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Abstract: The importance of a balanced TH1/TH2 humoral immune response against the HIV-1
envelope protein (Env) for antibody-mediated HIV-1 control is increasingly recognized. However,
there is no defined vaccination strategy to raise it. Since immune checkpoints are involved in
the induction of adoptive immunity and their inhibitors (monoclonal antibodies) are licensed for
cancer therapy, we investigated the effect of checkpoint blockade after HIV-1 genetic vaccination on
enhancement and modulation of antiviral antibody responses. By intraperitoneal administration of
checkpoint antibodies in mice we observed an induction of anti-drug antibodies which may interfere
with immunomodulation by checkpoint inhibitors. Therefore, we blocked immune checkpoints locally
by co-electroporation of DNA vaccines encoding the active soluble ectodomains of programmed cell
death protein-1 (PD-1) or its ligand (PD-L1), respectively. Plasmid-encoded immune checkpoints did
not elicit a detectable antibody response, suggesting no interference with their immunomodulatory
effects. Co-electroporation of a HIV-1 DNA vaccine formulation with soluble PD-L1 ectodomain
increased HIV-1 Env-specific TH1 CD4 T cell and IgG2a antibody responses. The overall antibody
response was hereby shifted towards a more TH1/TH2 balanced subtype pattern. These findings
indicate that co-electroporation of soluble checkpoint ectodomains together with DNA-based vaccines
has modulatory effects on vaccine-induced immune responses that could improve vaccine efficacies.

Keywords: HIV-1; checkpoint inhibitors; checkpoint blockade; intramuscular electroporation; soluble
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1. Introduction

Even after more than 30 years of vaccine research, the development of a prophylactic HIV-1 vaccine
is still facing serious obstacles. Efficacy trials data on immune responses that correlate with reduced risk
of HIV-1 infection are limited [1]. In the RV144 Thai trial, an envelope protein (Env) subunit vaccination
regiment resulted in a moderate efficacy of 31.2% [2]. The elicitation of IgG3 antibodies targeting the
variable regions 1 and 2 (V1V2) of Env was identified as correlate of protection, raising interest in
antibody-mediated effector functions [3–5]. Env-specific IgG3 antibodies (IgG subclass in humans
that is associated with TH1-response [6]) further showed an enhanced virion internalization activity
in monocytes compared to other antibody isotypes [7]. These data demonstrate that the antibody
subtype pattern elicited after vaccination may play a crucial role in mediating antibody-directed
effector functions eventually resulting in viral clearance.
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Intramuscular electroporation (i.m. EP) as a measure to induce strong cellular and humoral
immune responses has been used for a variety of antigens [8]. In non-human primates, we demonstrated
that i.m. EP delivery of vaccine DNA encoding for the fusion protein of respiratory syncytial virus
(RSV) [9] or p27 capsid protein of simian immunodeficiency virus (SIV) [10] led to substantially higher
antibody responses compared to the conventional i.m. DNA immunization. However, in contrast to
the surface proteins of RSV and Influenza A, i.m. EP of plasmids encoding for HIV-1 Env elicits an
antibody response strongly biased towards the TH2-associated IgG1 subclass in mice [11,12].

Immune checkpoints are a class of molecules capable of enhancing or inhibiting T cell signaling
cascades in order to guarantee immune tolerance and control of inflammation [13,14]. The most
prominent members of this group are the programmed cell death protein-1 (PD-1) and its ligands
PD-L1 and PD-L2. Targeting those proteins with monoclonal antibodies can overcome T cell exhaustion
and restore T cell functions in the tumor microenvironment [15]. Checkpoint inhibitors (CPI) directed
against PD-1 and its ligands have been established as a platform of immunomodulation and are broadly
used in the treatment of melanoma and other cancers [16,17].

During antigen-mediated immune responses PD-1 controls follicular T-helper cell positioning and
function during germinal center reactions [18] and regulates germinal center B cell survival, affinity
maturation, and formation of long-lived plasma cells [19]. However, the applicability of checkpoint
blockade for modulation of immune responses induced by prophylactic vaccinations has not been
thoroughly investigated.

In this study, we investigated whether different checkpoint inhibitors have a modulatory effect on
the vaccine-induced HIV-1-specific immune responses. Therefore, we blocked immune checkpoints
either systemically by monoclonal antibody administration or locally by electroporation of DNA
encoding for the soluble ectodomains of PD-1 or PD-L1 in mice receiving anti-HIV-1 immunization.

2. Materials and Methods

2.1. Mice Housing, Immunizations, and Ethics Statement

Five- to six-week old BALB/c mice were purchased from Charles River Laboratories (Wilmington,
USA) and housed in individual ventilated cages in accordance with the national law and institutional
guidelines at the Franz-Penzoldt-Center of the Faculty of Medicine, University Clinics Erlangen
(Erlangen, Germany) and at the animal facility of the Faculty of Medicine, Ruhr University Bochum
(Bochum, Germany). A total of 207 mice were used for the study and the data of 205 animals are
shown. Two died due to anesthesia-related circumstances.

For DNA immunizations, mice were anesthetized by continuous inhalation with isoflurane
(CP-Pharma, Burgdorf, Germany). Hind legs were shaved and 2.5-mm electrode spacing bearing the
centered injection needle from the TRiGrid electrode array (Ichor Medical, San Diego, CA, USA) were
applied. A total of 30–45 µg total plasmid DNA in a total volume of 60 µL PBS was injected i.m. in
each hind leg. Electrical Signals of 63 V amplitude and 40 mS duration were immediately applied
after injection.

For in vivo blockade of immune checkpoints, 200 µg of in vivo grade monoclonal antibodies
(all from BioXCell, West Lebanon, NH, USA) against PD-1 (J43, Armenian Hamster IgG), PD-L1
(10F.9G2, Rat IgG2b), PD-L2 (TY25, Rat IgG2a), or isotype control (anti-KLH, LTF-2, Rat IgG2b) were
injected intraperitoneally starting two days after immunization in three-day intervals over a total
time-period of two weeks.

All conducted animal experiments were approved by the Government of Lower Franconia
according to the license 55.2-2532-2-203 and by an external ethics committee authorized by the North
Rhine-Westphalia State Office for Consumer Protection and Food Safety (license 84-02.04.2013-A371).
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2.2. Plasmids

The codon-optimized HIV-1 expression plasmids Hgpsyn [20] encoding for gag/pol and
pConBgp140GC/D [21] encoding for a clade B envelope protein carrying the cytoplasmic
domain of VSV-G were used for virus-like particle (VLP) production and DNA immunization.
The luciferase-encoding plasmid pLuc-empty was used for analysis of antigen expression in vivo.
The expression plasmids encoding for either the soluble ectodomains of PD-1 or PD-L1 were used as
DNA vectors. The pVax vector system (Invitrogen, Carlsbad, CA, USA) was used as mock control.

2.3. Analysis of Antigen Expression In Vivo

Mice were electroporated intramuscularly with 20 µg luciferase-encoding plasmid. At the
indicated time points after immunization, 200 µg d-luciferin was injected into both hind legs under
light anesthesia by inhalation of isoflurane. Luminescence signals were measured 3 min later with an
IVIS Lumina Series II (PerkinElmer, Waltham, MA, USA). The signals were quantified in the red-circled
areas for both mice at all four time points. Background luminescence signals are shown as well (ROI 5).

2.4. Analysis of Humoral Immune Responses

In order to monitor the humoral immune responses, mice were bled at different time-points
after immunization by puncture of the retro orbital sinux with a heparinized capillary (Hirschmann
Laborgeräte, Eberstadt, Germany). After centrifugation for 5 min at 2370× g, sera were stored at
−20 ◦C until further use. Antigen-specific antibody production was determined by a gp120 ELISA.
A quantitative assessment of serum antibody titers was performed by using the gp120-specific antibody
b12 fused to the murine heavy chains IgG1 or IgG2a (Figure S1). Then, 96-well microtest plates
(Sarstedt, Nümbrecht, Germany) were coated with 100 ng of pConBgp120-His in bicarbonate buffer
(pH 9.6) at room temperature overnight. To determine antibody responses against the CPIs, plates were
coated with the respective treatment antibodies (100 ng/well). After washing the plates with PBS-T,
wells were blocked with 5% skimmed milk in PBS-T following an additional washing step. Incubation
with diluted sera was performed in 2% skimmed milk. The respective antibody subtypes were detected
after a final washing step by the HRP-conjugated antibodies directed against IgG1, IgG2a, IgG2b, and
IgG3 (Southern Biotech, Birmingham, AL, USA). Finally, the plates were washed, and relative light
units were detected with the multilabel plate reader Victor (Perkin Elmer, Hamburg, Germany).

2.5. Analysis of Cellular Immune Responses

HIV-1 Env-specific T cell responses in the spleens were detected by intracellular cytokine staining
(ICS) as previously described [12]. Briefly, mice were sacrificed, spleens removed, and single-cell
suspensions prepared by homogenization through a 70 µm cell strainer (Corning Inc., Corning,
Harrodsburg, KY, USA). After erythrocyte lysis, splenocytes were resuspended in RPMI 1640 (Gibco,
ThermoFisher Scientific, Waltham, MA, USA) supplemented with 10% FCS (Sigma Aldrich, Taufkirchen,
Germany), 1% penicillin/streptomycin (Sigma Aldrich, Taufkirchen, Germany), 10 mmol HEPES (Gibco,
ThermoFisher Scientific, Waltham, MA, USA), 2 mmol L-glutamine (Gibco, ThermoFisher Scientific,
Waltham, MA, USA), and 50 µmol β-Mercaptoethanol (PAN-Biotech, Aidenbach, Germany).

For the ICS, 106 splenocytes/well were seeded in a 96-well U-bottom microtiter plate (Greiner
Bio-One, Frickenhausen, Germany) and stimulated with 5 µg/mL of the MHC-II–restricted
peptides GVPVWKEATTTLFCASDAKA for HIV-1 Env or a mixture of SPEVIPMFSALSEGA and
PVGEIYKRWIILGLN for HIV-1 Gag in the presence of 2 µg/mL anti-CD28 (37.51; eBioscience,
Frankfurt am Main, Germany) and 3 µg/mL Brefeldin A (eBioscience, Frankfurt am Main, Germany)
for 6 h at 37 ◦C in a humidified 5% CO2 atmosphere. After stimulation, the cells were stained with
anti-mouse CD4 BV650 (RM4-5, Biolegend, San Diego, CA, USA) and Fixable Viability Dye eFluor 450
(eBioscience, Frankfurt am Main, Germany). Afterwards, cells were fixed with 2% paraformaldehyde
and permeabilized with 0.5% saponin (Sigma Aldrich, Taufkirchen, Germany) in the presence of
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1.7 µg/mL anti-mouse CD16/CD32 (93; eBioscience). Intracellular cytokine staining was performed
in 0.5% saponin using anti-mouse TNFα PE-Cy7 (MP6-XT22), anti-mouse IL-2 APC (JES6-5H4), and
anti-mouse IFNγ PE (XMG1.2, all from eBioscience). Samples were measured on the FACS-LSR II (BD,
Franklin Lakes) and data was analyzed using FlowJo (Tree Star, Ashland, OR, USA). For detection of
IL-4 and IL-5 by ELISA, 106 splenocytes/well were incubated in the presence of 2 µg/mL anti-CD28
(37.51; Life Technologies, Carlsbad, CA, USA) for 72 h at 37 ◦C in a humidified 5% CO2 atmosphere.
To determine antigen-specific production of cytokines, previously mentioned HIV-1 Env and Gag
peptides were included into the incubation mixture. Supernatants were diluted and IL-4 and IL-5
concentration analyzed by Ready-SET-Go ELISA (Life Technologies, Carlsbad, CA, USA) according to
the manufacturer’s protocol.

2.6. Staining of Regulatory T Cells

For the T cell staining, 106 splenocytes/well were seeded in 96-well U-bottom plates and surface
stained with anti-mouse CD4 BV650 (RM4-5, Biolegend, San Diego, CA, USA), anti-mouse CD25 APC
(PC61, BD Pharmingen, San Jose, CA, USA), and Fixable Viability Dye eFluor450 (eBioscience). After
fixation and permeabilization, splenocytes were stained intracellularly with anti-mouse Foxp3 PE
(MF14, Biolegend, San Diego, CA, USA). Samples were measured on the FACS-LSR II (BD, Franklin
Lakes, NJ, USA) and data was analyzed using FlowJo (Tree Star, Ashland, OR, USA).

2.7. Cell Culture

Human embryonic kidney cell line 293T (HEK 293T, obtained from European Collection of Cell
Cultures, Salisbury, UK) were maintained in DMEM (Gibco, ThermoFisher Scientific, Waltham, MA,
USA) supplemented with 10% FCS (Sigma Aldrich, Taufkirchen, Germany), 1% penicillin/streptomycin
(Sigma Aldrich, Taufkirchen, Germany), and 2 mM L-glutamine (Gibco, ThermoFisher Scientific,
Waltham, MA, USA)).

FreeStyle 293F (obtained from Thermo Fisher, Schwerte, Germany) cells were maintained stirring
as recommended by the manufacturer in a humidified 8% CO2 atmosphere. The cells were cultured in
a density between 0.5 and 2 × 106 cells/mL.

2.8. Protein Production and Purification

FreeStyle 293F cells were transfected with 80 µg of expression plasmids encoding for soluble
pConBgp120-His in sterile disposable PETG flasks (Wagner and Munz GmbH, Munich, Germany)
with 3 µg polyethylenimine (Sigma Aldrich, Taufkirchen, Germany) per 1 µg DNA. The transfection
mix was prepared in OPTI-MEM Reduced Medium (Thermo Fisher, Schwerte, Germany). Medium
was changed 6 h after transfection. Three days post-transfection, supernatants were collected and
sterile-filtered through 0.2 µm Minisart filters (Sigma Aldrich, Taufkirchen, Germany) and purified via
lectin affinity chromatography using lectin from Galanthus nivalis (Vector Laboratories Inc., Burlingame,
CA, USA). Columns were loaded after washing with PBS containing 1 mM EDTA and 1 mM EGTA
(both Sigma Aldrich, Taufkirchen, Germany). After loading, columns were washed and protein eluted
using a 19.5% solution of Methy-α-d-mannopyranosid (Merck, Darmstadt, Germany). Carbohydrates
in the eluate were dialyzed. The purified protein was concentrated over Amicon Centrifugal Filters
with 10 kDa cut-off (Merck, Darmstadt, Germany). Protein concentration was measured using the
ND100-NanoDrop® (peQlab, Erlangen, Germany). Samples were stored at 4 ◦C until further use.
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2.9. VLP Preparation and Quantification

293T cells were transfected with each 40 µg of the expression plasmids encoding for
pConBgp140-GCD and Hgpsyn in 175-cm2 flasks (Greiner Bio One, Frickenhausen, Germany)
with 1.25 µg polyethylenimine (Sigma Aldrich, Taufkirchen, Germany) per 1 µg DNA. Two days
post-transfection, VLPs in the supernatant were purified by ultracentrifugation through a 35% sucrose
cushion at 133.900× g and 4 ◦C for 2.5 h. VLPs were resuspended in sterile PBS and stored at −80 ◦C
until further use.

HIV-1 Env and Gag concentration in the VLP preparations were quantified by ELISA.
For that, different VLP dilutions together with a dilution series of pConSgp140 (Polymun Scientific,
Klosterneuburg, Austria) and p24 (Aalto Bio Reagents, Dublin, Ireland) were coated in bicarbonate
buffer (pH 9.6) on 96-well microtest plates (Sarstedt, Nümbrecht, Germany) at RT overnight. After
washing the plates with PBS-T, wells were blocked with 5% skimmed milk in PBS-T followed by an
additional washing step. Incubation with the HIV-1 Env antibody 2G12 or the anti-p24 antibody
(produced in hybridoma cells) was performed in 2% skimmed milk. After washing, HRP-conjugated
antibodies directed against human or mouse IgG (Dianova, Hamburg, Germany) were added. Finally,
plates were washed and relative light units (RLUs) were detected with the multilabel plate reader
Victor (Perkin Elmer, Hamburg, Germany).

Virus-like particle size and PDI were analyzed using the ZetaSizer Nano S90 (Malvern Pananalytical,
Kassel, Germany) (Figure S2).

2.10. Statistical Analysis

Data are presented as means ± standard errors of the means (SEM). In the figure legends, n = X
refers to the used animals per group. Statistical analysis was performed as indicated in figure legends
with GraphPad Prism software version 7 (Graphpad Software Inc., San Diego, CA, USA) using one-way
analysis of variance (ANOVA) with Tukey’s post-test or unpaired t tests.

3. Results

3.1. Checkpoint Inhibition by Monoclonal Antibodies after VLP Immunization

Previously we reported that immunization of mice against HIV-1 Env with both protein and DNA
vaccines induces a TH2-associated immune response leading to IgG1 Env-specific Ab responses with
reduced effector functions [11,12,22]. Here we investigated whether this pattern might be switched
to the TH1-associated IgG2a subclass by blocking immune checkpoints. For that, VLPs containing
HIV-1 Gag and Env were injected intramuscularly in a prime-boost regimen into naïve BALB/c mice.
Two days after each immunization, mice were treated with either PBS, an isotype control, or monoclonal
antibodies directed against PD-1 or its ligands PD-L1 and PD-L2 according to published protocols
(Figure 1A) [23,24]. After the boosting immunization, however, we observed no significant differences
regarding the levels of IgG1 (Figure 1B) and IgG2a (Figure 1C) between all experimental groups
immunized with VLPs. The IgG1 to IgG2a ratios also remained unaffected (Figure 1D).
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Figure 1. Checkpoint inhibition by monoclonal antibody administration after virus-like particle (VLP)
immunization. (A) Six-week old BALB/c mice were intramuscularly immunized with VLPs containing
Env and Gag. Two days after immunization, 200 µg of checkpoint inhibitors (CPIs) or isotype control
were administered intraperitoneally in three-day intervals over a total time-period of two weeks.
Animals received a booster immunization with a follow-up CPI administration that was identical to the
priming regimen. Blood was drawn at weeks 3 and 6 and antibody responses analyzed. Env-specific
IgG1 (B) and IgG2a (C) antibody responses and IgG2a:IgG1 ratios (D) in the sera of BALB/c mice six
weeks after priming. Shown are mean values with standard errors of the means (SEM) (n = 4 for
experimental groups, n = 2 for controls (naïve, PBS)).

3.2. Checkpoint Inhibition by Monoclonal Antibodies after DNA Immunization

In order to provide antigen expression over the time-course of checkpoint blockade,
we electroporated mice intramuscularly with plasmids encoding for Env and Gag. After electroporation,
an identical CPI administration regimen was conducted as in the VLP immunized animals (Figure 2A).
Since DNA immunization elicits strong cellular responses, we first analyzed antigen-specific T cell
responses two weeks after priming by ICS. For Env-specific CD4 T cells no differences in IFNγ

(Figure 2B), IL-2 (Figure S3), and TNFα (Figure S3) cytokine production after in vitro re-stimulation
were detected. The frequency of polyfunctional T cells secreting those cytokines simultaneously
remained unaffected as well (Figure S3). By measuring the antibody responses two weeks after
boosting we detected a strong induction of IgG1 antibodies in all immunized groups but no differences
between the isotype- and CPI-treated groups (Figure 2C). For TH1-associated Env-specific IgG2a
antibodies also no difference was observed (Figure 2D). After Gag-specific re-stimulation however, we
observed a significantly upregulated production of IL-2 by CD4 T cells in the animals treated with the
anti-PD-L2 antibody (Figure S4A). However, the Gag-specific IgG1 and IgG2a antibodies remained
unaffected after checkpoint blockade (Figure S4B,C).

Thus, in our experiments commonly employed checkpoint inhibition with monoclonal antibodies
had no effect on HIV-1 Env specific antibody responses induced by protein and DNA vaccines.
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Figure 2. Checkpoint inhibition by monoclonal antibodies after DNA electroporation. (A) Six-week
old BALB/c mice were electroporated intramuscularly with expression plasmids encoding for Env
and Gag. Two days after electroporation, 200 µg of CPIs or isotype control were administered via the
intraperitoneal route in three-day intervals over a total time-period of two weeks. After two weeks,
half of the animals were sacrificed, and T cell responses analyzed. The other animals received a booster
immunization with a follow-up CPI administration identical to the priming regimen. Blood was drawn
at weeks 3 and 6 and antibody responses analyzed. (B) Percentage of CD4+ T cells producing IFNγ

after in vitro stimulation with HIV Env T helper peptide (measured by intracellular cytokine staining).
Shown are mean values with SEM (n = 4). Env-specific IgG1 (C) and IgG2a (D) antibody responses
in the sera of BALB/c mice six weeks after priming. Shown are mean values with SEM (n = 4–6) and
significant differences between the groups (one-way ANOVA analyses followed by Tukey’s multiple
comparison test; **** p < 0.0001).

3.3. Checkpoint Inhibition with Monoclonal Antibodies Induces Anti-Drug Responses

Since used monoclonal antibodies contained large xenogeneic Fc-domains (Armenian Hamster
IgG for anti-PD-1, Rat IgG2b for anti-PD-L1, Rat IgG2a for anti-PD-L2), repetitively administrated, they
may induce host immune response against these treatment antibodies [25]. Additionally, peritoneal
macrophages and other cells of innate immunity might react on xenogeneic proteins and promote
TH2-assosiated responses [26]. Therefore, we first performed a three-day incubation of splenocytes
from DNA-primed and CPI treated mice (Figure 2A) in the presence of co-stimulatory anti-CD28
and checked for IL-4 and IL-5 secretion. In DNA-immunized animals treated only with PBS after
electroporation, there was a minimal basal secretion of these cytokines detectable (Figure 3A,B).
However, in vitro re-stimulation of this group with MHC-II restricted Env and Gag peptides resulted
in an antigen-specific cytokine production (Figure 3C). In contrast, in all immunized mice that were
treated with an antibody, we observed a substantial secretion of the TH2 cytokines IL-4 and IL-5 in the
absence of antigenic stimulation (Figure 3A,B). Additional antigen-specific re-stimulation of these cells
did not significantly alter these elevated levels of IL-4 and IL-5 production (Figure S5).
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Next, we checked for the induction of humoral immune responses directed against the monoclonal
antibodies to checkpoint molecules by ELISA. Here we observed an induction of anti-drug IgG1
antibodies in all CPI-treated groups with anti-PD-L1 treated animals showing the highest antibody
production (Figure 3D). In the animals which received the isotype control, no humoral response was
observed. We also confirmed this observation for anti-PD-L1 and isotype treatment antibodies in the
VLP vaccine-delivery system (Figure 3E). In order to elucidate whether the response can be prevented
by using reduced amounts of the anti-PD-L1 antibodies, we performed a VLP prime-boost experiment
and treated mice with 20 µg (10-fold reduction) of anti-PD-L1 or the isotype control. However, the
dosage reduction had no effect on the IgG1 response against anti-PD-L1 antibodies. Taken together, the
intraperitoneal application of commercially available monoclonal antibodies for checkpoint inhibition
induced anti-drug immune responses in mice.
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points (unpaired t-test, ns = not significant, *** p < 0.001, **** p < 0.0001). (E) Auto-antibody response 
with 20 and 200 µg CPI administration in three-day intervals after prime-booster VLP immunization 
regimens. The plates were coated with respective treatment antibodies. Shown are mean values with 
SEM (n = 3–4) and significant differences between groups receiving anti-PD-L1 (programmed death-
ligand 1) treatment against isotype control and PBS groups (two-way ANOVA analyses followed by 
Tukey’s multiple comparison test; **** p < 0.0001). 

 

Figure 3. Checkpoint inhibition by monoclonal antibodies elicits a competitive immune response.
Spontaneous secretion of IL-4 (A) and IL-5 (B) after three-day culture of splenocytes of BALB/c mice
two weeks after immunization and two days after the last CPI treatment. Shown are mean values
with SEM (n = 2–4). (C) Antigen-specific IL-4 secretion in naïve and immunized mice receiving PBS
treatment. Shown are mean values, SEM (n = 5) and significant differences between groups (unpaired
t-test, * p < 0.05). (D) Auto-antibody responses with 200 µg CPI administration in three-day intervals
after prime-booster DNA immunization regimens. The plates were coated with respective treatment
antibodies. Shown are mean values with SEM (n = 3–4) and significant differences between time-points
(unpaired t-test, ns = not significant, *** p < 0.001, **** p < 0.0001). (E) Auto-antibody response
with 20 and 200 µg CPI administration in three-day intervals after prime-booster VLP immunization
regimens. The plates were coated with respective treatment antibodies. Shown are mean values
with SEM (n = 3–4) and significant differences between groups receiving anti-PD-L1 (programmed
death-ligand 1) treatment against isotype control and PBS groups (two-way ANOVA analyses followed
by Tukey’s multiple comparison test; **** p < 0.0001).
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3.4. Co-Electroporation of DNA Encoding Soluble PD-1 and PD-L1 Ectodomains Does Not Induce
Anti-Drug Antibodies

Since monoclonal antibodies directed against immune checkpoints were not applicable for
the modulation of anti-Env antibody responses, we evaluated an alternative blocking system by
intramuscular co-electroporation of DNA encoding the soluble ectodomains of PD-1 or PD-L1.
To first confirm a sufficient duration of plasmid-driven expression of recombinant proteins after DNA
electroporation, we administered a plasmid encoding luciferase and monitored the expression of this
reporter enzyme (Figure 4A). Given the durable expression over a time-period of three weeks, we
aimed to co-electroporate DNA encoding for the soluble ectodomains of murine PD-1 (sPD-1) or PD-L1
(sPD-L1) with HIV-1 DNA vaccines. To control plasmid-driven effects, an empty vector control (mock)
was included. The animals were immunized in a prime-boost regimen by i.m. electroporation and
cellular and humoral immune responses analyzed at different time-points (Figure 4B).

In order to analyze immunogenicity of the given ectodomains, we transfected 293T cells with each
single plasmid used for immunization. In this regard, PD-1 and PD-L1 expression was validated by
intracellular staining (Figure S6). The transfected cells were incubated with sera from DNA-immunized
animals (see Figure 4) and a fluorophore-conjugated secondary anti-mouse IgG antibody was used for
flow-cytometry evaluation (Figure 5A). Here we observed serum-derived antibodies against Env and
Gag, but not against PD-1 or PD-L1 (Figure 5B–E). Since no serum antibodies specific for the soluble
syngenic ectodomains were measurable, we concluded that in contrast to the monoclonal antibodies,
DNA-based checkpoint inhibition did not elicit an anti-drug humoral response.

Vaccines 2020, 8, x  9 of 16 

 

3.4. Co-Electroporation of DNA Encoding Soluble PD-1 and PD-L1 Ectodomains Does Not Induce Anti-
Drug Antibodies 

Since monoclonal antibodies directed against immune checkpoints were not applicable for the 
modulation of anti-Env antibody responses, we evaluated an alternative blocking system by 
intramuscular co-electroporation of DNA encoding the soluble ectodomains of PD-1 or PD-L1. To 
first confirm a sufficient duration of plasmid-driven expression of recombinant proteins after DNA 
electroporation, we administered a plasmid encoding luciferase and monitored the expression of this 
reporter enzyme (Figure 4A). Given the durable expression over a time-period of three weeks, we 
aimed to co-electroporate DNA encoding for the soluble ectodomains of murine PD-1 (sPD-1) or PD-
L1 (sPD-L1) with HIV-1 DNA vaccines. To control plasmid-driven effects, an empty vector control 
(mock) was included. The animals were immunized in a prime-boost regimen by i.m. electroporation 
and cellular and humoral immune responses analyzed at different time-points (Figure 4B).  

In order to analyze immunogenicity of the given ectodomains, we transfected 293T cells with 
each single plasmid used for immunization. In this regard, PD-1 and PD-L1 expression was validated 
by intracellular staining (Figure S6). The transfected cells were incubated with sera from DNA-
immunized animals (see Figure 4) and a fluorophore-conjugated secondary anti-mouse IgG antibody 
was used for flow-cytometry evaluation (Figure 5A). Here we observed serum-derived antibodies 
against Env and Gag, but not against PD-1 or PD-L1 (Figure 5B–E). Since no serum antibodies specific 
for the soluble syngenic ectodomains were measurable, we concluded that in contrast to the 
monoclonal antibodies, DNA-based checkpoint inhibition did not elicit an anti-drug humoral 
response. 

 
Figure 4. Immunization outline with soluble ectodomain co-expression. (A) Long-term antigen 
expression after DNA electroporation. Two BALB/c mice were intramuscularly electroporated with 
20 µg luciferase-encoding plasmid. Luminescence signals were quantified in the red-circled areas for 
both mice at indicated time-points after electroporation. Background luminescence signals are shown 
as well (ROI 5). (B) Six-week old BALB/c mice were electroporated intramuscularly with expression 
plasmids encoding for Env and Gag. Additionally, the animals were either co-electroporated with an 
empty vector (mock) or plasmids encoding for the soluble ectodomains of PD-1 (sPD-1) or PD-L1 
(sPD-L1). After two weeks, half of the animals were sacrificed, and T cell responses analyzed. The 
other half received a booster immunization identical to the priming regimen. Blood was drawn at 
weeks 3, 6, and 18 and antibody responses were analyzed. 

Figure 4. Immunization outline with soluble ectodomain co-expression. (A) Long-term antigen
expression after DNA electroporation. Two BALB/c mice were intramuscularly electroporated with
20 µg luciferase-encoding plasmid. Luminescence signals were quantified in the red-circled areas for
both mice at indicated time-points after electroporation. Background luminescence signals are shown
as well (ROI 5). (B) Six-week old BALB/c mice were electroporated intramuscularly with expression
plasmids encoding for Env and Gag. Additionally, the animals were either co-electroporated with
an empty vector (mock) or plasmids encoding for the soluble ectodomains of PD-1 (sPD-1) or PD-L1
(sPD-L1). After two weeks, half of the animals were sacrificed, and T cell responses analyzed. The other
half received a booster immunization identical to the priming regimen. Blood was drawn at weeks 3, 6,
and 18 and antibody responses were analyzed.
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Figure 5. Soluble PD-1 and PD-L1 ectodomain co-expression is not inducing an autologous antibody
response. 293T cells were transfected with plasmids encoding for Env, Gag, sPD-1, or sPD-L1.
Twenty-four hours after transfection, cells were treated with Brefeldin A for 6 h in order to inhibit protein
transport. Subsequently, cells were fixed, permeabilized, and incubated with sera from mice immunized
with Env- and Gag-DNA either with empty vector (mock) or with corresponding checkpoint ectodomain
DNA (sPD-1, sPD-L1). Murine antibodies were detected using an APC-conjugated anti-mouse IgG1
antibody. Shown are the histograms of transfected cells (A) as well as the Geometric Mean Fluorescence
Intensity of Env- (B), Gag- (C), sPD-1 (D), and sPD-L1 transfected cells (E) after incubation with
immunized mouse sera and the respective secondary antibody. (A) Data are representative of three
independent experiments. (B–E) Data represent the mean with SEM of one out of three representative
experiments with three sera samples from each group.

3.5. Co-Electroporation of PD-L1 Encoding DNA Modulates HIV-1-Specific Immune Responses

By measuring antigen-specific CD4 T cell responses two weeks after priming (Figure 4),
we observed a significant increase in Env-specific CD4 T cells secreting the TH1 cytokine IFNγ

in mice co-electroporated with sPD-L1 DNA compared to the mock control (Figure 6A). We also
evaluated the frequency of regulatory T cells in the spleen 20 weeks after the last immunization.
On the one hand, we observed an increased expression of the transcription factor Foxp3 in sPD-1
co-electroporated animals. On the other hand, this expression was significantly downregulated after
sPD-L1 co-electroporation (Figure 6B). When measuring the humoral immune response in these
DNA-immunized mice, we observed a rapid induction of Env-specific IgG2a antibodies after priming.
The serum levels of these antibodies was long-lasting and significantly higher compared to mock
treated animals (Figure 6C). Interestingly, also IgG2b and IgG3 antibodies were durably enhanced
by PD-L1 co-electroporation resulting in a more balanced Env-specific antibody subtype pattern
(Figure 6D). In contrast to sPD-L1, sPD-1 did not elicit these effects and initially led to a decreased
overall antibody response. Taken together, these data indicate that co-electroporation of DNA encoding
the soluble ectodomain of PD-L1 together with HIV-1 DNA-based vaccine modulated vaccine-specific
immune responses.
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Figure 6. Soluble PD-L1 ectodomain co-expression enhances Env-specific immune responses.
(A) Percentage of CD4+ T cells producing IFNγ after in vitro stimulation with HIV Env T helper
peptide (measured by intracellular cytokine staining) in mice two weeks after immunization. Shown
are mean values with SEM (n = 6) and significant differences between groups (one-way ANOVA
analyses followed by Tukey’s multiple comparison test; * p < 0.05). (B) Frequency of regulatory T cells
in the spleen of BALB/c mice 20 weeks after boosting. Shown are mean values with SEM of 18 animals
from three independent experiments and significant differences between groups (one-way ANOVA
analyses followed by Tukey’s multiple comparison test; * p < 0.05). (C) Quantitative Env-specific
IgG2a antibody responses in the sera of BALB/c mice over a time-period of 18 weeks. Shown are
mean values with SEM of 18 animals from three independent experiments and significant differences
between groups (one-way ANOVA analyses followed by Tukey’s multiple comparison test; * p < 0.05).
(D) Antibody subtype patterns of Env-immunized mice two (week 6) and 14 weeks (week 18) after
the prime-booster immunization regimen. The ring size represents the overall antibody response.
Shown are the mean percentages (n = 6) of each subtype based on the overall antibody response of
a representative experiment (from three independent experiments). Each subtype was analyzed by
ELISA with identical amounts of HRP-conjugated anti-mouse IgG1 (blue), IgG2a (red), IgG2b (gray),
and IgG3 (black) antibodies.

4. Discussion

In HIV-1 infected patients, humoral immune responses against Env protein are largely restricted
to the IgG1 isotype [27–30]. Vaccination studies on mice demonstrated that the immune response
against Env—in contrast to envelope proteins of other viruses—is strongly TH2-biased, which is partly
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caused by its unique glycosylation profile [11,12,22]. At the same time, TH1 associated Env-specific
antibodies are correlating with an efficient virus control in elite controllers [1,3,7,31,32].

Application of suitable adjuvants in the vaccine formulation is a widely-used approach to modulate
T-helper responses and subsequently the antibody subtype pattern [33]. In the context of HIV-1 Env
vaccination, however, the addition of a plasmid encoding for IL-12, anti-mIL-10R Mab, or Alum did
not significantly alter the IgG1 subtype response [34].

Previously we demonstrated a shift of the antibody response against Env towards TH1 IgG2a
antibody production in mice by intrastructural help. However, this method requires preliminary
induced TH1 immune responses against heterologous proteins [12,21,22].

Checkpoint inhibitors are widely used in the field of immunomodulation to treat melanoma and
other cancers [16,17]. However, also in the context of HIV-1 infection, T cell exhaustion in chronically
infected patients has been observed. This results in reduced T cell responses after enhanced expression
of immune checkpoints [35–37]. Antiretroviral therapy can partly counteract virus-mediated T cell
exhaustion, although immune checkpoint expression still remains increased compared to healthy
individuals [38]. In vitro blockade of PD-1 in PBMCs of chronically infected patients led to the
observation of improved HIV-specific T cell help to natural killer (NK) cell responses [39]. Additionally,
the treatment of SIV-infected macaques with anti-PD-1 resulted in the expansion of virus-specific CD8
T cells with enhanced functionality [40]. These findings drew further interest towards the applicability
of checkpoint inhibitors in the context of HIV-1 infection [41,42].

In this study, checkpoint blockade was applied after vaccination with VLPs containing Env
and Gag or by i.m. electroporation of the respective plasmids. Therefore, CPIs were systemically
administrated via intraperitoneal injections for a total time-period of two weeks. However, for both
vaccination platforms no enhancement of HIV-specific immune responses by CPIs was observed.
This could be due to native and adaptive immune responses induced by the treatment antibodies
itself. Bernard-Tessier et al. reported an increased eosinophil count after treatment of patients with
antibodies directed against PD-1 or its ligand PD-L1 while other immune cells remained unaffected [43].
Hypereosinophilia has also been discussed to be a parameter for the onset of immune-related adverse
events (irAEs) [44]. These inflammatory side effects are associated with checkpoint inhibitor therapy [45].
Since eosinophils produce the TH2 cytokines IL-4 and IL-5 upon activation, we might have induced
those irAEs in the mice after monoclonal antibody treatment resulting in the observed spontaneous
secretion of IL-4 and IL-5 in the spleens of antibody-treated animals (Figure 3A,B). Furthermore,
M2 macrophages could have been recruited towards the intraperitoneal injection site. Fox et al.
showed that xenograft rejection by T cells is mediated by these infiltrating macrophages in the murine
peritoneum [46]. Therefore, the application of the xenogenic antibodies via the intraperitoneal route
might have been the cause of an innate immune response induced by the monoclonal antibodies to the
checkpoint molecules, which resulted in the recruitment of immune cells towards the injection site.

Additionally, the elicitation of anti-drug antibodies was observed (Figure 3D,E). This induction
was only detectable in animals receiving CPIs. A T cell-dependent B cell response can be locally
triggered in the peritoneum, as demonstrated by Rangel-Moreno et al. [25]. Therefore, the blockade of
PD-1 and its ligands might result in the induction of an adaptive immune response directed against
the drugs themselves.

These anti-drug antibodies induced by systemic checkpoint inhibitor administration might
strongly interfere with the HIV-1-specific immune responses. Therefore, we locally blocked immune
checkpoints by co-electroporation of soluble PD-1 and PD-L1 ectodomains. It has been shown that
sPD-1 is able to block immune checkpoint interactions in vivo [47,48]. However, also sPD-L1 serves
as a receptor antagonist for the inhibitory activity of transmembrane PD-L1 [49]. Since these soluble
ectodomains are autologous (murine), no anti-drug responses were detected after co-electroporation
(Figure 5).

Strikingly, of the used soluble ectodomains only sPD-L1 improved HIV-1 Env specific immune
responses. An explanation could be the respective binding partners of the soluble immune checkpoints.
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Whereas PD-1 is capable of binding both PD-L1 and PD-L2, PD-L1 is not only able to interact with the
inhibitory receptor PD-1, but also with CD80. This interaction—which can also occur on the same
cell—has been shown to be important for the induction of optimal T cell responses [50]. Additionally,
sPD-L1 can bind to the constitutively expressed PD-1 on regulatory T cells. Therefore, it might diminish
the capacity of regulatory T cells to inhibit T cell proliferation and cytokine production [51]. This is
concomitant with the reduced frequency of regulatory T cells in mice co-electroporated with PD-L1.

Since PD-L1 and PD-1 expression varies on different cell types during the germinal center reaction,
not only CD4 T cells might be responsible for the observed effects mediated by soluble PD-L1. Direct
effects of the checkpoint inhibitors on B cells or transient populations of T follicular helper cells are not
to be excluded. Adoptive transfer of both CD4 and B cells from primed mice at various time-points
could be done to further elucidate the underlying immunological mechanism.

5. Conclusions

In this study, we demonstrated that co-electroporation of the soluble ectodomain of PD-L1 together
with HIV-1 antigens enhanced and modulated HIV-1 specific immune responses. Whether this platform
can be applied on other DNA-based vaccines needs to be validated in subsequent experimental trials.
Nevertheless, i.m. electroporation of soluble checkpoint ectodomains represents an inexpensive and
effective platform that might be beneficial in eliciting potent immune responses.
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