4]. However, such chemical modifications are
finite, to keep pace with the remarkable adaptability of the bacteria when exposed to
these selective drug pressures in the environment. To combat the prevalence of multidrug-
resistant (MDR) pathogens, novel antibiotics that target distinct cellular functions are
needed [5]. Better understanding the metabolic patterns in AMR bacteria to expose new
cellular functions associated with drug resistance and susceptibility is one way to identify
new drug targets. One of these studies also suggested that a core metabolic profile for each
bacterium is identifiable regardless of the environmental condition, suggesting bacteria
could be identified using in vitro metabolic profiles whether in a wound, on surgical
equipment, or in the environment [6].

Salmonella is a rod-shaped, Gram-negative bacillus that belongs to the Enterobacte-
riaceae family. This organism is of high public health importance due to its ability to
cause several syndromes in both animals and humans. Enteritis, septicemia, abortion, and
asymptomatic miscarriages are the major syndromes that present in animals. Enteric fever,
gastroenteritis, septicemia, and focal infections are the major syndromes that present in
humans infected with Salmonella bacteria [7]. Salmonella enterica serovar Typhimurium is of
utmost importance to public health due to its ability to infect human hosts via contaminated
foods. It is one of the most identified serovars in cattle, humans, and pigs and has displayed
resistance to ampicillin, chloramphenicol, sulfamethoxazole, and tetracycline [8].

The aim of this project was to identify cellular biomarkers (metabolites) associated
with mechanisms of AMR in Salmonella Typhimurium using metabolomics and investi-
gate the diversity of those markers among established genetic patterns of resistance in
S. Typhimurium isolated from humans, bovine, and porcine samples. Metabolomics can
be used as a tool to identify the cellular effects of AMR in this pathogen of public health
importance. This research has two specific aims (1) to establish metabolomic profiles
of Salmonella Typhimurium isolated from humans, porcine, and bovine and cultured in
the presence and absence of an ACSSuT panel of drugs, and (2) to evaluate similarities
and differences in these metabolomic profiles in Salmonella Typhimurium across isolates
originating from humans, porcine, and bovine hosts. The hypothesis of the study is that
non-targeted metabolite profiling will identify biomarker profiles distinctive of AMR in
S. Typhimurium and, more specifically, the metabolite patterns will differ across various
host species.
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2. Materials and Methods
2.1. Isolate Collection, Screening, Identification, and Growth

Salmonella isolates from various institutes (Salmonella Typhimurium isolates were con-
tributed by the Colorado Department of Public Health and Environment, CSU-Veterinary
Diagnostic Laboratory, Ohio State University, University of Illinois, University of Pennsyl-
vania, and Washington State University) in the US were shipped directly to the Animal
Population Health Institute laboratory. A total of 88 human, 33 bovine, and 36 porcine iso-
lates were screened to verify proper serovar typing belonging to Salmonella Typhimurium.
Briefly, samples were streaked for isolation onto blood agar plates containing 5% sheep
blood and incubated overnight at 37 ◦C. A single colony was first tested with the Salmonella
O Antiserum group Poly A-I, & Vi, and then Salmonella O Antiserum Group B, factors 1,
4, 5, 12 (BD Diagnostic Systems, Fisher Scientific, Hampton, NH, USA). After antibody
confirmation, the Salmonella Typhimurium isolates were grown in 1 mL of trypticase soy
broth (TSB), and generated stocks were frozen at −80 ◦C in 10% sterile glycerol.

2.2. Integron and AMR Testing

A portion of each Salmonella Typhimurium stock isolate was scraped into a separate
microcentrifuge tube, thawed, and centrifuged for 5 min at 5000× g. The supernatant was
removed, and each pellet was resuspended in molecular grade water in a 1:3 ratio (10 µL
cell pellet suspended in 30 µL of water). A total of 5 µL of each washed, resuspended
isolate was used as a template and added to the following PCR mastermix for a 25-µL
total reaction volume: 2.5 µL 1× Amplitaq Gold Buffer II and 1.5 mM MgCl2 (Applied
Biosystems, Foster City, CA, USA), 0.8 mM dNTPs (0.2 mM each) (Roche Applied Sciences,
Indianapolis, IN, USA), 0.4 µM of each primer (Int forward primer sequence: 5′-GGC
ATC CAA GCA GCA AGC-3′; Int reverse primer sequence: 5′-AAG CAG ACT TGA CCT
GAT-3′), 1.875 U Amplitaq Gold polymerase (Applied Biosystems, Foster City, CA, USA),
and 2.5 µL 5× Q-Solution (Qiagen, Valencia, CA, USA).

The primers amplify the variable region between the 5′CS to 3′CS region of class 1
integrons [9]. Each reaction was overlaid with 30 µL of Chill Out wax (Bio-Rad, Hercules,
CA, USA) to prevent evaporation and placed into an MJ Research 60 place thermal cycler
(Bio-Rad). Thermal cycling conditions consisted of an initial incubation at 94 ◦C for 10 min
to activate the polymerase and lyse cells, followed by 35 cycles of 94 ◦C for 30 s, 54 ◦C for
1 min, 72 ◦C for 1.5 min, and a final extension incubation at 72 ◦C for 10 min.

PCR products were analyzed by agarose gel electrophoresis using the FlashGel® DNA
System (Lonza Group, Ltd., Basel, Switzerland) and visualized by UV light transillumina-
tion. A 100 bp–4 kb molecular weight marker (Lonza Group, Ltd., Basel, Switzerland) was
concordantly run on the gel as a ladder to aid in the calculation of the size of the amplified
DNA fragments. A positive control sample generated from purified DNA from two isolates
previously analyzed [9] for class 1 integrons and containing integron sizes of 1000, 1200,
and 1600 was included (5 pg total) with each PCR and gel. Samples containing integron
sizes of 1000, 1200, 1600, 1800, or both 1000 + 1200 bp were recorded and subsequently
re-run on a 1% agarose gel containing a marker and a positive control for proper band
size identification. Integron bands were excised from the gel and submitted for DNA
purification using the QIAquick PCR Purification kit (Qiagen, Hilden, Germany).

All Salmonella Typhimurium isolates used in this study were tested for suscepti-
bility to 16 antimicrobial agents by the disk diffusion assay according to CLSI stan-
dard procedures. The AMR testing panel consisted of the following sixteen antimi-
crobial drugs—amoxicillin–clavulanate (AMC-30), cephalothin (CF-30), chlorampheni-
col (C-30), ampicillin (AM-10), ceftiofur (CTO-30), enrofloxacin (ERF-5), streptomycin
(S-10), triple sulfa (SSS-0.25), tetracycline (TE-30) sulfamethoxazole/trimethoprim (SXT
23.75–1.25), cefoxitin (FOX-30), ciprofloxacin (CIP-5), florfenicol (FFC-30), gentamicin (GM-
10), kanamycin (K-30), and nalidixic acid (NA-30). Escherichia coli (E. coli) ATCC 25922 and
Staphylococcus aureus ATCC 25923 were used as quality controls.
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2.3. Isolate Growth and Extraction for Proteomic and Metabolomics Profiling

Nine S. Typhimurium isolates (three human, three porcine, and three bovine) were
selected to undergo an antimicrobial drug growth challenge followed by a non-targeted
metabolomics analysis. Criteria for selection were the presence of both 1000 and 1200 base
pair integrons, and matching susceptibility/resistance profiles across the 16 drugs tested.
Five drugs, ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline
(ACSSuT panel; Sigma Aldrich, St. Louis, MO, USA), were selected for the S. Typhimurium
antimicrobial drug challenge.

Ampicillin, chloramphenicol, tetracycline, and streptomycin were each dissolved in
water to the desired stock concentration. Sulfisoxazole was added to 10% HCl and heated
at 80 ◦C until dissolved. The sulfisoxazole–acid mix was added to TSB, the broth was
neutralized to pH 7.0 using NaOH, and the other antibiotics were subsequently added. The
final concentration of each antibiotic was based on the recommended minimum inhibitory
concentration (MIC) recommended by the Clinical Laboratory and Standards Institute, as
shown in Table 1.

Table 1. Recommended MIC values for Salmonella enterica serotype Typhimurium for the ACSSuT
pattern according to 2014 CLSI standards.

Drug Panel MIC

Ampicillin 32 µg/mL
Chloramphenicol 32 µg/mL

Streptomycin 64 µg/mL
Sulfisoxazole 512 µg/mL
Tetracycline 16 µg/mL

Isolates were processed using standard laboratory procedures. They were thawed and
streaked for isolation on sheep blood agar plates. One resulting colony from each selected
isolate was suspended in 0.5 mL of TSB; 100 µL was inoculated into 20 mL of normal TSB
(no drug = ND) and 100 µL was inoculated into 20 mL of ACSSuT TSB (Drug = D). The
only difference between the ND and D was that the ND group of cultures were without
antimicrobials. Cultures were then incubated with shaking at 37 ◦C for 24 h. After pelleting
at 4300× g for 10 min at 4 ◦C and supernatant removal, the wet weight of each culture
pellet was recorded and adjusted to 20 mg. Pellets were washed with phosphate-buffered
saline (PBS) and centrifuged again as above; after discarding PBS supernatant, the pellets
were frozen at −20 ◦C. Each sample pellet was thawed at 4 ◦C, suspended in methyl
tert-butyl ether (MTBE), and sonicated for 30 s intervals for a total of 6 cycles, with a 30 s
cooling on ice between cycles. The sonicated lysates were then centrifuged at 2500× g
for 5 min at 4 ◦C, and 150 µL of LC-MS grade water and an additional 100 µL MTBE
was added to the cleared supernatants. After sealing with Parafilm, sample tubes were
vortexed at room temperature for 15 min, incubated at −80 ◦C for 15 min, and centrifuged
at 15,890× g for 15 min at 4 ◦C. Samples were then divided by a non-polar supernatant, a
polar supernatant, and protein lysates. Each layer was dried via nitrogen gas and stored at
−80 ◦C for metabolomics analysis.

2.4. Metabolomic Profiling by UPLC- and GC–MS

An ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) analysis
was performed on a Waters Xevo G2-TOF MS coupled with a Waters Acquity UPLC [10].
Separation was performed on a UPLC T3 reverse phase column and data were collected in
MSE mode (alternating low and high collision energy) [11]. For the gas chromatography–
mass spectrometry (GC–MS) analysis, cell extracts were dried and derivatized using a
standard protocol. Briefly, GC–MS data were acquired on a Thermo Scientific Trace-ISQ
GC–MS system (Waltham, MA, USA) with separation using a 30 m TG-5MS column.
Data from both UPLC-MS and GC–MS acquisitions were processed using XCMS (https:
//www.bioconductor.org/packages/release/bioc/html/xcms.html, accessed on 31 March

https://www.bioconductor.org/packages/release/bioc/html/xcms.html
https://www.bioconductor.org/packages/release/bioc/html/xcms.html
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2022) for peak detection, retention time alignment, and normalization [12]. Metabolite
annotation of GC–MS data was performed by grouping molecular features into peak
groups using AMDIS software (http://www.amdis.net/, accessed on 31 March 2022) and
screening spectra against the CSU in-house spectral library, NIST GC–MS spectral library,
and the Golm Metabolite Database (http://gmd.mpimp-golm.mpg.de/, accessed on 31
March 2022). Annotations of UPLC-MS data were performed by an unbiased grouping of
molecular features into spectra based on correlational clustering across the dataset [10] and
screening spectra against the CSU in-house spectral library (consisting of approximately
1100 compounds), NIST LC-MS spectral library, and MassBank spectral library [12].

2.5. Statistical Analysis (MetaboAnalyst 4.0)

Data analysis of the biomarkers was completed using MetaboAnalyst 4.0 (MetaboAna-
lyst 4.0 is available at https://www.metaboanalyst.ca/ (accessed on 26 April 2021) and its
R packages are available at https://github.com/xia-lab/MetaboAnalystR, (accessed on
26 April 2021)). The UPLC and GC–MS spectra were combined, normalized, and scaled.
To determine the statistically significant (S.S.) metabolites, a pairwise analysis was con-
ducted, including a non-parametric Wilcoxon rank-sum test and fold-change analysis. A
two-way analysis of variance (ANOVA) followed by a principal component analysis (PCA)
and heatmapping were used to determine and visualize the species and drug effects and
interactions. A pathway analysis was then conducted to match S.S. metabolites to known
metabolic pathways and determine the biological significance of those pathways.

Multiple features of this program were used, including “Two-factor”, “Statistical Anal-
ysis”, and “Pathway Analysis”, to conduct multiple statistical tests, including Wilcoxon
rank-sum, fold-change, two-way ANOVA, PCA, and heatmapping. Conducting the “Path-
way Analysis” in MetaboAnalyst required all metabolites to have an HMDB identifier.
The Human Metabolome Database (HMDB) is a website that compiles detailed informa-
tion about metabolites and their roles in human metabolic pathways and assigns HMDB
identifiers or numbers.

3. Results
3.1. AMR Patterns and Integrons

The most common AMR pattern among all resistant samples (23/126 = 18.3%) was
ampicillin, amoxicillin–clavulanate, streptomycin, sulfonamides, tetracycline, chloram-
phenicol, and florfenicol (coded as AMC-AM-S10-SSS-TE-C-FFC). All isolates with this
AMR pattern carried both the 1000 and 1200 bp integrons.

3.2. Metabolite Expression by Drug Treatment and Host Species

Visualization by the principal component analysis (Figure 1) and the two-way ANOVA
heatmap (Figure 2) showed that a greater effect on metabolite production was apparent when
the samples were exposed to the full drug (ACSSuT panel) treatment, irrespective of species.

Figure 1. PCA chart derived from two–way ANOVA showing clustering of samples by drug treatment.

http://www.amdis.net/
http://gmd.mpimp-golm.mpg.de/
https://www.metaboanalyst.ca/
https://github.com/xia-lab/MetaboAnalystR
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Figure 2. Heatmap derived from two–way ANOVA showing clustering of metabolite concentrations
based on drug treatment.

3.3. Metabolite Expression and Matched Metabolic Pathways

Wilcoxon rank-sum showed 653 metabolites that had an S.S. concentration difference
(59.69% increased and 40.31% decreased expressions) when the sample was exposed to
the ACSSuT antibiotic panel versus when it was not. Of those 653 metabolites, 23 unique
metabolites were annotated by the PMF, identifiable by HMDB, and matched to one or
multiple of the 9 statistically significant metabolic pathways in MetaboAnalyst. Of these,
60.87% of metabolites had an increased expression when exposed to antibiotics and 39.13%
had a decreased expression (Figure 2).

Methionine, nicotinamide, nicotinate, pantothenate, phenylalanine, proline, pyroglu-
tamic acid, pyruvate, serine, threonine, tryptophan, tyrosine, uracil, and valine significantly
increased with full drug treatment. Conversely, alanine, aspartate, citrate, cysteine, glu-
tamate, glycerate, glycerone phosphate, glycine, and leucine decreased with full drug
treatment.

The metabolic pathways matched to the significantly different metabolites include
glycine, serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism;
aminoacyl-tRNA biosynthesis; pantothenate and CoA biosynthesis; glutathione metabolism;
valine, leucine, and isoleucine biosynthesis; nicotinate and nicotinamide metabolism; gly-
oxylate and dicarboxylate metabolism; and beta-Alanine metabolism, in order of descend-
ing pathway impact scores (Table 2).
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Table 2. Significant metabolites from the Wilcoxon rank-sum test with the metabolic pathway and the associated fold changes observed across host species.

All Hosts Bovine Swine Human

Metabolic
Pathway Impact p-Value FDR Metabolite

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change
(FD/ND)

p-Value FDR

Aminoacyl-
tRNA
biosynthesis

0.2 1.93 ×
10−7 1.66 × 10−5

Phenylalanine 0.565 0.0000581 0.00043499 0.433 0.0021645 0.0096991 0.737 0.535
Cysteine 1.515 0.0096309 0.023444 0.118 0.0021645 0.0096991 0.228 0.0021645 0.022605 1.400
Glycine 1.858 0.00000394 0.0000655 2.003 0.0021645 0.0096991 1.812 1.723
Aspartate 3.077 3.06 × 10−8 0.00000283 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 2.178
Serine 2.837 8.22 × 10−8 0.00000426 4.469 0.0021645 0.0096991 1.755 0.0021645 0.022605 2.240
Methionine 0.594 0.020464 0.042605 0.498 0.0021645 0.0096991 0.588 0.708
Valine 0.675 0.0064022 0.017165 0.391 0.0021645 0.0096991 0.925 0.782
Alanine 2.065 3.06 × 10−8 0.00000283 2.149 0.0021645 0.0096991 2.240 0.0021645 0.022605 1.910
Leucine 0.087 0.0023492 0.0080271 0.106 0.015152 0.041482 0.063 0.0021645 0.022605 0.116
Threonine 2.233 2.2 × 10−10 0.000000285 2.065 0.0021645 0.0096991 3.156 0.0021645 0.022605 1.834
Tryptophan 2.143 0.0000164 0.00017127 1.789 0.0021645 0.0096991 2.671 1.647
Tyrosine 2.183 1.48 × 10−8 0.00000212 2.932 0.0021645 0.0096991 2.054 0.0021645 0.022605 1.959
Proline 2.150 0.00075777 0.0033152 1.153 3.432 2.041
Glutamate 0.321 0.0000239 0.00021944 0.353 0.497 0.243

Pantothenate
and CoA
biosynthesis

0.144 0.00304 0.10686

Pantothenate 0.414 0.000000 0.000005 0.440 0.0021645 0.0096991 0.389 0.0021645 0.022605 0.429
Valine 0.675 0.006402 0.017165 0.391 0.0021645 0.0096991 0.925 0.782
Aspartate 3.077 0.000000 0.000003 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 1.300
Cysteine 1.515 0.009631 0.023444 0.118 0.0021645 0.0096991 0.228 0.0021645 0.022605 1.400
Pyruvate 0.458 0.002642 0.008841 0.382 0.008658 0.026381 1.570 0.0021645 0.022605 0.394
Uracil 1.477 0.020464 0.042605 0.977 1.848 1.474

Glycine,
serine, and
threonine
metabolism

0.456 0.00373 0.10686

Serine 2.837 0.000000 0.000004 4.469 0.0021645 0.0096991 1.755 0.0021645 0.022605 2.240
Glycine 1.858 0.000004 0.000066 2.003 0.0021645 0.0096991 1.812 1.723
Aspartate 3.077 0.000000 0.000003 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 1.300
Glycerate 1.691 0.000503 0.002423 0.631 0.008658 0.026381 2.225 2.473
Threonine 2.233 0.000000 0.000000 2.065 0.0021645 0.0096991 3.156 0.0021645 0.022605 1.834
Pyruvate 0.458 0.002642 0.008841 0.382 0.008658 0.026381 1.570 0.0021645 0.022605 0.394
Tryptophan 2.143 0.000016 0.000171 1.789 0.0021645 0.0096991 2.671 1.647

Glutathione
metabolism

0.118 0.01061 0.2144

Glycine 1.858 0.000004 0.000066 2.003 0.0021645 0.0096991 1.812 1.723
Cysteine 1.515 0.009631 0.023444 0.118 0.0021645 0.0096991 0.228 0.0021645 0.022605 1.400
Pyroglutamic
Acid 0.679 0.005177 0.014605 0.613 0.748 0.693

Glutamate 0.321 0.000024 0.000219 0.353 0.497 0.243
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Table 2. Cont.

All Hosts Bovine Swine Human

Metabolic
Pathway Impact p-Value FDR Metabolite

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change

(FD/ND)
p-Value FDR

Fold
Change
(FD/ND)

p-Value FDR

Nicotinate
and Nicoti-
namide
metabolism

0.066 0.0125 0.2144

Aspartate 3.077 0.000000 0.000003 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 1.300
Glycerone
phosphate 0.582 0.000001 0.000027 0.644 0.004329 0.016886 0.579 0.0021645 0.022605 0.536

Nicotinamide 1.858 0.000245 0.001366 1.505 1.666 2.495
Nicotinate 1.435 0.000007 0.000098 1.587 0.008658 0.026381 1.455 1.832

Glyoxylate
and dicar-
boxylate
metabolism

0.055 0.0269 0.38631

Citrate 7.934 0.000024 0.000219 2.799 20.017 6.503
Glycerate 1.691 0.000503 0.002423 0.631 0.008658 0.026381 2.225 2.473
Glycine 1.858 0.000004 0.000066 2.003 0.0021645 0.0096991 1.812 1.723
Glutamate 0.321 0.000024 0.000219 0.353 0.497 0.243
Serine 2.837 0.000000 0.000004 4.469 0.0021645 0.0096991 1.755 0.0021645 0.022605 2.240
Pyruvate 0.458 0.002642 0.008841 0.382 0.008658 0.026381 1.570 0.0021645 0.022605 0.394

beta-Alanine
Metabolism

0 0.0458 0.43434
Aspartate 3.077 0.000000 0.000003 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 1.300
Pantothenate 0.414 0.000000 0.000005 0.440 0.0021645 0.0096991 0.389 0.0021645 0.022605 0.429
Uracil 1.477 0.020464 0.042605 0.977 1.848 1.474

Valine,
leucine, and
isoleucine
biosynthesis

0.107 0.0475 0.43434

Threonine 2.233 0.000000 0.000000 2.065 0.0021645 0.0096991 3.156 0.0021645 0.022605 1.834
Leucine 0.087 0.002349 0.008027 0.106 0.015152 0.041482 0.063 0.0021645 0.022605 0.116
Pyruvate 0.458 0.002642 0.008841 0.382 0.008658 0.026381 1.570 0.0021645 0.022605 0.394
Valine 0.675 0.006402 0.017165 0.391 0.0021645 0.0096991 0.925 0.782

Alanine,
aspartate and
glutamate
metabolism

0.45 0.0475 0.43434

Aspartate 3.077 0.000000 0.000003 3.174 0.0021645 0.0096991 3.883 0.0021645 0.022605 1.300
Alanine 2.065 0.000000 0.000003 2.149 0.0021645 0.0096991 2.240 0.0021645 0.022605 1.910
Glutamate 0.321 0.000024 0.000219 0.353 0.497 0.243
Pyruvate 0.458 0.002642 0.008841 0.382 0.008658 0.026381 1.570 0.0021645 0.022605 0.394

FDR = false discovery rate; FDR helps control for falsely positive significant features; FDR < 0.05 has less than a 5% probability of being a falsely significant feature. Fold change of > 1
indicates an increase in metabolite expression when exposed to full drug treatment and a fold change of <1 indicates a decrease in metabolite expression when exposed to the full drug
treatment. Non-significant metabolites.
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3.4. Univariate Analysis

A between-subject, two-way ANOVA identified 297 metabolites (Table 3) that were
statistically significant only for the treatment factor. No metabolites were found to be
significant for the host species factor or the interaction between host species and treatment.

Table 3. Significant identifiable metabolites found via univariate, between-subject, two-way ANOVA.

Metabolite p-Value FDR

2-Piperidinecarboxylic_acid_1MEOX_2TMS 0.00958 0.04464
Adenine_1TMS 0.00275 0.02104
Alanine, N-3-indolylacetyl 0.00002 0.00135
Aspartic acid, N-3-indolylacetyl 0.00000 0.00032
Butanoic acid,_3-hydroxy-0.2 0.00064 0.00847
Butanoic_acid, 4-hydroxy-_2TMS 0.00035 0.00576
Cinnamic_acid, 2-hydroxy-, trans- 0.000003 0.00040
Cohibin_A.1 0.00374 0.02508
Coixenolide_2 0.00869 0.04154
Coixenolide_4 0.00561 0.03144
Cysteamine_3TMS 0.00531 0.03071
Cysteine_3TMS 0.01144 0.04989
Glycerol-3-phosphate_4TMS.2 0.00118 0.01276
Glycine 0.00004 0.00173
Guanosine 0.00001 0.00088
Guanosine,_2′-deoxy-_4TMS.1 0.00027 0.00504
Guanosine_4TMS
coeluting_with_Guanosine_5TMS 0.00261 0.02063

Iminodiacetic_acid_3TMS 0.00185 0.01715
Isoleucine_2TMS 0.00071 0.00914
Lactose 0.00001 0.00065
Leucine 0.00032 0.00541
Leucine,_cyclo- 0.00352 0.02428
Leucine_2TMS 0.00051 0.00704
Levulinic_acid 0.00057 0.00760
Luteolin 0.00474 0.02871
Naringenin 0.00066 0.00867
Oxamide_3TMS 0.00017 0.00383
Pantothenic_acid,_D-_3TMS 0.00799 0.04009
Phenylalanine_2TMS 0.00003 0.00147
Phosphomycin 0.000000008 0.00001
Pinitol,_D-_5TMS 0.00363 0.02488
Putrescine_4TMS 0.00224 0.01912
Pyridine 0.00443 0.02729
Pyridoxamine 0.00859 0.04136
Pyroglutamic_acid_2TMS 0.00976 0.04528
Quercetin 0.00003 0.00147
Serine 0.00000003 0.00001
Thiamine 0.00004 0.00173
Threitol,_dithio- 0.00166 0.01589
Thymidine-5′-monophosphoric-acid-3TMS 0.00020 0.00426
Tryptophan_3TMS 0.00007 0.00249
Tyrosine,_2-iodo- 0.000000017 0.00001
Tyrosine_3TMS 0.00001 0.00094
Uric_acid 0.00017 0.00383
Valine_2TMS 0.00008 0.00280
Xanthine_3TMS 0.00772 0.03903

FDR = false discovery rate; FDR helps control for falsely positive significant features; FDR < 0.05 has less than a
5% probability of being a falsely significant feature.
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4. Discussion

In this study, we investigated metabolite expression patterns in AMR Salmonella
Typhimurium isolated from human, bovine, and swine when exposed to antibiotics. We
were able to demonstrate a greater difference in metabolite expression when the isolates
were exposed to the full drug challenge compared to no drug exposure, irrespective of
host species. The univariate analysis further confirmed that metabolite expression changes
were significant only according to the treatment factor, not according to the host species or
interaction of the host species and treatment. Metabolite expression being non-host specific
suggests that AMR Salmonella Typhimurium drug targets are consistent across human,
bovine, and swine hosts. This finding has great significance when considering that future
drug testing on AMR Salmonella Typhimurium in swine and bovine could be translated to
human treatments.

While the expression of 23 specific metabolites significantly changed when exposed
to the full drug treatment and these upregulated metabolites each matched significant
metabolic pathways, a specific resistance mechanism remains unclear. These isolates were
exposed to multiple antimicrobial drugs and each drug has a different mechanism of action.
Therefore, there are potentially many mechanisms of resistance that have developed in
these isolates [4]. As per Hoerr et al. (2016), the metabolic profiles could be separated
in a fingerprint, and based on the specific fingerprints obtained for different classes of
antibiotics, the mode of action of several antibiotics could be predicted. The profiles could
also be used as potential drug targets for pharmaceutical companies. Over the past few
decades, there has been a decline in approvals of new antibiotic drugs in the market by
the US Food and Drug Administration (FDA) [13,14]. The number of new antibiotics
being developed every year decreases due to the challenges of effectively dispatching both
antibiotic-resistant bacteria and novel infectious bacteria [15]. If we want to reverse these
trends and facilitate new approaches to overcoming resistance, we must first understand
the microbial forces responsible for developing resistance [16]. Metabolomics in particular
offers a unique strategy to detect metabolic changes that occur in an organism in response
to drugs and the outcomes of such studies can provide insights into their corresponding
modes of action [17,18].

The significant changes observed in our study include increases in methionine, nicoti-
namide, nicotinate, pantothenate, phenylalanine, proline, pyroglutamic acid, pyruvate,
serine, threonine, tryptophan, tyrosine, uracil, and valine, and decreases in alanine, as-
partate, citrate, cysteine, glutamate, glycerate, glycerone phosphate, glycine, and leucine.
These metabolites were matched to nine significant metabolic pathways, including glycine,
serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-
tRNA biosynthesis; pantothenate and CoA biosynthesis; glutathione metabolism; valine,
leucine, and isoleucine biosynthesis; nicotinate and nicotinamide metabolism; glyoxylate
and dicarboxylate metabolism; and beta-Alanine metabolism.

Lin et al. (2019) [19] found biosynthesis of amino acids, biosynthesis of phenyl-
propanoids, and purine metabolism were commonly enriched in MDR strains of E. coli,
and the results concurred that antibiotic resistance affects the metabolite profiles of MDR
bacteria. Several related metabolites, such as glycerol, were increased in MDR strains, while
citric acid and succinic acid were decreased in MDR strains [19].

An established resistance mechanism against β-lactams, such as ampicillin, includes
the production of metallo-β-lactamases, which inactivate the drug through a cleavage pro-
cess. The metallo-β-lactamases are especially threatening due to their ability to inactivate
multiple β-lactams and their insensitivity to β-lactamase inhibitors that target the acyl
serine transferases. This resistance mechanism has been identified in extended-spectrum
β-lactamases where two amino acid substitutions are critical, a serine-for-arginine and a
lysine-for-glutamate [20]. This substitution may explain the increased expression of serine
and the decreased expression of glutamate observed when isolates are exposed to the
ACSSuT drug panel in our study. Aspartate has also been identified as a critical component
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of the metallo-β-lactamases; thus, the increased expression of aspartate may support this
mechanism [20].

Perhaps one of the largest resistance mechanisms is through decreasing TCA cycle flux.
Previous studies have shown that exogenous alanine and/or glucose increase susceptibility
to antibiotic treatment by increasing TCA flux and thereby increasing drug uptake by the
cell [21]. Therefore, it is possible that decreased TCA flux could contribute to decreased drug
susceptibility. Decreased concentrations of pyruvate and glutamate in our study support
this conclusion, as pyruvate directly feeds the TCA cycle and glutamate is converted to
pyruvate by α-ketoglutarate [22].

These data from our study suggest that another resistance mechanism utilized by
these AMR isolates may be initiated from the aminoacyl-tRNA pathway. Aminoacyl-
tRNA biosynthesis is responsible for changing cell membrane properties and increasing
a pathogen’s resistance. It has previously been identified as an attractive drug target [22].
This pathway likely acts by decreasing cell permeability and, thus, inhibiting drug entrance
into the cell. The aminoacyl-tRNA biosynthesis pathway in our study is significantly
altered when isolates are exposed to the ACSSuT antibiotic panel.

Alanine is a required component of cell wall peptidoglycan and it has been demon-
strated that inhibition of alanine transport results in increased susceptibility to drugs [23].
Increased concentrations of alanine may indicate that the cell wall has undergone peptido-
glycan remodeling, resulting in decreased susceptibility.

In our study, citrate (citric acid) has the highest fold change of any of the metabolites
matched to a significant pathway, but its possible role in antimicrobial resistance is less clear.
Citrate has previously been described as having a role in the regulation of cell division
and gene expression and is known to be a chelator, which may allow bacteria to manage
intracellular concentrations of cations. Previous research has shown an increase in citrate
concentrations when Salmonella aureus is exposed to cold temperatures, as well as upregu-
lated cell division proteins [24]. Therefore, increased citrate concentrations may suggest
that S. Typhimurium depends on this metabolite to maintain intracellular Ca++ concen-
trations and increases the rate of cell division. An increased rate of cell division would
also increase the chances of DNA mutation occurring and antibiotic resistance developing.
Further examining the role of citrate in bacterial survival and AMR is warranted.

In future research, exposing isolates to only one antibiotic or one class of antibiotics
would allow for a more specific interpretation of the expressed metabolites and potentially
provide more robust evidence on resistance mechanisms. Interpretation of these data
is limited due to the multiple mechanisms by which the ACSSuT panel targets bacteria.
Resistance mechanisms against one class of antibiotics differ from those against another
class, hence why bacteria resistant to one class may be susceptible to a different one [25].
This explains why a distinct resistance mechanism was not identifiable in this project. Expo-
sure to a single antibiotic class may create a more easily identifiable profile of metabolites
attributable to a specific resistance mechanism.

5. Conclusions

The findings of this study suggest that exposing AMR Salmonella Typhimurium to an
ACSSuT panel significantly alters metabolic pathways and, thus, metabolite expression
by the bacteria. This research supports the continuation of using metabolomics to study
AMR and identify resistance mechanisms, which could become future drug or testing
targets. However, further studies are necessary to identify specific resistance mechanisms
for different classes of antibiotics.
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