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Resting-state functional connectivity is used throughout neuro-
science to study brain organization and to generate biomark-
ers of development, disease, and cognition. The processes that
give rise to correlated activity are, however, poorly understood.
Here we decompose resting-state functional connectivity using
a temporal unwrapping procedure to assess the contributions
of moment-to-moment activity cofluctuations to the overall con-
nectivity pattern. This approach temporally resolves functional
connectivity at a timescale of single frames, which enables us
to make direct comparisons of cofluctuations of network orga-
nization with fluctuations in the blood oxygen level-dependent
(BOLD) time series. We show that surprisingly, only a small frac-
tion of frames exhibiting the strongest cofluctuation amplitude
are required to explain a significant fraction of variance in the
overall pattern of connection weights as well as the network’s
modular structure. These frames coincide with frames of high
BOLD activity amplitude, corresponding to activity patterns that
are remarkably consistent across individuals and identify fluc-
tuations in default mode and control network activity as the
primary driver of resting-state functional connectivity. Finally,
we demonstrate that cofluctuation amplitude synchronizes across
subjects during movie watching and that high-amplitude frames
carry detailed information about individual subjects (whereas
low-amplitude frames carry little). Our approach reveals fine-scale
temporal structure of resting-state functional connectivity and
discloses that frame-wise contributions vary across time. These
observations illuminate the relation of brain activity to functional
connectivity and open a number of directions for future research.

functional connectivity | dynamics | time-varying connectivity |
naturalistic stimuli

Resting-state functional connectivity (rsFC) refers to the cor-
relation structure of functional magnetic resonance imaging

(fMRI) blood oxygen level-dependent (BOLD) activity, usu-
ally estimated over the course of an entire scan session (1, 2).
Interindividual differences in rsFC have been linked to vari-
ation in biological age (3, 4), cognitive state (5), and clinical
status (6). Other studies have emphasized the dynamic nature
of rsFC, using sliding window techniques to generate tempo-
rally blurred estimates of rsFC across time (7–9) and link-
ing changes in network architecture to behavior (10, 11) and
phenotypes (12, 13).

Despite intense interest and widespread application, the pro-
cesses that underpin and shape rsFC are not fully understood.
For instance, how do moment-to-moment fluctuations in con-
nectivity contribute to the pattern of rsFC estimated over
longer timescales? How are changes in connectivity supported
by instantaneous fluctuations in brain activity?

In principle, these questions can be addressed using sliding-
window approaches to track fluctuations in rsFC across time.
However, the windowing procedure induces a blurring effect,
making it impossible to localize time-varying connectivity in time
and assess the contributions made by individual frames (14). On
the other hand, methods like coactivation patterns (CAPs) allow
for brain dynamics to be characterized at the resolution of single

frames (15–19). Using these types of methods, previous studies
have shown that coactivity patterns fluctuate across time, with the
brain’s system-level organization expressed only during a select
set of time points (20). However, these approaches generally
require the specification of a seed region or a threshold for deter-
mining what constitutes high-amplitude activity. Consequently, a
comprehensive and mathematically precise explanation for how
these coactivity patterns combine to give rise to rsFC over longer
timescales remains elusive (21).

Here we address these questions using a mathematically exact
decomposition of rsFC into its frame-wise contributions, explic-
itly linking instantaneous patterns of cofluctuation to rsFC over
longer timescales (22, 23). We find that at rest, cofluctuations
are bursty and occur intermittently as part of whole-brain cofluc-
tuation events that are uncorrelated with respiration, cardiac
cycle, and in-scanner motion. We then show that rsFC esti-
mated using only high-amplitude frames is highly correlated
with rsFC estimated over the entire scan session, indicating that
rsFC and its system-level organization are driven by cofluctu-
ations during relatively few frames. We then show that high-
amplitude cofluctuations are underpinned by the activation of
a particular spatial mode of brain activity in which default mode
and control networks are anticorrelated with sensorimotor and
attentional systems. We then present two careful examinations
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of high-amplitude cofluctuations. First, we demonstrate that
time series of cofluctuation amplitude synchronize across sub-
jects during movie watching, and second, we show that subjects’
“fingerprints” are enhanced during high-amplitude frames com-
pared to low-amplitude frames.

Results
The strength of rsFC between two brain regions can be quanti-
fied as the Pearson correlation of their fMRI BOLD time series,
which is calculated (after z-scoring) as the mean value of their
element-wise product (24). By omitting the averaging step, we
can temporally unwrap the correlation measure, which results
in a new set of time series—one for every pair of brain regions
(network edges)—whose elements represent the magnitude of
cofluctuation between those regions resolved at every moment
in time (Fig. 1A). These edge time series can be analyzed directly
to pinpoint both the magnitude and timing of cofluctuations
between pairs of brain regions.

In rsFC Is Driven by Short-Lived and High-Amplitude Cofluctu-
ation Events and in High-Amplitude Frames Are Driven by Fluc-
tuations of Task-Positive/Task-Negative Mode of Brain Activity,
we analyze cofluctuation time series constructed from functional
imaging data acquired as part of the Human Connnectome
Project (25, 26) (see Materials and Methods for details). All
results reported in those sections generated using these data; we
replicate these findings using a second dataset (27), with results
reported in SI Appendix. In Intersubject Synchrony of Whole-
Brain Cofluctuation Amplitude during Passive Movie Watching
and in High-Amplitude Cofluctuations Enhance Identifiability, we
analyze an independently acquired movie-watching dataset (28,
29) and data from the Midnight Scan Club (MSC) (27, 30),
respectively.

rsFC Is Driven by Short-Lived and High-Amplitude Cofluctuation
Events. While past studies have used sliding window methods to
generate estimates of moment-to-moment fluctuations in rsFC
(8, 9), the use of a windowing procedure results in a temporally
blurred estimate of rsFC. This restricts the timescale of obser-
vations regarding dynamic changes in functional connectivity to
the width of the time window, generally on the order of dozens of
frames (approximately 1 min of real time, although we note that
recently, several groups have explored methods for estimating
time-varying FC at a frame-wise timescale, e.g., refs. 31 and 32).
Here we address this limitation using cofluctuation times series.

When analyzed across the whole brain, we find that edge time
series exhibit bursty behavior, such that the amplitude of cofluc-
tuations (quantified by computing the root sum square [RSS])
moves around a mean value but is punctuated by brief, intermit-
tent, and disproportionately large fluctuations (Fig. 1B). These
high-amplitude frames are not directly related to cardiac and res-
piratory cycles, in-scanner head motion (SI Appendix, Fig. S1),
and spectral properties of fMRI BOLD time series (SI Appendix,
Fig. S2) and appear aperiodic with heavy-tailed distributions of
size, duration, and intervals (SI Appendix, Fig. S3).

To better understand how instantaneous cofluctuations con-
tribute to whole-brain rsFC, we isolated high-amplitude frames
and compared them with low-amplitude episodes (top and bot-
tom 5% in terms of cofluctuation amplitude; 60 frames for HCP;
see SI Appendix, Fig. S4, for comparisons at other percentiles).
We then estimated rsFC separately for each category, using only
fMRI BOLD data corresponding to those time points, and com-
pared the resulting networks. First, we found that connection
weights were significantly stronger during high-amplitude frames
than low-amplitude (within-sample t test, p< 10−15; Fig. 1C).
Next, we calculated the similarity of rsFC estimated during high-
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Fig. 1. Cofluctuation time series reveal bursty structure of resting-state functional connectivity. (A) We use a temporal unwrapping of the Pearson cor-
relation to generate cofluctuation time series for every pair of brain regions (edges). The elements of the cofluctuation time series are the element-wise
products of z-scored regional BOLD time series that, when averaged across time, yield vectors that are exactly equal to the Pearson correlation coefficient
and can be rearranged to create a resting-state functional connectivity matrix. (B) We find that the cofluctuation time series contains moments in time
where many edges collectively cofluctuate. We can identify these moments by calculating the RSS across all cofluctuation time series and plotting this value
as a function of time. In B we label high- and low-amplitude frames. The distribution of edge cofluctuation amplitude is heavy tailed. We wanted to assess
the contribution of high- and low-amplitude frames to the overall pattern of functional connectivity. To do this, we extracted the top and bottom 5% of all
time points (ordered by cofluctuation amplitude) and estimated functional connectivity from those points alone. (C) Average functional connectivity across
100 subjects using top 5% (Left) and bottom 5% (Right). (D) In general, the networks estimated using the top 5% of time points were much more similar to
traditional functional connectivity than those estimated using the bottom 5% of time points. (E) We performed a similar comparison of network modularity
using networks reconstructed using top and bottom 5% frames.
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and low-amplitude episodes with respect to time-averaged rsFC
estimated using the full time series. We found that the high-
amplitude networks were highly correlated with rsFC (r =0.81±
0.05) while the low-amplitude networks were much less correlated
(r =0.54± 0.07) and that these differences were highly signifi-
cant (t test, p< 10−15; Fig. 1D). We also performed an analogous
comparison of network modularity (33), an index that can be
interpreted as a measure of how segregated a network’s systems
are from one another. As before, we found that modularity was
greater in the high-amplitude networks (q =0.51± 0.06) com-
pared to the networks estimated from low-amplitude frames (q =
0.37± 0.05) (t test, p< 10−15; Fig. 1E).

In SI Appendix we show similar results in a second dataset (SI
Appendix, Fig. S5). We also demonstrate that these effects persist
with highly conservative motion censoring (SI Appendix, Fig. S6),
when using an alternative strategy for estimating networks from
the top and bottom 5% time points (SI Appendix, Fig. S7), and
when comparing against a null model that preserves the tempo-
ral structure of cofluctuation amplitude while sampling frames
randomly from the entire time series (SI Appendix, Fig. S8).

Collectively, these results suggest that rsFC, estimated over
long timescales, is driven by a small number of brief, intermit-
tent, and high-amplitude cofluctuations. The network structure
over these points in time contributes disproportionately to the
overall modularity and system-level organization of cerebral
cortex, as estimated from long-time averages of rsFC. In con-
trast, low-amplitude cofluctuations are only weakly related to
the overall pattern of rsFC and correspond to less modular
architectures.

High-Amplitude Frames Are Driven by Fluctuations of Task-
Positive/Task-Negative Mode of Brain Activity. In the previous sec-
tion we demonstrated that time-averaged rsFC can be explained
by high-amplitude cofluctuations that occur during a relatively
small number of frames. It remains unclear, however, whether
high-amplitude frames are underpinned by a specific pattern of

brain activity or whether they reflect contributions from multi-
ple distinct patterns. Here we address this question directly, by
investigating the patterns of brain activity that occur at the same
time as high-amplitude frames.

As a first point of comparison, we calculated the RSS of both
the cofluctuation time series as well as the z-scored fMRI BOLD
time series. We found that across subjects, these time series
were highly correlated (r =0.97), indicating that high-amplitude
frames have an almost one-to-one correspondence with high-
amplitude BOLD fluctuations (Fig. 2A). This relationship is
expected; because cofluctuations are calculated as products of
z-scored regional activity, their amplitudes will necessarily be
correlated with one another.

Given that fluctuations in BOLD activity are greater during
high-amplitude frames compared to low-amplitude frames, we
asked whether they formed a consistent and recognizable pat-
tern of activity. To address this question, we calculated the mean
activity pattern for each subject during high- and low-amplitude
frames and computed between-subject and between-scan simi-
larity (Fig. 2B). In general, activity during high-amplitude frames
was more correlated across subjects compared to the activity pat-
terns during low-amplitude frames (t test, p< 10−15). To better
understand what was driving these correlations, we performed
a principal components analysis of the activity patterns during
high- and low-amplitude frames, aggregated over all subjects and
scans. We focused on the first principal component (PC1), which
explained 26% of total variance. The coefficients for PC1 were,
on average, much greater for high-amplitude frames compared
to low-amplitude (t test, p< 10−15; Fig. 2C), indicating that PC1
was descriptive of activity patterns during high-amplitude frames
but less so for low-amplitude frames. We then mapped compo-
nent scores for PC1 onto the cortical surface and found that PC1
corresponded to a mode of activity that delineates regions in
default mode and control networks from sensorimotor and atten-
tional networks (Fig. 2 D and E). We replicated these results in
a second dataset (SI Appendix, Fig. S9).
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Fig. 2. Relationship of network cofluctuations with BOLD fluctuations. In rsFC Is Driven by Short-Lived and High-Amplitude Cofluctuation Events we
demonstrated that resting-state functional connectivity could be explained on the basis of relatively few frames during which high-amplitude cofluctuations
occurred. Here we relate those cofluctuation frames to BOLD activity fluctuations. We first calculate the RSS amplitude of BOLD activity at each time point
and compare that to the amplitude of cofluctuations. (A) Pooling data from across subjects, we find that these two variables are highly correlated. (B)
To investigate this relationship further, we extract mean activity patterns for each subject and for each scan during the top and bottom 5% time points,
indexed according to cofluctuation amplitude. Here we show the correlation matrix of those activity vectors. (C) We then performed a principal component
analysis of this correlation matrix and found that absolute value of coefficients for the first component (PC1) were greater for the top 5% than the bottom
5%, and (D and E) the PC1 score corresponded to activity patterns that emphasized correlated fluctuations of default mode and control networks that were
weakly or anticorrelated with fluctuations elsewhere in the brain. Asterisks indicate systems whose mean PC1 score was significantly greater (more positive
or negative) than expected by chance (permutation test; FDR fixed at 5%; padjusted = 0.018). These observations suggest that high-amplitude cofluctuations,
which drive resting-state functional connectivity, are underpinned by instantaneous activation and deactivation of default mode and control network areas.
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These results suggest that underlying high-amplitude frames
is a mode of brain activity whose spatial pattern resembles the
traditional task-positive/task-negative division of the brain (34).
This pattern of activity is similar across individuals, suggesting a
conserved mechanism by which rsFC emerges from brain activity.
These observations suggest a fundamental link between distinct
patterns of brain activity and connectivity while further clarifying
the origins of high-amplitude frames.

Intersubject Synchrony of Whole-Brain Cofluctuation Amplitude dur-
ing Passive Movie Watching. In the previous sections we showed
that rsFC can be viewed as an average of time-varying cofluctua-
tions. We also showed that time-averaged rsFC is disproportion-
ately impacted by high-amplitude frames that are, themselves,
underpinned by a specific mode of brain activity and were not
clearly related to motion or physiological artifacts. What, then, is
the purpose of high-amplitude frames? Are they random cofluc-
tuations, or are they related to fluctuations in an individual’s
brain/cognitive state? To address these questions, we explored
the cofluctuation time series for a cohort of 29 subjects that
were scanned multiple times at rest and while passively viewing
complex, naturalistic stimuli (movies) (28).

Specifically, we computed edge time series for all subjects and
scans for both conditions. From these edge time series, we esti-
mated the cofluctuation amplitude across all node pairs. For a
given scan, this procedure results in 29 time series (1 per sub-
ject) of identical length. We found that cofluctuation time series
were correlated across subjects during movie watching (Fig. 3 A
and B) but uncorrelated during rest (Fig. 3 C and D). We directly
compared the distributions of intersubject correlations between
conditions (all scans from the same condition pooled together),
discovering that as expected, the mean intersubject correlation

was greater during movie watching than at rest (permutation test,
p< 0.05; Fig. 3E). Importantly, we found no difference between
conditions for the overall amplitude of RSS values (permutation
test, p=0.07; Fig. 3F).

Next, we explored differences between movie watching and rest
in terms of brain activity patterns during high- and low-amplitude
frames. Our exploration consisted of two analyses. First, and as in
the previous section, we extracted activity patterns during high-
and low-amplitude frames (top and bottom 5% by cofluctuation
amplitude) separately for the movie-watching and resting condi-
tions. We then performed principal component analysis (PCA) on
these matrices and retained the top PC score for each condition.
Interestingly, these PC scores exhibited distinct topography; the
movie-watching PC (Fig. 3G) emphasized activity in visual and
dorsal attention networks, whereas the resting PC (Fig. 3H) reca-
pitulated the pattern shown in the previous section, emphasizing a
task-positive/task-negative mode of activity. To directly compare
these two patterns, we computed their element-wise (region-wise)
difference and grouped these differences by system (Fig. 3 I and
J). As expected, we found statistically significant differences in the
dorsal attention and visual systems (movie > rest; false discov-
ery rate fixed at q =0.05) and salience/ventral attention system
(movie< rest). These differences are further evident when we plot
the PCs against one another, revealing that these systems deviate
from the identity line (Fig. 3K).

We note that another strategy for comparing movie-watching
and resting-state conditions is to analyze them simultaneously by
concatenating high-amplitude activity patterns from both condi-
tions into a single matrix and jointly decomposing that matrix
using PCA. This procedure results in modes of activity that are
shared across both conditions. Here we retain both the first
and second PCs (SI Appendix, Fig. S10 A and C), whose spatial
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topography is similar to what we show in Fig. 3 G and H. As
expected, we find differences between the two maps in terms
of their PC coefficients, with movie-watching frames loading
more strongly onto the first map (permutation test, p< 0.05; SI
Appendix, Fig. S10B) and resting frames loading more strongly
onto the second (permutation test, p< 0.05; SI Appendix,
Fig. S10D).

Viewed collectively, these results complement our previous
findings that cofluctuation time series are not clearly related to
motion or physiological artifacts. Importantly, we demonstrate
that subjects’ cofluctuation time series synchronize when jointly
presented with complex, time-varying, and naturalistic stimuli.
This observation, combined with the topographic differences
between movie-watching and resting-state activity during high-
amplitude frames, strongly suggests that cofluctuation amplitude
is at least in part modulated by subjects’ cognitive states.

High-Amplitude Cofluctuations Enhance Identifiability. In the previ-
ous sections, we showed that high-amplitude frames contribute
disproportionately to the brain’s static FC patterns, shape its
modular structure, are underpinned by a population-level mode
of brain activity, and synchronize during viewing of naturalistic
stimuli. Do they also enhance the identifiability of individual sub-
jects? That is, does FC estimated during high-amplitude frames
bear a stronger signature of a subject than FC estimated during
low-amplitude frames?

To test this question, we calculated the cofluctuation ampli-
tude at each time point (Fig. 4A, i). We then isolated the frames
with the highest amplitude and estimated FC using only these
frames (Fig. 4A, ii). Repeating this procedure for all subjects and
scans resulted in a set of 100 feature vectors (10 subjects × 10
scans) that encode a subjects’ FC patterns (Fig. 4A, iii). We then
compute the [100× 100] similarity matrix—otherwise known
as the identifiability matrix—and compare the mean within-
subject similarity to the mean between-subject similarity (Fig. 4A,
iv). This measure—the differential identifiability—indicates how

much more similar subjects’ FC patterns are to themselves than
to those of other subjects. We repeat this entire procedure using
only low-amplitude frames (Fig. 4A, v–vii) and compare low- and
high-amplitude differential identifiability.

In general, we find that intersubject similarity is greater during
high-amplitude frames than compared to low-amplitude frames
and over a range of thresholds (Fig. 4B). Importantly, we also
find that the gap between within- and between-subject similarity,
differential identifiability, is also greater when estimated using
high-amplitude frames (Fig. 4 C–E). This observation suggests
that high-amplitude frames may carry more individualized and
distinguishable information about subjects than low-amplitude
frames.

Discussion
Here we presented a general approach for temporally unwrap-
ping Pearson correlations to generate time series of interre-
gional cofluctuations along network edges. This simple procedure
enables us to parse the contributions made by individual frames to
rsFC. We find that in general, we can accurately estimate whole-
brain rsFC and its system-level organization using data from a
relatively small number of frames. Importantly, we link these
frames to a high-modularity brain state and to a specific mode of
brain activity, in which default mode and control networks fluc-
tuate in opposition to sensorimotor and attention systems. Our
results also suggest that the cofluctuation patterns, at a coarse
scale, capture cognitively relevant fluctuations in brain state and
that high-amplitude frames encode signatures of an individual.

Decomposing Static FC into Cofluctuation Snapshots. Central to this
paper is the observation that static FC can be nonparametri-
cally decomposed into a series of time-varying snapshots, each
of which expresses an instantaneous pattern of interregional
cofluctuation. Critically, the average of these patterns across
time is exactly equal to whole-brain static FC. This mathematical
truism allows us to neatly assess the contributions of momentary
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Fig. 4. Connectome fingerprints are strong during high-amplitude frames and weaker during low-amplitude frames. We investigated whether subject-
specific features of rsFC were more prevalent during high- or low-amplitude cofluctuations. To address this question, we identified frames (time points)
with the highest and lowest cofluctuation amplitude and estimated subjects FC using these data only. We then calculated the intersubject similarity matrix,
i.e., the identifiability matrix. (A) Illustration of this general procedure, beginning by isolating high-amplitude time points (i), estimation of FC (ii), repeating
this procedure for all subjects (iii), and estimating the intersubject similarity matrix (iv). An identical procedure was carried out for low-amplitude frames
and is illustrated in v–vii. (B) We calculated the mean within- and between-subject similarity using both the top (red) and bottom (blue) frames, ordered by
cofluctuation amplitude. For each set of frames, we produce two separate curves, one for the within-subject similarity and another for the between-subject
similarity. The area between the curves is the differential identifiability, or the extent to which subjects’ FC patterns are more similar to themselves than to
FC estimated from other subjects. (C) We found that differential identifiability was always greater when FC was estimated using the top frames, ordered by
amplitude. For the sake of visualization, we show identifiability matrices estimated using (D) high- and (E) low-amplitude frames.
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cofluctuations to the overall FC pattern and to establish a clear
link between FC and fluctuations in brain activity.

Our findings, which complement previous work (15–18, 20,
32), leverage a mathematically exact decomposition of FC into
its frame-wise contributions to suggest that static FC is driven
by contributions from relatively few time points, namely, those
with the highest levels of cofluctuation amplitude. Frames with
low levels of cofluctuation, on the other hand, contribute lit-
tle. Because the cofluctuation time series are estimated at a
temporal resolution of single frames, we directly compared high-
amplitude frames with coincident patterns of brain activity. We
established that at rest, high-amplitude cofluctuations occur in
tandem with a specific mode of brain activity that emphasizes
oppositional activation of sensorimotor and association cortex.
Notably, similar patterns of activity have been reported in other
state-based analyses of brain dynamics (39, 40), linking this pat-
tern of activity to mentation during wakeful rest and working
memory performance.

The observations reported here both clarify and challenge core
assumptions concerning static FC and brain network dynamics
(41). Specifically, our findings suggest that whole-brain FC fol-
lows a bursty trajectory through a high-dimensional state space,
with extended periods of quietude punctuated by brief and inter-
mittent events, whose timing is not clearly related to motion
or physiological artifacts (42). This observation leads to several
questions, the most important of which concerns the origins of
high-amplitude frames. Are they spontaneous occurrences? Are
they relevant, in any way, to ongoing cognitive processes? How
individualized are high-amplitude frames?

Linking High-Amplitude Cofluctuations to Cognition and Individ-
ual Differences. We performed two separate analyses in order
to help clarify the origins of high-amplitude frames. First, we
performed a comparison of their structure at rest and dur-
ing movie watching (28). While the amplitude of cofluctuations
was not statistically different between conditions, we found
that cofluctuations were correlated during movie watching, sug-
gesting that high-amplitude frames may be driven by audiovi-
sual features in movies. This finding supports the hypothesis
that the timing of high-amplitude frames is linked to percep-
tion and processing of sensory information and further sug-
gests that high-amplitude frames are not simply spontaneous
occurrences. These observations open up possibilities for future
studies that leverage the temporal structure of cofluctuation
amplitudes to track changes in an individual’s cognitive state
across time.

Importantly, we also discover differences in the mode of brain
activity underpinning high-amplitude cofluctuations in movie
watching compared to rest. In particular, we found stronger
expression of visual and dorsal attention networks, brain systems
that one might hypothesize to play an important role in pro-
cessing visual information and redirecting attentional resources
while viewing complex naturalistic stimuli (43, 44). This finding
also demonstrates that although high-amplitude cofluctuations
can occur spontaneously in correlated, modular systems, their
character and timing are modulated by time-varying sensory
input, presenting an opportunity for future studies to compre-
hensively map the task-evoked topography of high-amplitude
cofluctuations (45).

In our second analysis, we asked whether high-amplitude
cofluctuations were personalized and idiosyncratic (27, 46, 47).
To address this question, we estimated subjects’ FC separately
using high- and low-amplitude frames and compared these net-
works in terms of their differential identifiability—the extent
to which the similarity of FC patterns was stronger within sub-
jects than between (48). Surprisingly, we found that identifiability
was significantly stronger during high-amplitude cofluctuations,
suggesting that subject-specific information is expressed more
strongly during those frames.

Collectively, these findings suggest that the structure of high-
amplitude cofluctuations is highly organized. It tracks time-
varying fluctuations in cognitive state and is deeply personalized.
These are key observations with clear implications for the study
of brain–behavior associations, clinical neuroscience, and pheno-
type discovery, where the ability to make inferences is limited by
the amount of data available. Our results suggest that by capital-
izing on the fact that high-amplitude cofluctuations carry more
subject-specific information than low-amplitude cofluctuations,
it may be possible to generate robust network-level biomark-
ers using a relatively small number of frames and reducing the
amount of required data (49) [we note this concept is being
explored with other imaging modalities (50)]. This approach may
be especially useful in clinical and developmental neuroscience,
which study populations with characteristics that generally pro-
hibit the extended scan durations necessary for stably estimating
FC (51). For instance, because high-amplitude cofluctuations
carry more information about static FC than low-amplitude
cofluctuations and because they encode identifiable features of
subjects, implementing experimental paradigms that elicit large
cofluctuations at greater frequency may obviate the need for
long scan sessions and large quantities of data and yield superior
estimates of FC.

System-Level Organization Emergences from the Structure of High-
Amplitude Cofluctuations. Last, our findings hint at a crucial link
between instantaneous fluctuations in activity and the orga-
nization of rsFC (31, 52). Many studies have found that the
community structure of rsFC resembles known coactivation pat-
terns, including task-evoked activity (53, 54). Here we proposed
a strategy that enabled us to tease apart the precise contribution
of instantaneous BOLD fluctuations (and their topography) to
rsFC.

We demonstrated that a particular pattern of activity involv-
ing default mode and control regions is primarily responsible for
driving high-amplitude frames and, in turn, whole-brain rsFC.
While this mode made the greatest contribution, it is likely that
other modes make nontrivial contributions as well. By extending
the definition to include lower-amplitude fluctuations, we expect
to find patterns of activity that correspond to other, well-known
brain systems (16). Moreover, we speculate that these patterns
likely recombine in different proportions as a function of task
complexity and domain (53, 55) and across individuals (47).

We note that other studies have shown, using a wide range
of approaches, that time-varying and static rsFC are related to
one another and that this relationship depends, to a large extent,
on high-amplitude network states. For instance, ref. 18 identi-
fied time points of high-amplitude activity using sliding-window
methods and seed-based analyses to show that activity coincides
with increased correlation (rsFC). Indeed, comparable results
have been reported using similar methods (15, 17, 20, 36, 38,
42, 56–58). The principal finding of these studies is that high-
amplitude activity is somehow related to stronger FC or the
expression of particular brain systems.

While illuminating, these papers have some limitations.
Notably, they describe relationships between FC and high-
amplitude states but lack a mathematical mechanism for why
this relationship exists. In other cases, the observations require
user-defined parameters to determine what constitutes high-
amplitude activity, to specify a seed voxel or region for com-
puting FC, or the width of a sliding window. In contrast, our
approach addresses these limitations directly. Our first find-
ing is in agreement with the above-referenced papers but is
precipitated from a mathematically precise decomposition of
static FC into its exact frame-wise contributions. With this
decomposition, we can determine how individual time points
combine to give rise to patterns of time-averaged, static FC.
This recombination requires no additional parameterization and
no sliding window and is naturally compared for all pairwise
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connections (not just seeds). In summary, the framework we
present here serves to unify these previous observations by pro-
viding a mathematical framework to explicitly link instantaneous
patterns of cofluctuation to static FC.

In future work, the proportion of variance explained by dif-
ferent patterns and other statistics related to high-amplitude
frames, including the frequency with which they occur, may
serve as potent correlates of cognitive and disease state. Because
high-amplitude frames appear to drive the overall configuration
of rsFC, we further speculate that their statistics may serve as
important complements to traditional measures of rsFC.

Future Work. The approach developed here presents several
exciting opportunities for future studies. These include investi-
gating time-varying FC using cofluctuation patterns, which pro-
vide frame-wise estimates of network structure and circumvent
limitations of sliding window approaches (7, 14, 59). Other possi-
bilities include mapping the relationship of structural connectiv-
ity to regional fluctuations or interregional cofluctuations during
high- and low-amplitude frames (60) and studying individual dif-
ferences in cognitive, development, and disease state based on
features extracted from high-amplitude frames, which we show
provide more reliable estimates of subject-level networks.

A remaining open question concerns the neurobiology that
shapes high-amplitude cofluctuations. On one hand, their infre-
quent occurrence could reflect a dynamic strategy for limiting the
consumption of metabolic resources (9, 61). This theory is sup-
ported by previous reports demonstrating that metabolic activity
is elevated within the default mode network (62–64), a system
that overlaps closely with the dominant mode of activity we
find underpins high-amplitude frames. On the other hand, high-
amplitude frames are, to some extent, a mathematical necessity
emerging in correlated, modular systems. For instance, a group
of brain regions form a mutually correlated functional module,
then by definition their activity (and coactivity) will follow similar
time courses, with a tendency to fluctuate together at the same
instants in time. However, the observation that high-amplitude
cofluctuations synchronize during movie watching suggests that
they are also related to some underlying psychological process
(with a presumed neurobiological correlate). Future work should
investigate the neurobiological underpinnings of high-amplitude
cofluctuations in greater detail.

Importantly, the entire cofluctuation time series enterprise
could be extended in several important ways, including by apply-
ing it to other imaging modalities, e.g., electrophysiological
recordings (65–68) or fluorescence imaging data (69, 70). Addi-
tionally, it would be straightforward to calculate cofluctuation
time series after partialing out the effects of activity from other
regions in the brain (24) or to investigate temporal dependencies
and lags between brain regions (71, 72).

Finally, the approach developed here decomposes functional
connections into their exact frame-wise contributions. We spec-
ulate that this decomposition might offer a selective means of
addressing in-scanner motion, e.g., by identifying and censoring
time points impacted by motion on an edge-wise basis (73, 74).

Relationship with Existing Approaches. We note that the analy-
sis of cofluctuation time series is conceptually similar to several
existing methods (20, 36–38) or in some cases even builds upon
shared mathematical machinery (75). For instance, multiplica-
tion of temporal derivatives (MTDs) (76) calculates the element-
wise products using differenced activity time series for all pairs of
nodes. These time series are then convolved with a kernel to gen-
erate smooth estimates of time-varying nFC. Although similar,
our approach relies on untransformed activity to estimate edge
time series, thereby preserving the relationship between static
nFC and the mean value of each edge time series. Furthermore,
our approach omits the smoothing step, making it, in princi-
ple, capable of detecting fluctuations in network structure over

shorter timescales compared to MTDs. Another related method
is CAPs (15, 16), which extracts and clusters voxel- or vertex-
level activity during high-activity frames. Because a voxel can be
coactive under different contexts, the cluster centroids spatially
overlap with one another.

Although these approaches arrive at similar conclusions, they
possess distinct advantages and disadvantages that make some
methods uniquely well suited for testing specific hypotheses and
research questions. For instance, MTDs and the analysis of cofluc-
tuation time series presented here are appropriate for tracking
patterns of connectivity across time. In the case of cofluctuation
time series, which are mathematically related to the static FC
pattern, our approach is especially well suited for assessing the
contributions of frame-wise cofluctuation patterns to the brain’s
overall FC (we note that this relationship, to our knowledge, has
not been previously discussed in the extant literature). CAPS and
innovation-driven CAPS on the other hand, are better suited for
studying activity patterns and tracking their cooccurrences across
time. In principle, a systematic and careful comparison of these
methods could be carried out in future work.

Finally, we note that our approach incorporates elements of
both CAPs and MTDs. Like MTDs and other sliding-window
methods, our approach yields a time series of node-by-node matri-
ces, each of which encodes pairwise relationships among brain
regions across time. In the case of sliding-window methods, the
elements in each matrix represent estimates of instantaneous
correlations, which requires first estimating variances (a second
moment) from a limited set of observations, which can lead to
inaccurate and noisy FC inference, especially when the num-
ber of observations is small (narrow windows) (14, 77). Instead,
the matrices generated using our approach encode instantaneous
cofluctuation magnitudes, like CAPs. That is, each element indi-
cates the magnitude with which the activity of two brain regions
is instantaneously deflecting in the same direction. Importantly,
deflections are calculated with respect to means and variances
estimated using the full set of observations (the entire scan). Con-
sequently, the time-varying estimates of cofluctuations reported
here may be less sensitive to noise than sliding-window methods.

Additionally, it is important to note that while our approach
and CAPs are similar in some ways, e.g., they both operate on
single-frame timescales, our method is nonetheless distinct and
has unique advantages. Most importantly, our method is built
upon a mathematically exact decomposition of static rsFC into
its frame-wise contributions. This decomposition enables us to
quantify, precisely, how individual time points impact static rsFC.
Here we use this property to demonstrate that a relatively small
number of frames are necessary to explain rsFC [a finding that
has been reported elsewhere (15, 17, 36)], to show that cofluctua-
tions become synchronized during movie watching, and that high-
amplitude frames can be used to enhance subjects’ connectome-
based fingerprints. Second, our method is parameter-free; the
decomposition does not depend on a specification of ad hoc
thresholds for high-amplitude activity nor does it require that
we select a seed region or brain system in advance. Rather,
our decomposition method considers all activity levels and the
entire network simultaneously. As noted earlier, we envision this
approach being useful for future studies of time-varying FC, for
generating more sensitive and subject-specific biomarkers, and in
conjunction with non-fMRI imaging modalities.

Limitations. One of the most key limitations concerns the cal-
culation and interpretation of cofluctuation time series. The
procedure for calculating edge time series begins by z-scoring
each brain region’s activity time series. This procedure, however,
is only appropriate if the sample mean and SD are temporally
invariant (78). If there is a sustained increase or decrease in activ-
ity, e.g., the effect of a blocked task, then the z-scoring procedure
can result in a biased mean and SD resulting in poor esti-
mates of fluctuations in activity. To minimize the likelihood of this
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occurring, we focused on resting-state and movie-watching data
rather than blocked tasks. In future work, investigation of task-
evoked cofluctuations could be investigated by employing already
common preprocessing steps, e.g., constructing task regressors to
remove the first-order effect of tasks on activity (79).

Conclusion. In conclusion, our study discloses a link between cor-
tical activity and rsFC, facilitating a statistical explanation of
the brain’s system-level architecture in terms of intermittent,
short-lived, high-amplitude fluctuations in activity and coactiv-
ity. Our methodological framework is readily applicable to other
imaging datasets and recording modalities, including observa-
tions at neuronal scales, enabling the study of neural coactivity
at unprecedented temporal resolution.

Materials and Methods
Datasets. We analyzed three separate datasets. Specifically, we focused on
resting-state data from both The Human Connectome Project (HCP) and
MSC. These data were processed similarly, the details of which are described
in this section. The third dataset, which has been analyzed elsewhere (28,
49, 80), includes both resting-state and movie-watching data from a cohort
of 29 individuals. This dataset was processed separately using a different
procedure and is described in its own section. The processing pipelines
resulted in parcellations of cortex into N = 200 parcels (nodes) (81) in the
case of the HCP and MSC datasets and N = 114 parcels (52) in the case of the
Indiana University dataset. The processing pipelines are described in detail
in SI Appendix.

Cofluctuation Time Series. Constructing networks from fMRI data (or any
neural time series data) requires estimating the statistical dependency
between every pair of time series. The magnitude of that dependency is
usually interpreted as a measure of how strongly (or weakly) those vox-
els or parcels are functionally connected to each other. By far the most
common measure of statistic dependence is the Pearson correlation coeffi-
cient. Let xi = [xi(1), . . . , xi(T)] and xj = [xj(1), . . . , xj(T)] be the time series
recorded from voxels or parcels i and j, respectively. We can calculate
the correlation of i and j by first z-scoring each time series, such that
zi =

xi−µi
σi

, where µi =
1
T

∑
t xi(t) and σi =

1
T−1

∑
t[xi(t)−µi] are the time-

averaged mean and SD. Then, the correlation of i with j can be calculated
as rij =

1
T−1

∑
t[zi(t) · zj(t)]. Repeating this procedure for all pairs of parcels

results in a node-by-node correlation matrix, i.e., an estimate of FC. If there
are N nodes, this matrix has dimensions [N×N].

To estimate edge-centric networks, we need to modify the above
approach in one small but crucial way. Suppose we have two z-scored parcel
time series, zi and zj . To estimate their correlation we calculate the mean
of their element-wise product (not exactly the average, because we divide
by T − 1 rather than T). Suppose, instead, that we never calculate the mean
and simply stop after calculating the element-wise product. This operation
would result in a vector of length T whose elements encode the moment-by-
moment cofluctuation magnitude of parcels i and j. For instance, suppose
at time t, parcels i and j simultaneously increased their activity relative to
baseline. These increases are encoded in zi and zj as positive entries in the
tth position, so their product is also positive. The same would be true if i
and j decreased their activity simultaneously (because the product of neg-
atives is a positive). On the other hand, if i increased while j decreased (or
vice versa), this would manifest as a negative entry. Similarly, if either i or j
increased or decreased while the activity of the other was close to baseline,
the corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-wise product of zi

and zj can be viewed as encoding the magnitude of moment-to-moment
cofluctuations between i and j. An analogous vector can easily be calculated

for every pair of parcels (network nodes), resulting in a set of cofluctua-
tion (edge) time series. With N parcels, this results in N(N−1)

2 pairs, each of
length T .

Modularity Maximization. Modularity maximization is a heuristic for detect-
ing communities in networks (82). Intuitively, it attempts to decompose
a network into nonoverlapping subnetworks such that the observed den-
sity of connections within subnetworks maximally exceeds what would be
expected by chance, where chance is determined by the user. The actual
process of detecting communities is accomplished by choosing community
assignments that maximize a modularity quality function, Q, defined as

Q =
∑

ij

Bijδ(gi , gj), [1]

where Bij = Aij − Pij is the {i, j} element of the modularity matrix, which
represents the observed weight of the connection between nodes i and j
minus the expected weight. The variable gi is the community assignment
of node i, and δ(gi , gj) is the Kronecker delta function, whose value is
1 when gi = gj and 0 otherwise. The modularity, Q, is effectively a sum
over all edges that fall within communities and is optimized when the
observed weights of connections is maximally greater than the expected.
In general, larger values of Q are thought to reflect superior community
partitions.

Signed and Correlation Matrices. In this manuscript, we used the following
variant of modularity, q∗, which has been shown to be especially well suited
for use with correlation matrices (33):

q* = q+
+

v−
v+v− q−, [2]

where q± = 1
v±

∑
ij(r

±
ij −

k±i k±j
v±

)δ(gi , gj). In this expression, r±ij represents

either the positive or negative elements of the correlation matrix, k±
i =∑

j r±ij , and v± =
∑

i k±
i .

Differential Identifiability. Let A1 be an N×N FC matrix. We can repre-
sent this matrix as an M = N× (N− 1)/2-dimensional vector by extracting
its upper triangle elements. We can assess the similarity of two matrices, A1

and A2, by computing the similarity of their vector representations. Suppose
we had multiple scans from multiple individuals. Let Iself and Iothers be the
average within- and between-subject similarity. Differential identifiability,
then, is simply Idiff = Iself − Idiff (48). Intuitively, the larger the value of Idiff ,
the stronger the population-level fingerprint (46).

Code Availability. Code and example data for generating and analyz-
ing edge time series are available in Github (https://github.com/brain-
networks/edge-ts).

Data Availability. Two of the imaging datasets come from publicly avail-
able, open-access repositories. HCP data can be accessed freely via https://db.
humanconnectome.org/ after signing a data use agreement. MSC data
can be accessed via OpenfMRI at https://openneuro.org/datasets/ds000224/
versions/1.0.3. Postprocessed data from the Indiana University study data
and code have been deposited in Figshare and GitHub (postprocessed data
are available at https://doi.org/10.6084/m9.figshare.12971162).
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