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Aim: The purpose of the study is to perform a dosimetric analysis of the doses received by planning target
volume and organ at risks in the postoperative glioblastoma by using 3D-conformal radiotherapy to a
total dose of 60 Gy in 30 fractions. Materials & Methods: All patients received concurrent temozolomide
every day, and this was followed by adjuvant temozolomide of 5 days of treatment per month. Results:
More than 98% of patients were treated with a dose of 60 Gy. Doses were analyzed for the normal whole
brain, tumor volume, as well as all the organs at risk. Conclusion: Given the grave prognosis and the
limited survival of glioblastoma despite the best treatment available, makes 3D-conformal radiotherapy
an equally acceptable treatment option.
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Glioblastoma (GBM) is the most aggressive type of brain tumor, accounting for 75% of all high-grade gliomas.
The incidence of GBM is increasing by approximately 1% per year, likely due to the aging of the population [1].
The treatment consists of maximal surgical resection followed by concurrent temozolomide (TMZ) daily along
with external beam radiation of 60 Gy in 30 fractions over a period of 6 weeks followed by adjuvant TMZ for
5 days of treatment per month. Prognosis remains poor despite surgery followed by concurrent chemoradiation
and adjuvant treatment with a median overall survival of 14.6 months and 3-year overall survival of 16.4% [2].
Local recurrence is the most common pattern of failure after treatment, and a common cause for recurrence is
the inability to deliver an adequate dose of radiation to the target volume [3,4]. The proximity of normal critical
structures to the target volume, such as the optic chiasm, optic nerve and brain stem, is the main reason that
limits delivery of an adequate dose of radiation to the tumor tissue. Conventional radiation was the norm until
the development of computed tomography (CT), but the potential to cause toxicities induced by radiation to
the organs at risk (OAR) limited delivery of adequate doses. With advancement of 3D conformal radiotherapy
(3D-CRT), the ability to deliver dose to the target tissue has been increased with limiting dose to the normal critical
structures [3]. Intensity-modulated radiotherapy (IMRT) provides similar results in terms of target volume coverage
when compared with 3D-CRT, and it did not show any improvement in the local tumor control or overall survival
when compared with 3D-CRT [1,5]. The purpose of the present study was to do a dosimetric analysis of the doses
received by planning target volume (PTV) and OARs in the postoperative setting by using 3D-CRT to a total dose
of 60 Gy in 30 fractions over 6 weeks.

Methods
This is a retrospective study of postoperative cases of GBM treated with surgery followed by concurrent chemoradi-
ation and adjuvant TMZ at our institute from January 2011 to December 2016. Out of 163 patients, 150 patients
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Table 1. Organs at risk and their tolerance dose including primary and secondary criteria.
Organs at risk Constraints Secondary criteria

Optic chiasma Dmax �54 Gy Dmax �60 Gy

Optic nerve Dmax �54 Gy Dmax �55 Gy

Brainstem Dmax �54 Gy Dmax �60 Gy, V59 Gy �10 cc

Eyeball Dmax �45 Gy
Dmean �18 Gy

Lens Dmax �6 Gy Dmax �10 Gy

Cochlea Dmean ≤45 Gy Dmean �50 Gy

Temporal lobe Dmax ≤60 Gy V65 Gy �1 cc

Dmax: Maximum dose received by a particular point; Dmean: Mean dose received by the organ; V59: Volume receiving 59 Gy; V65: Volume receiving 65 Gy.

who underwent surgery in the form of gross-total excision, near-total excision, subtotal excision or biopsy, depend-
ing on the disease extension and location of the tumor, followed by adjuvant 3D-CRT along with concurrent TMZ
were included in the analysis and the rest who received palliative treatment were excluded. All patients received
concurrent TMZ (75 mg/m2) daily 1 h before radiation for 7 days per week from the first day to the last day of
radiotherapy, and this was followed by adjuvant TMZ (175 mg/m2) 5 days per month [2].

Radiotherapy planning
Planning CT scans were taken with patients in supine position and immobilized with a three clamp orfit cast.
Imaging acquisition protocol required a slice thickness of 2.5 mm in a multislice CT scanner (GE Healthcare
Technologies, WI, USA), both immediately (within 15 s) and delayed, in other words, 10 min after injection of
contrast [6]. The images were then transferred to the Eclipse™ treatment planning system (v.8.6, Varian Medical
Systems, CA, USA). Planning CT images were fused with postoperative magnetic resonance (MR) images that
were taken a few days before starting the radiation. Contouring was done as per MD Anderson Cancer Centre (TX,
USA) guidelines, and there are studies published from our institute [7,8]. We followed our institutional protocol
in delineating target volumes and OAR. The gross tumor volume (GTV) included postoperative cavity and gross
residual tumor seen on the CT images and fused MR images. The clinical target volume (CTV) includes 2.0 cm
isotropic margin all around the GTV along with edema surrounding the tumor following anatomical boundaries.
PTV was generated by giving a 0.5 cm symmetrical margin around the CTV. CTV boost was created by giving a
0.5 cm margin around the GTV and PTV boost was generated by giving a 0.5 cm margin around CTV boost.
OARs, including the optic chiasm, right and left optic nerves, right and left temporal lobes, brain stem, right and
left eye, right and left lens and right and left cochlea, were contoured. 3D-CRT plans were generated by using
appropriate non-coplanar beams, one vertex and two lateral fields (total of three fields) with appropriate wedges
in most of the cases with 6 MV photons (x-ray) using linear accelerators. In all cases with non-coplanar beams,
a vertex field was used. Only coplanar beams were used mainly for planning tumors of the posterior fossa. An
initial dose of 46 Gy in 23 fractions were prescribed to the PTV, followed by 14 Gy in seven fractions to the PTV
boost (total dose of 60 Gy in 30 fractions over 6 weeks) as per the institution protocol. Plans were optimized to
deliver prescribed dose to more than 95% of PTV and maximum dose in the target volume not to exceed 107% of
prescribed dose international commision on radiation units and measurements (ICRU) : 50 and 62. Dose volume
histograms were generated for qualitative and quantitative assessment of generated plans and evaluated for all the
OARs before delivering treatment. Evaluation of dosimetric data was done, in other words, doses received by target
volumes and OARs using Quantitative Analysis of Normal Tissue Effects in Clinics (QUANTEC) parameters listed
in Table 1 [9,10,11]. If the dose constraints of OARs were not met, depending on the location and burden of the
tumor, we prioritized the OARs surrounding the tumor and plans were optimized accordingly, for example, for
tumors close to or invading the left optic nerve, instead of under dosage, we have preferred treating till 60 Gy after
prioritizing the right optic nerve to preserve vision. All 3D-CRT plans were analyzed in terms of PTV coverage,
conformity index (CI), homogeneity index (HI) and OAR dose volume parameters, as per ICRU 83. Several
definitions of CI are available, but we used the Radiation Therapy Oncology Group (RTOG; PA, USA) definitions
to calculate the CI [12,13].

CI (RTOG) = Reference isodose volume/target volume
HI (RTOG) = Maximum isodose in the target/reference isodose
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Quality of coverage (RTOG) = Minimum isodose around the target/reference isodose.
In this study, 95% isodose curve was considered as the reference isodose.

Statistics
Statistical analysis was done with the Statistical Program for Social Sciences (SPSS v 23, IBM Corp., NY, USA).
Descriptive analysis was done for dosimetric data and demographic data. Summary of statistics including mean,
median, range and standard deviation (SD) were obtained.

Results
A retrospective analysis was done on 150 patients of GBM radically treated in the Department of Radiotherapy and
Oncology at the Postgraduate Institute of Medical Education & Research, Chandigarh (India) between 2011 and
2016 with external beam radiotherapy and TMZ (concurrent ± adjuvant) after maximal safe surgical resection. The
median age of study population at diagnosis was 50 years (range: 18–74 years). Most commonly, patients presented
with features suggestive of raised intracranial pressure (57.9%), followed by seizures (20%). Median duration of
symptoms was 8 months (range: 1–5 months).

The most common location of a tumor was in the frontal lobe (41%), followed by the temporal lobe (18.6%) and
rarely the cerebellum and corpus callosum. Only one patient underwent surgery for decompression, whereas 51 and
42% of patients underwent near-total excision and gross-total excision, respectively. The whole-brain volume of
these patients was analyzed (median: 1306.35 cc, range: 143–1306 cc). All patients were planned by external beam
radiation using six MV photons. None of them were planned with IMRT. More than 98% of patients were treated
with a dose of 60 Gy (46 + 14 Gy boost), the rest received only 54 Gy in view of their proximity to critical organs, for
example, brainstem and spinal cord. Overall, 61% of patients received TMZ concurrently with radiation, while rest
were treated with radiotherapy alone, the main reason being nonaffordability. The majority of patients completed
radiation without any interruptions, except for 6.4% cases where a break was noted citing personal issues and
worsening neurological symptoms. Following completion of radiotherapy, about 57% of patients received adjuvant
TMZ for the first 5 days every 4 weeks. This low proportion was due to poor patient compliance, poor general
condition and early disease progression. Only 13% of patients completed 6–12 cycles, with 13.6% continuing
beyond 12 cycles. Around 31% of patients received less than six cycles of TMZ post-radiotherapy (Table 2).

Doses were analyzed for the normal whole brain, tumor volume and all the OARs. Dmax and Dmean were
noted for all. For PTV, dose received by 98 and 2% volumes were also noted (D98 and D2). Mean, median and
SD were calculated. The mean CI and HI were also calculated.

Dosimetric data of tumor
The mean GTV volume of the tumors measured on planning CT-MR fusion imaging (T1 gadolinium) was 85.05 cc
(range: 9.6–291 cc). PTV volume was calculated on the same imaging (mean: 467.92 cc, range: 62.6–982 cc).
The mean dose received by GTV was 60.553 Gy (SD: 0.5859 Gy), PTV was 58.534 Gy (SD: 1.4515 Gy). For
PTV, mean D98 was 56.406 Gy (SD: 4.45 Gy), and D2 was 61.707 Gy (SD: 3.695 Gy). The mean dose received
by whole brain was 37.114 Gy (SD: 8.259 Gy), and the maximum dose (Dmax = maximum point dose) was
62.404 Gy (SD: 3.335 Gy) (Table 3).

Dosimetric data of OARs
In our study, the average Dmax of the brainstem was 53.165 Gy (SD: 11.33 Gy, median: 57.8 Gy). The mean
doses to the right and left eyes were 7.805 and 7.809 Gy, respectively, and the maximum doses were 25.597 and
25.516 Gy, respectively. The maximum dose obtained by the right and left optic nerves were 38.114 and 36.988 Gy,
respectively, and 37.987 Gy for optic chiasma. The Dmax (maximum point dose) for lens were 4.881 Gy (right)
and 5.019 Gy (left). The temporal lobes received a maximum dose of 55.66 Gy (right) and 55.816 Gy (left). The
mean doses received by right and left cochlea were 33.201 and 32.332 Gy, respectively (Table 4).

Treatment planning parameters
The mean CI was 1.10 with a SD of 0.11 (median: 1.07) that was well within our defined limits. The mean HI
was 0.101 with SD of 0.078 (median: 1.19). The average beam-on time for each patient was 1.324 min (SD:
0.289 min). The mean quality of coverage index was 0.92598 with a SD of 0.586 and a median of 0.944. The
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Table 2. Patient and treatment characteristics including the type of surgeries and the details of adjuvant treatment
received.
Characteristics Frequency

Sex Male 94 (67.1%)

Female 46 (32.9%)

Age �60 years 116 (82.9%)

�60 years 24 (17.1%)

Symptoms Raised ICT 81 (57.9%)

Seizures 28 (20%)

Sensory/motor deficits 21 (15%)

HMF deficit 10 (7.1%)

Site Frontal 57 (40.7%)

Parietal 13 (9.3%)

Temporal 26 (18.6%)

Occipital 2 (1.4%)

Cerebellum 1 (0.7%)

Corpus callosum 1 (0.7%)

Others 40 (28.5%)

Surgery GTE 59 (42.1%)

NTE 71 (50.7%)

STE 9 (6.4%)

Decompression 1 (0.7%)

EBRT dose 60 Gy 138 (98.6%)

54 Gy 2 (1.4%)

TMZ status Yes (concurrent/adjuvant) 100 (71.4%)

No 40 (28.6%)

Concurrent TMZ Yes 86 (61.4%)

No 54 (38.6%)

Adjuvant TMZ cycles Yes 60 (42.9%)

�6 43 (30.7%)

6–12 18 (12.9%)

�12 19 (13.6%)

Treatment breaks Yes 9 (6.4%)

No 130 (92.9%)

EBRT: External beam radiation; GTE: Gross total excision; HMF: Higher mental function; ICT: Intracranial tension; NTE: Near total excision; STE: Subtotal excision; TMZ: Temozolomide.

Table 3. Tumor characteristics and the dose received by the target volumes (all patients including two who received a
total of 54 Gy are included in the analysis).
Characteristics Mean SD Median

GTV volume 85.049 59.402 71.5

PTV volume 467.918 194.3745 446.575

Whole brain volume 1289.191 143.194 1306.35

GTV Dmean 60.553 0.5859 60.6

PTV Dmean 58.534 1.4515 58.65

PTV D98 56.406 4.45 58.4

PTV D2 61.707 3.695 62.2

Whole brain Dmax 62.404 3.335 62.9

Whole brain Dmean 37.114 8.259 36.65

D2: Dose received by the 2% target volume; D98: Dose received by the 98% of target volume; Dmax: Maximum dose received by a particular point; Dmean: Mean dose received by the
organ; GTV: Gross tumor volume; PTV: Planning target volume; SD: Standard deviation.
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Table 4. Mean dose and maximum dose received by normal structures surrounding the target volumes.
Organ Mean (Gy) SD Median (Gy)

Brainstem Dmax 53.165 11.3302 57.8

RT eye Dmax 25.597 19.868 25.4

RT eye Dmean 7.805 7.9044 5.35

LT eye Dmax 25.516 19.5253 25.35

LT eye Dmean 7.809 7.6432 5.15

RT optic nerve Dmax 38.114 21.426 44.75

LT optic nerve Dmax 36.988 21.0452 42.15

Optic chiasma Dmax 37.987 19.645 40.15

RT lens Dmax 4.881 6.9729 3.1

LT lens Dmax 5.019 6.9215 3.05

RT cochlea Dmean 33.2012 20.64653 39.174

LT cochlea Dmean 32.332 21.173 37.884

RT temporal Dmax 55.66 8.7378 58.9

LT temporal Dmax 55.816 7.8919 59.1

Dmax: Maximum point dose; Dmean: Mean dose received by the organ; LT: Left; RT: Right; SD: Standard deviation.

Table 5. Table showing different planning indexes and other parameters for the 3D-conformal radiotherapy, plans and
their values.
Parameters Mean SD Median

Conformity index 1.1008 0.10974 1.0691

Homogeneity index 0.101 0.078 0.069

Beam on time (minutes) 1.324 0.289 1.19

Quality of coverage 0.92598 0.0586 0.944622

Spill factor 2.6668 0.8392 2.2491

SD: Standard deviation.

mean spillage factor was 2.6668 with a SD of 0.8392 and a median of 2.2491. Quality assurance procedures were
done using Winston Lutz test tool, and this was subsequently verified by Isocal phantom (Table 5).

Discussion
GBM can develop in various locations in the brain; some tumors may present far from a critical structure, while others
can be located in the vicinity of many highly radiosensitive OARs (e.g., optical pathways, brainstem), ultimately
resulting in a complex treatment scenario that makes radiotherapy planning challenging. Quality assurance regarding
the randomized Phase III EORTC 26981/22981 and NCIC CE3 trial clearly showed that adequate coverage of
target tissue along with sparing of OARs poses a real challenge in GBM treatment by radiotherapy [14]. IMRT
planning results in high conformal dose distribution and significantly reduced dose to the remaining healthy brain
tissue. Keeping in mind, the grave prognosis associated with these high-grade gliomas and their high propensity
of recurrence, late toxicities related to radiation rarely is a problem. The median survival of such patients with the
standard therapy of radiation and TMZ (concurrent + adjuvant) is 14.6 months, and almost all patients develop
recurrence within 2 cm of primary tumor, so symptoms arising due to late toxicities are not commonly seen [4,15].
In this study, all patients were planned by 3D-CRT ensuring adequate tumor coverage, which is the primary aim
of treatment, and a dosimetric analysis was done for evaluation (Table 5). The dose prescribed was 46 Gy in 23
fractions in the first phase, followed by a boost of 14 Gy in seven fractions as per the institution protocol.

In an ideal scenario, the CI should be equal to 1 and HI should be ≤2. CI <1 indicates that target volume is not
adequately irradiated, and >1 indicates that irradiated volume is greater than the target volume and irradiates part
of healthy tissue. RTOG guidelines define CI values between 1 and 2 since the value of 1 can be rarely achieved. HI
≤2 is considered ideal, between 2 and 2.5 is consider as minor and >2.5 as a major treatment protocol violation.
There are two major drawbacks for using indices for plan evaluation. First, the reference isodose curve is not
standardized. Second, the ratio of a relatively regular isodose volume and an irregular tumor contour maybe 1 that
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Table 6. Comparison of doses received by normal structures in different studies using 3D conformal radiotherapy,
intensity-modulated radiotherapy and volumetric-modulated arc therapy plans.
Organ Chan et al. [3] Thibouw et al. [1] Ibis et al. [9] Our study

3D-CRT IMRT 3D-CRT IMRT 3D-CRT IMRT VMAT 3D-CRT

Brainstem Dmax 59 58 53.2 54.8 54.6 50 47.2 53.165

Optic chiasma Dmax 49 43 40.4 52.9 44 41.7 41.7 37.987

Optic nerve Dmax 24 23 17.25 34.2 44.2 31 C/L: 23.9
I/L: 37.3

43.45

Lens Dmax 3.1 2.9 – – 4.9 6 C/L: 6.2
I/L: 6.8

3.07

Whole brain Dmean 32 27 27.8 25.7 32.3 21.6 23.8 37.114

Conformity index – – 1.53 1.25 2.3 1.1 1 1.1

PTV D98 – – 55.5 57.5 – – – 56.406

PTV D2 – – 62.4 61.6 – – – 61.707

3D-CRT: 3D conformal radiotherapy; C/L: Contralateral; Dmax: Maximum point dose; Dmean: Mean dose received by the organ; D2: Dose received by 2% of volume; D98: Dose
received by 98% of volume; I/L: Ipsilateral; IMRT: Intensity modulated radiotherapy; PTV: Planning target volume; VMAT: Volumetric modulated arc therapy.

does not give the actual scenario of tumor coverage [13]. In our study, the mean CI obtained was 1.1 (SD: 0.109),
and the mean HI was 0.101 (SD: 0.078). For the quality of coverage index, at least 90% isodose should cover the
target volume. If it is covered by 80%, then it should be considered as minor violation otherwise a major protocol
violation [13].

Analysis by Lorentini et al. on 17 GBM patients treated with both 3D-CRT and IMRT showed that IMRT led to
better tumor coverage with almost similar dosage to OARs and a significantly low healthy brain irradiation [16]. In
this study, patients were subdivided based on whether there was any overlap between PTV and dose-limiting normal
tissues. It was seen that there was no statistically significant difference in the doses received by PTV, brainstem or
optic apparatus when there was no overlap between two volumes and 3D-CRT in such patients was equally well
planned as IMRT. However, differences were noticed between the two plans in case of overlapping volumes where
IMRT resulted in significantly low doses to the brainstem and ipsilateral optic apparatus. In a retrospective study by
Thibouw et al., 220 patients with GBM treated with 3D-CRT and IMRT [1]. Dosimetric and clinical parameters
with survival data were compared between the two. They concluded better dose conformity in those treated by
IMRT, although Dmax of the brainstem, optic apparatus and cochlea were higher. The CI in those treated by
IMRT in Thibouw et al. was 1.25, which was comparable to our patients treated by 3D-CRT, having a CI of 1.1.
In the toxicity analysis, grade 1 and 2 toxicities were significantly higher in the 3D-CRT arm, grade 3 or higher
toxicities were more in IMRT, but the frequency was very low and hence not considered significant. However, the
CI value is the same as that achieved by IMRT in the analysis by Ibis et al. They concluded lower midline OAR
dosage with IMRT and volumetric-modulated arc therapy (VMAT) compared with 3D-CRT. The CI was 2.3 for
3D-CRT, 1.1 for IMRT and 1 for VMAT, which was also achieved in our study by 3D-CRT plans [17]. The study
by Chan et al. at Memorial Sloan Kettering Cancer Center (NY, USA) on five patients planned by 3D-CRT and
IMRT with a dose of 59.4 Gy at 1.8 Gy per fraction concluded IMRT (including simultaneous integrated boost)
to be better than 3D-CRT. However, here 3D-CRT plans resulted in same dose homogeneity as with IMRT [18].

Another dosimetric study by MacDonald et al. concluded better target dose homogeneity and less dose to the
OAR with IMRT, thus improving the therapeutic ratio. However, the researchers did not comment on the proximity
of the tumor to the critical organs in this patient group [19]. A study by Wagner et al. has summarized the optimal
use of VMAT, IMRT and 3D-CRT with respect to the tumor location [20]. If the PTV is not close to the OARs,
then 3D-CRT gives adequate target dose distribution. If PTV and OARs are close, then using IMRT or RapidArc™
(Varian Medical Systems) was advised to attain better homogeneity. Between IMRT and RapidArc, RapidArc had
a very short treatment time but resulted in higher low-dose areas. 3D-CRT was also recommended for the younger
population due to significantly decreased low-dose volumes.

The dose constraints that were used for plan evaluation were same as that of QUANTEC data. 3D-CRT plans
conformed to the dose constraints in the majority of patients. Only 1.4% of patients required a dose modification
owing to high doses arising from overlap or proximity to OARs, and maybe these patients might have benefitted
from IMRT. A comparison is given below between the mean doses within tumor and OARs in the available
literature with that of our study in Table 6. The doses achieved at our institute with 3D-CRT plans were almost at
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par with those achieved by 3D-CRT, and slightly more than IMRT plans in the previous studies. However, dose
received by whole brain in our patients was much more than that of available literature.

It is important to the note that in most of the available literature mentioned here, IMRT plans were made only
for dosimetric analysis and patients were treated with 3D conformal plans. Correlating this dosimetric analysis
with survival data has shown conflicting results. A retrospective analysis by Burela et al. done on 80 patients of
high-grade gliomas treated with 60 Gy by 3D-CRT, IMRT and RapidArc showed a survival benefit with lesser
dose to normal brain that can be achieved by highly precise radiation techniques (p = 0.022) [21]. As is evident
from Table 6, patients treated by 3D-CRT plans received a higher mean dose to normal brain, which also holds
true for our study with a Dmean of 37.11 Gy. A retrospective dosimetric analysis by Hermanto et al. showed
high-grade gliomas planned with IMRT resulted in better conformity without any increment in integral dose to
brain or volumes of healthy brain tissue, which is exposed to lesser radiation doses [22]. Another study was done
retrospectively by Huilgol et al. on 46 patients treated with 60 Gy of 3D-CRT and IMRT showed no difference in
overall survival (p = 0.66) [23]. Thus, treating with intensity-modulated therapies have failed to show any significant
improvement in either local control or overall and progression-free survival. Thus, the radiobiological effect is
similar to both 3D-CRT and IMRT. The target coverage and OAR dose constraints were achieved with 3DC-RT
plans in our study. However, IMRT has the potential to reduce mean whole-brain dose, but the beam on times are
longer with IMRT, and additional safety checks and quality assurance are required before the start of treatment.
Using VMAT, we can achieve a better dose homogeneity and conformity and also less beam-on time. However, in a
tertiary care center like ours, where the patient load is high, use of 3D-CRT is justified as it is less time consuming
and more convenient with similar local control. Multiple overlaps between OAR and PTV can be a criterion in
which IMRT may be chosen over 3D-CRT.

The limitation of the present study is its retrospective nature. The study will have a bias in selecting the patients
for the analysis. Due to its retrospective nature, we could not analyze the toxicities accordingly.

Conclusion
In the current study, we found that adjuvant 3D-CRT in cases of GBM is acceptable in terms of both target volume
coverage and homogeneity. A total of 60 Gy can be safely prescribed by 3D-CRT, with IMRT to be reserved only
for tumors with considerable OAR overlap. Considering the burden of disease and the limited survival of grade IV
gliomas despite multimodality treatment, 3D-CRT is an acceptable treatment option for the majority.

Future perspective
With the introduction of image-guided radiotherapy, tomotherapy and PET-based planning, each of which are
being used in the field of radiotherapy, the dose to the tumor can be increased with sparing of the critical structure.
This may lead to an improvement in overall survival. Now, a day with the emergence of proton therapy, dose
escalation to tumors residing in difficult positions can be achieved. Only with time, we will witness the actual
benefit of proton therapy. Various molecular markers are being investigated, which might help us delineate the
metabolically active tumor volume. An emphasis on translational research will help us in trying novel methods,
which are as yet untested.
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Summary points

• This is a retrospective study of postoperative cases of glioblastoma treated with surgery followed by concurrent
chemoradiation and adjuvant temozolomide (TMZ).

• All patients received concurrent TMZ (75 mg/m2) everyday 1 h before radiation for 7 days per week from the first
to last day of radiotherapy. This was followed by adjuvant TMZ (175 mg/m2) for 5 days of treatment per month.

• All 3D conformal radiotherapy (3D-CRT) plans were analyzed in terms of planning target volume coverage,
conformity index and organs at risk dose volume parameters.

• More than 98% of patients were treated with a dose of 60 Gy (46 + 14 Gy boost), the rest received only 54 Gy in
view of their tumor’s proximity to critical organs.

• Following completion of radiotherapy, about 57% patients received adjuvant TMZ every 4 weeks. Only 13%
patients completed 6–12 cycles, 13.6% continuing beyond 12 cycles. Around 31% patients received less than six
cycles of TMZ post-radiotherapy.

• In the current study, we found that adjuvant 3D-CRT in cases of glioblastoma is acceptable in terms of target
volume coverage and homogeneity.

• Intensity-modulated radiotherapy provides a better conformal dose distribution to the target tissue along with
significant sparing of the dose-limiting critical organs in vicinity; however, given the grave prognosis and the
limited survival of grade IV gliomas despite the best treatment available, 3D-CRT is an equally acceptable
treatment option. In a country like India where we have increased patient load, we can spend less time on
machine using 3D-CRT.
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