
RESEARCH ARTICLE

Maximum flow-based resilience analysis:

From component to system

Chong Jin1, Ruiying Li1,2, Rui Kang1,2*

1 School of Reliability and Systems Engineering, Beihang University, Beijing, China, 2 Science and

Technology on Reliability and Environmental Engineering Laboratory, Beijing, China

* kangrui@buaa.edu.cn

Abstract

Resilience, the ability to withstand disruptions and recover quickly, must be considered dur-

ing system design because any disruption of the system may cause considerable loss,

including economic and societal. This work develops analytic maximum flow-based resil-

ience models for series and parallel systems using Zobel’s resilience measure. The two

analytic models can be used to evaluate quantitatively and compare the resilience of the

systems with the corresponding performance structures. For systems with identical compo-

nents, the resilience of the parallel system increases with increasing number of compo-

nents, while the resilience remains constant in the series system. A Monte Carlo-based

simulation method is also provided to verify the correctness of our analytic resilience models

and to analyze the resilience of networked systems based on that of components. A road

network example is used to illustrate the analysis process, and the resilience comparison

among networks with different topologies but the same components indicates that a system

with redundant performance is usually more resilient than one without redundant perfor-

mance. However, not all redundant capacities of components can improve the system resil-

ience, the effectiveness of the capacity redundancy depends on where the redundant

capacity is located.

Introduction

Modern society is built on adaptive and intelligent infrastructure systems that deliver energy

and information to support productivity, water to meet basic needs, and transportation to con-

nect communities. Currently, infrastructure systems are becoming increasingly smarter in

normal operation and use. However, the infrastructure systems are vulnerable to many natural

disasters and man-made attacks that threaten the services they provide, and the performance

degradation may cause considerable financial loss. For example, the “9/11” terrorist attack on

the World Trade Center caused a power outage in New York in 2001, and it took several weeks

to restore the entire urban electricity supply [1]; on August 14, 2003, some overloaded trans-

mission lines hit overgrown trees in Ohio, which resulted in a large blackout and an estimated

$6 billion impact on the USA and Canadian economies [2]; and, in 2015, multiple airlines suf-

fered computer failures, such as United Airlines, Delta and British Airways, which caused
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widespread delays or even flight cancellations [3]. In addition, the 2009 L’Aquila earthquake in

Italy and the 2011 Tohoku earthquake in Japan also exemplified the vulnerability of our mod-

ern, highly complex infrastructure systems. To face so many surprising combinations of events

and more extreme stressors, building resilience becomes the best decision for large, complex

infrastructure systems [4]. Park et al. [5] described resilience analysis as complementary to risk

analysis with important implications for the adaptive management of complex systems.

Actually, the concept of resilience was introduced more than 40 years ago in ecology by

Holling [6] and was then extended to organization and management [7, 8], economy [9, 10],

psychology [11, 12], and other engineering fields [13–18]. Along with its increasing appear-

ance in calls for research proposals and scientific databases, the term resilience has become

increasingly popular in the last decade [19], and some government agencies have increasingly

emphasized resilience planning for infrastructure systems [20–22]. Correspondingly, resilience

has been used in various practical fields to evaluate the ability of targeted systems to respond

to disruptions that threaten their normal operation. More background on current develop-

ments in the fields can be found in the recently published IRGC (International Risk Gover-

nance Council) Resource Guide on Resilience (https://www.irgc.org/irgc-resource-guide-on-

resilience/). For example, the RESOLUTE project (http://www.resolute-eu.org) of Europe

aims at enhancing the resilience of urban transport systems (UTS), where resilience is consid-

ered as a useful management paradigm, within which adaptability capacities are considered

paramount [23]; the project of 100 Resilient Cities (100RC, http://www.100resilientcities.org/),

pioneered by the Rockefeller Foundation, aims at not only helping individual cities become

more resilient but also building a global resilience practice among governments, private sec-

tors, and individual citizens [24]. Based on the original definition of resilience put forward by

Holling in ecology, recent research [25–27] and guidance documents [28, 29] provided several

other definitions for resilience. For example, “Resilience is the ability to prepare and plan for,

absorb, recover from, and more successfully adapt to adverse events [28]”; “Resilience includes

the ability to prepare for and adapt to changing conditions and withstand and recover rapidly

from disruptions [29]”. Although resilience has been researched for more than forty years, a

universally accepted definition of resilience has not yet been unified. Proag [30] and Hosseini

et al. [31] summarized that most research about system resilience focuses on the ability of sys-

tems to withstand disruptions and recover quickly.

To improve the resilience of infrastructure systems, it is critical to understand how resil-

ience can be measured. Many recent attempts to quantify the resilience of technological sys-

tems were based on performance degradation and recovery from a single disruption. The most

famous one is the “resilience triangle”, which originates from the seismic disaster research by

the MCEER (Multidisciplinary Center for Extreme Event Research) group [32]. They defined

“resilience loss” as the size of the expected degradation in normalized quality over time during

recovery after disruption. Reed et al. [33] expanded this measure and defined system resilience

as the ratio of the integration of normalized quality function over the recovery time to the

length of the period, reflecting the average normalized quality of the system after a disruption.

Cimellaro et al. [34] modified the definition of resilience proposed by Reed et al. [33] and

focused on the change in system quality over the control time (usually the life cycle, life span

of the system, etc.) instead of the recovery time. However, considering that the recovery time

or control time of different systems differs, it is difficult to use the above measures for system

resilience comparison, and real-time performance data cannot be obtained in the system

design stage. A simplified geometry-based method was provided by Zobel [35] to predict sys-

tem resilience, in which the recovery rate of system performance is recognized as a constant.

Ouyang and Dueñas-Osorio [36] also considered the consistency of the time scale and devel-

oped a time-dependent resilience measure. This measure is built on the system performance
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monitoring data within a period from 0 to T, quantified as the ratio of the area between the

real performance curve and the time axis to the area between the target performance curve

and the time axis during the period. Henry and Ramirez-Marquez [37] proposed a time-

dependent resilience metric, which is defined as the ratio of system recovery at time t to the

loss it suffered and can be used to describe the dynamic recovery behavior of the system after

the disruption. To reflect the uncertainty of the system resilience, the MCEER group [38] also

defined a probabilistic resilience that measures the probability that the expectation of the resil-

ience loss will exceed the performance limit state, but the specific expression is not given.

Ouyang et al. also developed an expected annual resilience under multi-disruption events

based on their time-dependent resilience measure in [36] to reflect the stochastic characteris-

tics of system behavior, and the occurrence rates of different hazard types are integrated into

an expected annual resilience metric.

Due to the interdependency of nodes and links, networked systems generally tend to be less

robust and more likely to be vulnerable to perturbations. Murray-Tuite and Mahmassani [39]

combined the availability of alternate paths, excess capacity, and travel time to describe the dis-

ruption of transportation networks. Morlok and Chang [40] studied the capacity flexibility

through changes in demand and traffic patterns. Sterbenz et al. [41] used the metrics that

quantify service requirements and operational state to detect and quantify resilience. Henry

and Ramirez-Marquez [37] used three figures of merit—i.e., the shortest path length, the maxi-

mum flow and the overall health—to quantify the resilience of the transportation network.

Bhatia et al. [42] used the percentage of the active stations in the networked system to measure

the resilience, and both the hazard responses and recovery strategies were compared using the

Indian Railways Network as an example. In another study, Ganin et al. [43] proposed a quanti-

tative measure of resilience based on the evaluation of critical functionality of a networked sys-

tem over time, in which the proportion of active nodes in a network was considered as a

measure of performance, and illustrated how parameterizations for features such as redun-

dancy, node recovery time, and available backup supply could be tuned to obtain a desired

resilience state. Among the above research on network resilience, maximum flow is one of the

most frequently used performance measures in network resilience analysis [37, 39]. Similarly,

Agarwal et al. [44] defined network resilience in terms of the expected maximum flow measure

for a future network with dynamic restoration capability and provided a unified framework to

identify vulnerable points for the WDM network, which can significantly improve the network

resilience if a protection plan is taken at these vulnerable points. Omer et al. [45] defined net-

work resiliency as the ratio of the value delivery of the system after a disruption to the value

delivery of the system before a disruption, and they showed that rerouting and redundant

capacities will improve network resilience. Baroud et al. [46] and Pant et al. [47] used com-

modity flow to measure the network performance in their practical inland waterway network

and inland port and provided a resilience optimization method. Como et al. [48, 49] studied

the robustness of dynamical flow networks by evaluating the network’s weak and strong resil-

ience and showed that the weak resilience of the network is equal to the min-cut capacity and

is independent of the local information constraint and the initial flow, while the strong resil-

ience is equal to the minimum node residual capacity and is sensitive to local information con-

straint. As a consequence, we choose maximum flow as the system performance metric and

discuss the maximum flow-based resilience throughout the paper.

Using the above measures of resilience, pioneers analyzed several systems based on real data

and simulated data. However, only a few studies considered how the resilience of components

affects that of the system. Reed et al. [33] found that the resilience of an n–system infrastructure

is a function of the resilience of the individual subsystem—i.e., RS ¼ gðR1;R2; . . . ;RnÞ—but

the specific formula was not discussed. Filippini and Silva [50] built a functional relationship
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between components and system resilience. Their resilience is defined as the number of active

nodes in the system, so the system resilience can be calculated by adding all the states (defined

as a binary variable) of components together. However, Filippini and Silva’s functional rela-

tionship is not applicable to maximum flow-based resilience because the relationship between

the maximum flow of the system and the capacity of components is quite different. In addition,

Diao et al. [51] designed a global resilience analysis (GRA) framework to assess the whole-

system resilience of engineering systems. By identifying the failure modes of the system, deter-

mining an appropriate number of failure scenarios, simulating failure mode strains under

increasing stress magnitude, the system resilience is calculated. The number of failure scenarios

is determined by considering different number of components disrupted by random and target

scenarios. This paper provides us a system thinking of measuring the whole system resilience.

To date, we are aware of no study that has put forth an analytic model of system resilience

based on the component performance and the system structure, and our paper is among the

first to discuss this problem. Based on the maximum flow, two general and practical analytic

resilience models for series and parallel systems are derived and are applicable to systems of

any size. According to the same process to calculate the resilience of series and parallel systems,

a simulation method based on Monte Carlo is proposed to help stakeholders identify how the

damage of different components affects the resilience of the networked system, compare the

system resilience for different topological structures and capacity redundancy, and determine

the component whose capacity increase will improve system resilience.

Methodology

Problem description

In our paper, resilience is defined as the ability of systems to withstand disruptions and recover

quickly, and Zobel’s resilience measure is used to discuss systems with series, parallel and net-

worked structures as illustrated in Fig 1. Disruptions can occur on any components of the sys-

tem. Once the component is disrupted, its performance may decline, and such loss may even

propagate to the system. The systems with different structures may behave differently under

the same disruption scenario because the capacity redundancy of systems with different struc-

tures varies.

One can find that the component performance contributes to the system differently for dif-

ferent types of performance. For example, the maximum flow of a series system is determined

Fig 1. The block “diagram” of different system structures. (a) series, (b) parallel and (c) networked systems.

https://doi.org/10.1371/journal.pone.0177668.g001
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by the minimum capacity of all its components, its transmission delay is computed by adding

all the delays on the components, and its error rate is calculated by multiplying all the error

rates of components together. According to the above literature review for performance met-

rics, maximum flow is chosen as the key performance index in our study. As one of the most

representative performance metrics of a system, maximum flow mainly depends on the com-

ponent capacity and the system structure.

As is well known, the disruption the system suffers, the performance degradation and the

recovery time are typical random behaviors. To discuss how component resilience affects the

system, the following assumptions are considered in our paper:

1. disruption: only one disruption can occur at a time, each disruption affects only one com-

ponent of the system, and the probability that the disruption occurs on the ith component

is qi;

2. performance degradation: the capacity degradation of components follows a discrete distri-

bution (for component i with initial capacity Ci, the possible values to which its capacity can

be degraded are Ci,1, Ci,2, . . ., Ci, mi
, and the probability of each value is pi;k ¼ PfC�i ¼ Ci;kg,

where C�i is its capacity after the performance degradation);

3. recovery: the recovery time of components follows a lognormal distribution (for compo-

nent i, the recovery time ti � lnNðmi; s2
i Þ).

Note that Assumption 1 is the most general assumption used in the previous analysis of sys-

tem reliability [52–54] to simplify the problem. In their work, failures among components are

independent, and no common failure cause exists. Systems that may suffer common cause dis-

ruptions will be discussed in our future work. Assumption 2 uses discrete distributions for

component capacity degradation because the capacity of components in the stochastic flow

network is usually supposed to follow a discrete distribution [55, 56]. The recovery time of a

component depends not only on the severity of the disruption but also on its supportability,

which determines the time that the work force, equipment, spares, etc. are ready for use. In

most situations, the time consumed by waiting for such resources is much longer than the

time used by the repair process itself. Zobel [35] also noted that whether the resources can be

quickly accessed largely affects the recovery time of the system. Thus, in our paper, the recov-

ery time of a component is assumed to be independent of the severity of the disruption. This

assumption is widely used in resilience analysis. For example, Ouyang et al. [57] assumed that

the variables that constitute restoration time satisfy a uniform distribution and an exponential

distribution when analyzing the resilience of infrastructure with their multi-stage framework;

Barker et al. [58] and Baroud et al. [46] considered that the recovery time of arcs follows a uni-

form distribution in a given interval in their study on resilience-based component importance

measures. Moreover, a lognormal distribution is the most widely used distribution for system

repair time [59–61], and according to the analysis in [62, 63], the incident duration (including

incident detection and recovery time) of traffic systems also follows a lognormal distribution.

Consequently, we choose a lognormal distribution to describe the recovery time in Assump-

tion 3.

Zobel’s resilience measure

As mentioned above, the “Resilience Triangle” is the most commonly used measure, and

Zobel [35] defined the predicted resilience of a system against future disruptions. Because sys-

tem performance after disruption cannot be obtained during the system design, Zobel

assumed that the system recovers at a constant rate, and two parameters, the initial normalized
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performance loss X and the subsequent recovery time T, are used to determine the linear

recovery process. As shown in Fig 2, a disruption occurs at time t0, and the predicted resilience

of the system is determined by subtracting the area of the triangle from the larger rectangular

area and then representing the result as a percentage of that larger area, i.e.,

RðX;TÞ ¼
T� � XT=2

T�
¼ 1 �

XT
2T�

; ð1Þ

where T� is a strict upper bound on the set of possible values for T. One can see that the area of

the triangle is the amount of time-varying loss suffered by the system after a particular disrup-

tion, and the resilience is the average performance of the system after the disruption in a T�

time interval.

In our problem, by dividing the current capacity of the component/maximum flow of the

system by the initial one, the two parameters can be normalized. The capacity-based resilience

of component i can be calculated as

Ri ¼ 1 �

1 �
C�i
Ci

� �

ti

2T�
¼ 1 �

Ci � C�i
� �

ti
2CiT�

:
ð2Þ

According to the assumptions in our problem description, the capacity degradation of com-

ponents follows discrete distributions, and their recovery time follows a lognormal distribu-

tion. Hence, the expected capacity-based resilience of component i can be computed as

EðRiÞ ¼ 1 �

1 �

Xmi

k¼1

ðpi;kCi;kÞ

Ci

2

6
6
6
4

3

7
7
7
5
e

miþ
1

2
s2

i

2T�
¼ 1 �

Ci �
Xmi

k¼1

ðpi;kCi;kÞ

" #

e
miþ

1

2
s2

i

2CiT�
;

ð3Þ

where E[�] is the expected value.

Fig 2. Predicted resilience triangle.

https://doi.org/10.1371/journal.pone.0177668.g002
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Resilience model for series systems

As shown in Fig 1(a), for a system with a series connection, the maximum flow equals the min-

imum capacity of all its components. The initial maximum flow CS of the system is determined

by the capacity of components as CS ¼ min
i¼1;2;...;n

fCig. When a disruption occurs on component

j, its capacity drops to C�j after the disruption, and the corresponding maximum flow of the

system can be calculated as min
i6¼j
fCi;C�j g. For series systems, the degradation of component

capacity does not always disrupt the system maximum flow, which reflects that the system can

withstand such disruption. The system maximum flow degrades only when the capacity of any

component declines to a value below the initial system maximum flow CS. Once the system

maximum flow degrades, it will recover to the normal level as long as the capacity of the

degraded component recovers to CS. Using the similar triangle principle as illustrated in Fig 3,

the recovery time of the series system caused by the disruption on component j (from the time

the disruption occurs to the time the maximum flow of the system recovers) can be calculated

as

tS;j ¼
CS � C�j
Cj � C�j

tj; ðC
�

j < CSÞ; ð4Þ

where tj is the recovery time of disrupted component j. The resilience of the series system

under the degradation of component j can be computed as

RS;j ¼ 1 �

1 �
C�j
CS

� �

tS;j

2T�
¼ 1 �

CS � C�j
� �2

tj

2CS Cj � C�j
� �

T�
; ðC�j < CSÞ: ð5Þ

Fig 3. The recovery time calculation for series systems based on the similar triangle principle.

https://doi.org/10.1371/journal.pone.0177668.g003
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In a series system with n components, given the disruption probability of the ith component

as qi, we can obtain the expected maximum flow-based system resilience as

EðRSÞ ¼
Xn

i¼1

qiEðRS;iÞ ¼ 1�

Xn

i¼1

qi
X

if Ci;h<CS

pi;h
ðCS � Ci;hÞ

2

Ci � Ci;h

 !2

4

3

5e
miþ

1

2
s2

i

2CST�
:

ð6Þ

Resilience model for parallel systems

See Fig 1(b), for a system with parallel connection, the maximum flow equals the sum of the

capacities of all its components. The initial maximum flow CP of the system can be calculated

as CP ¼
Pn

i¼1

Ci. When a disruption occurs on component j and its capacity declines to C�j , the

corresponding maximum flow of the system can be computed by C�j þ
P

i6¼j
Ci. For parallel sys-

tems, capacity degradation on any component will lead to a loss of system maximum flow, and

only when the degraded component restores fully will the performance of the system recover

to its initial level. Because the recovery time of the system equals that of the disrupted compo-

nent, the resilience of the parallel system under the degradation of component j can be calcu-

lated as

RP;j ¼ 1 �

1 �

C�j þ
X

i6¼j

Ci

CP

0

B
B
@

1

C
C
Atj

2T�
¼ 1 �

ðCj � C�j Þtj
2CPT�

:

ð7Þ

Similarly, in a parallel system with n components, given the disruption probability of the ith

component as qi, we can obtain the expected maximum flow-based system resilience as

EðRPÞ ¼
Xn

i¼1

qiEðRP;iÞ ¼ 1�

Xn

i¼1

qi Ci �
Xmi

k¼1

pi;kCi;k

 !

e
miþ

1

2
s2

i

2CPT�
:

ð8Þ

Resilience analysis for networked systems

The above two subsections provide analytic maximum flow-based resilience models for series

and parallel systems. However, networked systems as shown in Fig 1(c) are more common in

practice. Here, the maximum flow of the network is calculated using the algorithm derived

from Edmonds and Karp [64]. Both nodes and links are the components of the system. To

simplify the problem, we consider only the capacity and disruption of links in this paper. For

nodes that may also suffer disruptions, they can be converted to links. It is not easy to obtain

the analytic resilience model for networked systems because no explicit function exists

between component capacity and network maximum flow. Hence, we use Monte Carlo simu-

lation to explore the network resilience and illustrate how the damage of different components

affects the resilience of the networked system. The steps of the simulation are as follows.

Maximum flow-based resilience analysis: From component to system
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1. Calculate the initial maximum flow from source to terminal, CN.

2. According to the disruption probability of each component qi, use the Monte Carlo-based

sampling method to determine the component j that suffers a disruption.

3. Obtain the remaining capacity C�j after the disruption and recovery time tj for component j
by randomly sampling according to their corresponding distributions.

4. Apply Zobel’s resilience measure to calculate the capacity-based resilience of component j
as Eq (2).

5. Calculate the system maximum flow after the disruption, i.e., CNj.

6. Determine whether all degraded levels of component Chj will cause the degradation of the

system maximum flow. If yes, TN, j = tj; if not, find the lowest capacity that component j
needs to support the initial maximum flow of the system, denoted as Chj , where h is the

capacity level number in the discrete distribution of component j. Calculate the recovery

time of the system based on that of component j using the similar triangle principle, i.e.,

TN ;j ¼
Chj � C

�
j

Cj� C�j
tj.

7. Compute the maximum flow-based system resilience under the kth disruption as

RN ;k ¼ 1 �
ðCN � CNj ÞTN ;j

2CNT� .

8. To consider the randomness of the disruption, capacity degradation and recovery time,

repeat Step 2 to Step 7 for a chosen number of iterations, M.

9. Finally, calculate the empirical system resilience using the above system resilience values

under different disruptions as RN ¼
PM

k¼1
RN ;k

M .

According to the simulation results, we can analyze the simulation error. It is well known

that the arithmetic average of the samples obtained by Monte Carlo simulation from one pop-

ulation follows a normal distribution with mean μ and variance s2

N for large sample size N.

Given the two-sided confidence level as (1 − α) (eg., 1 − α = 95%), the simulation deviation

can be calculated as

ε ¼
za=2S
ffiffiffiffi
N
p ; ð9Þ

where zα/2 is the 100 1 � a

2

� �
th percentile of the standard normal distribution, and S is the stan-

dard deviation (sd) of all system resilience values. According to our simulation method, the

computation time complexity can be calculated as O(max − flow) + N × (O(rand(e)) + O(sort
(e)) + 2 ×O(rand)+O(max − flow)), where O(max − flow),O(rand) and O(sort) are the time

complexities of the maximum flow algorithm, the random number generator and the sorting

algorithm, respectively; N is the number of simulation iterations; and e is the number of edges.

The Edmonds and Karp algorithm, Mersenne twister algorithm and quick sort algorithm are

used as the maximum flow algorithm, the random number generator and the sorting algo-

rithm in our paper, and their time complexities are O(n × e2), O(e) and O(e2), respectively,

where n is the number of nodes. Thus, the computation time complexity of our simulation

method can be calculated as O(N × (n × e2)), which is a P-hard problem that can be used for

large-scale networks.
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Results and discussion

Series and parallel systems

Illustrated example. To illustrate and verify the analytic resilience models, two systems

with 4 components are used as examples. The series and parallel networks have widespread

applications in daily life. For example, the end-to-end data transmission on a network with a

virtual link is a typical series connection, and a two-layered supply chain network with multi-

ple suppliers and one manufacturer can be considered as a parallel network. The parameter

data of components are shown in Table 1, where the capacity degradation and the recovery

time of components follow a discrete distribution and a lognormal distribution, respectively.

The strict upper bound of the recovery time T� is 20 time units.

Analytic analysis and simulation verification. Using our analytic resilience models, the

expected maximum flow-based system resilience is calculated as column 2 in Table 2. To verify

the two analytic models, Monte Carlo simulation is used again. After 105 simulation iterations,

the empirical maximum flow-based system resilience is computed in column 3. With the sim-

ulation results, the simulation error can be calculated using Eq (9), and the results are illus-

trated in column 4.

Table 1. The parameter data of the case.

Component Initial capacity Disruption probability Remaining capacity Probability Recovery time

Com1 4 0.4 0* 0.1 t1 * lnN(0.3, 0.52)

1 0.2

2 0.3

3 0.4

Com2 5 0.3 0 0.1 t2 * lnN(0.8, 0.52)

2 0.15

3 0.25

4 0.5

Com3 7 0.2 1 0.15 t3 * lnN(1.2, 0.52)

2 0.1

4 0.3

5 0.25

6 0.2

Com4 10 0.1 2 0.1 t4 * lnN(1.5, 0.52)

3 0.15

5 0.25

6 0.2

8 0.3

* Pr{the remaining capacity of Com1 is 0} = 0.1.

https://doi.org/10.1371/journal.pone.0177668.t001

Table 2. Comparison of system resilience results using analytic and simulation methods.

Structure Analytic result

(EðRÞ)
Simulation result

(R)

Simulation error

(ε)
Absolute error

(jEðRÞ � Rj)

Series system 0.987641 0.987625 1.02 × 10−4 1.60 × 10−5

Parallel system 0.993037 0.993048 5.57 × 10−5 1.10 × 10−5

https://doi.org/10.1371/journal.pone.0177668.t002
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According to Eq (3), the resilience of the components is determined by the performance

degradation (X), the recovery time (T), and the upper bound of the recovery time (T�). In our

case study, T� = 20, the expected values of the recovery time for Com1-Com4 are 1.5296,

2.5219, 3.7622 and 5.0784, and the expected resilience values for the four components are

0.9809, 0.9754, 0.9597 and 0.9429, respectively. The differences among components are small

because the large T� makes the resilience results very high. Similarly, although the difference

between the resilience of the series and parallel system is not large, the average system perfor-

mance in the early disruption and the whole performance recovery process are quite different.

The absolute errors between the analytic and simulation methods are illustrated in column

5 of Table 2, which are obviously less than the expected simulation errors. Using back-to-back

verification, the results indicate the correctness of both our analytic resilience models for

series/parallel systems and the simulation method based on Monte Carlo. Moreover, the

sequence of the components in the series and parallel networks does not affect our resilience

calculation results. With the same components suffered the same disruptions, the system resil-

ience is the same (see our analytic resilience models in Eqs (5)–(8)).

Resilience analysis and discussion. (1) Resilience analysis under different structures

From Table 2, one can see the effects of the same component performance degradation on

different system structures. The empirical resilience probability distribution functions (pdfs)

of the series and parallel systems under each component’s degradation are represented in

Fig 4. When Com1 suffers a disruption, the maximum flow of both systems will decline, and

the recovery time equals that of Com1 because any capacity degradation on Com1 will cause

the maximum flow of the two systems to drop. The same capacity decrease on Com1 will cause

greater performance degradation for the series system because the capacity of Com1 equals the

maximum flow of the series system, while it provides only a part of flow for the parallel system.

Hence, the mean resilience of the parallel system under disruptions on Com1 is larger than

that of the series system, as shown in Fig 4(a). When a disruption occurs at Com2, Com3 or

Com4, the capacity degradation on such components may not affect the maximum flow of the

series system, and once the maximum flow drops, the recovery time of the system will be

shorter than that of the component. This phenomenon occurs because these components are

not the bottlenecks of the system maximum flow and have some capacity redundancy. If the

component capacity drops and the system performance is not affected, the system has high

robustness to withstand such disruption. Conversely, such disruptions must cause a decrease

of the maximum flow on the parallel system, and the recovery time of the system equals that of

the component. Similarly, the capacity degradation of Com2 with the smaller initial capacity

will also result in a larger percentage of performance degradation for the series system. Conse-

quently, the mean resilience value of the parallel system under disruptions on Com2 is also

larger than that of the series system, as shown in Fig 4(b), although a case exists in which the

capacity degradation on Com2 does not cause maximum flow degradation for the series sys-

tem. Nevertheless, as shown in Fig 4(c) and 4(d), the mean resilience values of the series system

under disruptions on Com3 and Com4 are higher than the parallel ones. On the one hand, the

probability that the maximum flow of the system is not affected by the capacity degradation on

Com3 and Com4 is high for the series system. On the other hand, the percentage of perfor-

mance degradation of the parallel system caused by the capacity degradation on Com3 and

Com4 is higher than that in the series case because Com3 and Com4 with higher initial capacity

provide the most flow for the parallel system.

(2) Resilience analysis along with increasing number of components

For the two types of structures, consider that the number of components increases gradu-

ally (indeed, the number can be increased to infinity). In addition, all components are identi-

cal, i.e., each component shares the same initial capacity and disruption probability and
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follows the same capacity degradation distribution and recovery time distribution. The corre-

sponding parameters are provided in Table 3.

Using our analytic system resilience models, the expected maximum flow-based resilience

of series and parallel systems with increasing number of components can be calculated as in

Fig 5. One can see that the expected maximum flow-based resilience of parallel systems

increases with increasing number of components and that of series systems remains constant.

This occurs mainly because the maximum flow of the parallel system increases along with that

of the components, and the impact of the capacity degradation of one component decreases

with increasing system maximum flow, eventually leading to increased expected system resil-

ience. However, for the series system, the increase of components will not cause the variation

of the system maximum flow, so the expected system resilience is constant. Note that with the

Fig 4. Comparison of empirical pdfs of resilience for series and parallel systems under capacity degradation of different components. (a)

Com1, (b) Com2, (c) Com3, and (d) Com4.

https://doi.org/10.1371/journal.pone.0177668.g004
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same components, the expected maximum flow-based resilience of the parallel system is

always larger than that of the series system because the former features higher capacity redun-

dancy in the face of a disruptive event.

Networked systems

Illustrated example. In our network case study, a road network of Seervada Park was

used as the illustrated example. The Seervada Park Problem was used by Hillier and Lieberman

Fig 5. System resilience curves with increasing components.

https://doi.org/10.1371/journal.pone.0177668.g005

Table 3. The parameter data of the case.

Initial capacity Remaining capacity Probability Recovery time

4 0* 0.1 t * lnN(0.3, 0.52)

0.8 0.2

2 0.3

3.2 0.4

* Pr{the remaining capacity of the component is 0} = 0.1.

https://doi.org/10.1371/journal.pone.0177668.t003
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[65] as an example to discuss the shortest path, the minimum spanning tree and the maximum

flow problems in Operations Management. Henry and Ramirez-Marquez [37] then used this

problem to analyze the network resilience, in which Seervada Park was located in hilly terrain

where a river runs through it, and two disruptive events (a rock slide and a flood) can cause

damage on different road segments. In our paper, we used the road network topology and the

maximum daily capacity of each road segment provided by Henry and Ramirez-Marquez [37]

and assumed the parameters of the disruption, the capacity degradation and the recovery time

of components. The road network has 12 links as shown in Fig 6, and the link labels represent

their index number and capacity. The quantitative approach is also applicable to any other net-

worked system that is similar to the road network used here.

As previously discussed, the resilience of a system is computed with the restoration process

of performance. To compute the resilience of the road network, we use the same disruptive

events provided in [37] and assume a new one as follows:

Disruption 1: a river that runs through the entrance of the road network floods; as a result,

one of the road segments, Com1-Com5, will be destroyed;

Disruption 2: a rockslide occurs in the center of the road network, which will result in the

destruction of one of the road segments, Com6-Com9;

Disruption 3: snow covers the end of the road network, which will lead to the traffic control

of one of the road segments, Com10-Com12.

Here, the disruption probability of road segments can be seen in column 3 of Table 4, and

their capacity degradation follows discrete distributions as shown in columns 4–5. Because the

segments under the same type of disruption use the same resource for restoration, three log-

normal distributions are used to reflect different restoration rapidities under different disrup-

tions as illustrated in column 6. In most instances, flooding takes the most time to restore, the

rockslide requires the second most time, and snow cover recovers most quickly. In addition,

we consider T� = 10 time units as the strict upper bound of the recovery time. In this case, only

three types of disruptions are considered. Nevertheless, the resilience analysis method for net-

works in the section of Methodology is a general one, and it can be used to analyze the network

resilience under different types of disruptions given the corresponding disruption probability,

capacity degradation distribution and recovery time distribution.

Resilience analysis and discussion. Under normal conditions, the network can handle a

maximum flow of 14 units. The disruptive event leads to capacity degradation on component

i, which may cause degradation of the system maximum flow. Using our Monte Carlo-

Fig 6. Illustrative road network example.

https://doi.org/10.1371/journal.pone.0177668.g006
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Table 4. The parameter data of the case.

Component Disruptive event Disruption probability Remaining capacity Probability Recovery time

Com1 Disruption 1 0.15 0* 0.2 t1−5 * lnN(1.5, 12)

1 0.3

2.5 0.5

Com2 0.1 0 0.2

1.4 0.3

3.5 0.5

Com3 0.15 0 0.2

0.8 0.3

2 0.5

Com4 0.05 0 0.2

0.2 0.3

0.5 0.5

Com5 0.05 0 0.2

0.4 0.3

1 0.5

Com6 Disruption 2 0.1 0 0.1 t6−9 * lnN(1, 0.52)

0.6 0.2

1.5 0.4

1.8 0.1

2.4 0.2

Com7 0.05 0 0.1

0.8 0.2

2 0.4

2.4 0.1

3.2 0.2

Com8 0.05 0 0.1

1 0.2

2.5 0.4

3 0.1

4 0.2

Com9 0.1 0 0.1

0.8 0.2

2 0.4

2.4 0.1

3.2 0.2

Com10 Disruption 3 0.05 4.5 0.5 t10−12 * LN(0.5, 0.32)

5.4 0.3

7.2 0.2

Com11 0.1 0.5 0.5

0.6 0.3

0.8 0.2

Com12 0.05 3 0.5

3.6 0.3

4.8 0.2

* Pr{the remaining capacity of Com1 is 0} = 0.2.

https://doi.org/10.1371/journal.pone.0177668.t004
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based simulation method, the empirical resilience of the networked system can be obtained as

RS ¼ 0:9781 after 105 iterations. The pdf of the resilience is illustrated in Fig 7. One can see

that the probability that the maximum flow-based resilience is greater than 0.975 is over 60%.

This shows that the network resilience is very high under most disruptions, and it also has

some probability to be small under certain disruptions.

Meanwhile, Fig 8 illustrates the cumulative probability distributions (cdfs) of network resil-

ience under disruptions of different components. In Fig 8, only the system resilience caused by

disruptions on Com2 may be less than 0.85, and it also has the widest bound. In other words, a

disruption that occurs on Com2 has the most adverse effect on the maximum flow-based resil-

ience of the road network. In contrast, the network resilience based on all other components is

greater than 0.85. Note that for Com4 and Com5, their capacity degradation has no effect on

the entire network; i.e., the system maximum flow will not degrade even if the capacity of the

two components drops to 0, so there are no corresponding curves for the two components

shown in Fig 8. The effect of different components on the network may also change along

with the target system resilience. For example, the curve for Com12 is below that of Com7 if

Fig 7. Pdf of maximum flow-based network resilience.

https://doi.org/10.1371/journal.pone.0177668.g007
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R < 0:97 (i.e., the network is more resilient if the capacity degradation occurs on Com7),

while this behavior changes if R > 0:97, and the network becomes more resilient if the capac-

ity degradation occurs on Com12.

The degradation levels of the network maximum flow caused by different capacity reduc-

tions in each component are plotted in Fig 9. It can be seen that Com11 incurs the smallest

mean performance degradation of the network, i.e., the system can withstand most disruptions

on Com11. Consequently, when a disruption occurs on Com11, the network has the thinnest

resilience bound, as shown in Fig 8. Moreover, taking Com2 and Com10 as examples, the deg-

radation levels of system performance caused by Com10 are larger than that of Com2; however,

the network is more resilient under the disruption of Com10 in Fig 8. This occurs mainly

because of the different system recovery times of the two. Fig 10 depicts the pdfs of system

recovery time when the capacity degradation occurs on Com2 and Com10. The comparison

illustrates that the maximum recovery time is 9.9998 time units for Com2 and 5.7755 time

units for Com10. Meanwhile, the mean recovery time of the latter is 1.7262 time units, which

is much smaller than the former one of 3.9449 time units, so the latter can have a higher

Fig 8. Cdfs of the network resilience due to disruptions on different components.

https://doi.org/10.1371/journal.pone.0177668.g008
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probability to recover in a shorter time interval. In this paper, we assume that only one disrup-

tion can occur at a time, and the possible combinations of disruptions will be studied in our

future work. In this case, if multiple disruptive events occur simultaneously, more than one

road segments’ capacity may be degraded, possibly causing greater maximum flow degrada-

tion and longer system recovery time.

It is obvious that the network resilience differs for different topologies. In our case study,

we use two more topologies for comparison with the original topology in Fig 6 (Topology1),

and the two topologies (Topology2 and Topology3) are illustrated in Fig 11. Here, the two

topologies can handle a maximum flow of 13 and 11 units under normal operation, respec-

tively. Hence, with the same links and nodes, the three topologies have different capacity

redundancy, where Topology1 has the minimum redundancy, Topology3 has the maximum

redundancy, and Topology2 is between the two. Here, the capacity redundancy is considered

as the ratio of the total spare capacity to the total working capacity [66].

Fig 9. Network performance degradation levels of each component expressed in cdfs.

https://doi.org/10.1371/journal.pone.0177668.g009
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The pdfs of network resilience for Topology2 and Topology3 are shown in Fig 12. Compar-

ing the resilience distributions for the three topologies, one can see that the topology with

higher capacity redundancy has higher empirical resilience, i.e., RT3
> RT2

> RT1
. This phe-

nomenon occurs because the probability to migrate the network flow on the component under

disruption to other redundant ones is larger in the network with higher redundancy, so such

capacity degradation on components has no effect on the network maximum flow. In this

case, one can see that the network topology affects the system resilience. Nowadays, it’s really

an essential and challenge issue to answer how to cope with those unidentified threats, and

non-stationarity or evolving hazards. When these threats and hazards are identified, it is useful

to apply our resilience measurement framework to compare and select better structure/topol-

ogy and recovery strategy for the system.

However, not all systems with more capacity redundancy are more resilient. To discuss

how capacity redundancy affects the system resilience, the capacities of Com1, Com8, Com9

and Com10 in the Seervada Park Problem are increased as examples, as these capacity increases

will not change the maximum flow of the network. As shown in Fig 13, the network resilience

increases with increasing capacity redundancy on Com8 or Com9, while it remains constant if

Fig 10. Time to full recovery in histogram (approximate pdf) form under the capacity degradation of (a) Com2 and (b) Com10.

https://doi.org/10.1371/journal.pone.0177668.g010

Fig 11. Two more topologies of the road network. (a) Topology2 and (b) Topology3.

https://doi.org/10.1371/journal.pone.0177668.g011
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the capacity redundancy is located at Com1 or Com10. This phenomenon occurs because the

capacity degradation of components follows discrete distributions. For degraded Com8 and

Com9, once their capacities are recovered to 3 and 3.2, respectively, the maximum flow of the

network will be fully recovered. The capacity increases on these two components will decrease

the recovery time of the network. The greater the capacity redundancy the two components

has, the faster the system can recover, so the network resilience increases with increasing

capacity redundancy on Com8 and Com9. For Com1 and Com10, there is no level of capacity

degradation that can support the initial network maximum flow. If we increase the capacity of

Com1 or Com10, the maximum flow of the network will still not be recovered until the compo-

nent is fully restored, i.e., the network recovery time will not change along with the capacity

redundancy on Com1 or Com10, so the network resilience remains constant.

In summary, not all capacity redundancy can improve the system resilience, and even if the

system resilience is improved, the effectiveness is different. Thus, it is important to choose the

proper location for increased redundancy.

Conclusion

This paper focuses on modeling maximum flow-based system resilience according to the resil-

ience of components, which was always neglected in previous engineering research. This type

of model can be used not only to evaluate the system resilience but also to help system struc-

ture decision making.

For this purpose, this paper proposes two new component-based system resilience models

for series and parallel systems, in which the maximum flow is used as the key performance

index (KPI). Using the models, the expected system resilience can be calculated for series and

parallel systems, and a Monte Carlo-based simulation is also provided to verify the correctness

and effectiveness of our models and analyze the resilience of a more complex system with a

network structure. In fact, the methods we used to calculate the system resilience are almost

the same for series and parallel systems and real networks. The only difference is that the maxi-

mum flow of series and parallel systems can be calculated easily, while no explicit function

Fig 12. Pdfs of maximum flow-based network resilience for the two topologies. (a) Topology2 and (b) Topology3.

https://doi.org/10.1371/journal.pone.0177668.g012
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exists for networks. Thus, we build theoretical maximum flow-based system resilience models

for series and parallel systems and use Monte Carlo-based simulation to explore the network

resilience. The resilience of a real network cannot be inferred by comparison with either a

series or parallel system, but in our future work, we will use the Monte Carlo-based simulation

method proposed in this paper to study how the network resilience changes along with the

topology, the scale, the degree, the distance, etc. In addition, the system resilience result is

strongly correlated with the distributions of component recovery time, which determines the

recovery time of the system. In our paper, we use only the most widely used distribution—i.e.,

a lognormal distribution—to describe the component recovery time. If the recovery time of

components follows other types of distributions, the method proposed in our paper can be eas-

ily extended. For series and parallel systems, we only need to modify the expectation expres-

sion of component recovery time in the analytic system resilience models. For the networked

system, we only need to change the distribution of the component recovery time in the simula-

tion method. In our paper, the maximum flow of the system is determined by both the capacity

of components and the performance relationship between the system and components: (1) for

Fig 13. Comparison of network resilience with the increase of capacity redundancy on different components.

https://doi.org/10.1371/journal.pone.0177668.g013
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a series system, the maximum flow of the system is determined by the minimum capacity of its

components, i.e., CS ¼ min
i¼1;2;...;n

fCig; (2) for a parallel system, the system’s maximum flow is

formed by adding all capacities of its components, i.e., CP ¼
Xn

i¼1

Ci; and (3) for a networked

system, the maximum flow of the system is defined as the amount of flow passing from the

source to the sink, and the algorithm provided by Edmonds and Karp [64] is used to calculated

the system maximum flow according to the network topology and the capacities of compo-

nents. The analytic resilience models for series and parallel systems and the simulation method

for networked systems are derived and designed based on the performance combination of the

system mentioned above, i.e., how the performance of the components contributes to that of

the system. Thus, although we consider only the maximum flow as our system performance

metric in this paper, both the system resilience models and simulation method can also be

used for systems with the same type of performance relationship between components and sys-

tem. For example, the equivalent spring constant for a parallel spring is determined by the

spring constant of its component—i.e., KP ¼
Xn

i¼1

ðKiÞ—and the equivalent spring constant-

based resilience can be calculated using our maximum flow-based resilience model for the par-

allel system; the total resistance of resistors connected in series is the sum of their individual

resistance values—i.e., RS ¼
Xn

i¼1

ðRiÞ—and the total resistance can also be calculated using our

resilience model for the parallel system, although the resistors are laid out in a series structure.

Finally, according to the calculated results of series and parallel systems based on resilience

models and the simulation results of the networked system, three general conclusions are

derived: (1) two analytic maximum flow-based resilience models for series and parallel systems

are derived, and the resilience of the system with the corresponding performance structures

can be calculated directly by using the two analytic models given the distributions of perfor-

mance degradation and recovery time for components; (2) for systems with identical compo-

nents, the resilience of the parallel system increases with increasing number of components,

while it remains constant in the series system; and (3) a system with redundant performance is

usually more resilient than one without redundant performance. However, not all redundant

capacities of components can improve the system resilience, the effectiveness of the capacity

redundancy depends on where the redundant capacity is located.

In this work, the analytic resilience models provided by us do not consider the relation-

ship between the recovery time and the severity of the disruption. However, in some situa-

tions, the recovery time depends on the severity of the disruption; further research can be

performed to study this problem. In addition, given all the probabilities that a component’s

failure will trigger the failure of successive components and the corresponding distributions

of capacity degradations and recovery time, the Monte Carlo simulation method proposed in

our paper can still be used to calculate the maximum flow degradation caused by the cascad-

ing failures and the recovery time of the network under each iteration, and then the system

resilience can be estimated. Therefore, our research method is extendable to systems with

cascading failures. These topics could be valuable avenues to explore in future extensions of

this study.
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27. Nan C, Sansivini G, Kröger W. Building an Integrated Metric for Quantifying the Resilience of Interde-

pendent Infrastructure Systems. In: International Conference on Critical Information Infrastructures

Security. Springer; 2014. p.159–171.

28. Disaster resilience: A national imperative. Wshington, DC: National Academies Press; 2012.

29. Presidential Policy Directive 21: Critical Infrastructure Security and Resilience. White House; 2013.

30. Proag V. The concept of vulnerability and resilience. Procedia Economics and Finance. 2014; 18:

369–376. https://doi.org/10.1016/S2212-5671(14)00952-6

31. Hosseini S, Barker K, Ramirez-Marquez JE. A review of definitions and measures of system resilience.

Reliability Engineering & System Safety. 2016; 145:47–61. https://doi.org/10.1016/j.ress.2015.08.006

32. Bruneau M, Chang SE, Eguchi RT, Lee GC, O’Rourke TD, Reinhorn AM, et al. A framework to quantita-

tively assess and enhance the seismic resilience of communities. Earthquake spectra. 2003; 19(4):

733–752. https://doi.org/10.1193/1.1623497

33. Reed DA, Kapur KC, Christie RD. Methodology for assessing the resilience of networked infrastructure.

IEEE Systems Journal. 2009; 3(2):174–180. https://doi.org/10.1109/JSYST.2009.2017396

34. Cimellaro GP, Reinhorn AM, Bruneau M. Framework for analytical quantification of disaster resilience.

Engineering Structures. 2010; 32(11):3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008

35. Zobel CW. Representing perceived tradeoffs in defining disaster resilience. Decision Support Systems.

2011; 50(2):394–403. https://doi.org/10.1016/j.dss.2010.10.001

36. Ouyang M, Dueñas-Osorio L. Time-dependent resilience assessment and improvement of urban infra-

structure systems. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2012; 22(3):033122.

https://doi.org/10.1063/1.4737204

37. Henry D, Ramirez-Marquez JE. Generic metrics and quantitative approaches for system resilience as a

function of time. Reliability Engineering & System Safety. 2012; 99:114–122. https://doi.org/10.1016/j.

ress.2011.09.002

38. Bruneau M, Reinhorn A. Exploring the concept of seismic resilience for acute care facilities. Earthquake

Spectra. 2007; 23(1):41–62. https://doi.org/10.1193/1.2431396

39. Murray-Tuite P, Mahmassani H. Methodology for determining vulnerable links in a transportation net-

work. Transportation Research Record: Journal of the Transportation Research Board. 2004;(1882):

88–96. https://doi.org/10.3141/1882-11

40. Morlok EK, Chang DJ. Measuring capacity flexibility of a transportation system. Transportation

Research Part A: Policy and Practice. 2004; 38(6):405–420.

Maximum flow-based resilience analysis: From component to system

PLOS ONE | https://doi.org/10.1371/journal.pone.0177668 May 17, 2017 24 / 26

https://doi.org/10.1209/0295-5075/103/68005
https://doi.org/10.1209/0295-5075/103/68005
https://doi.org/10.1016/j.procs.2014.03.103
https://doi.org/10.3390/en81012187
https://doi.org/10.1111/1365-2664.12649
https://doi.org/10.1038/nature16948
http://www.ncbi.nlm.nih.gov/pubmed/26887493
https://doi.org/10.1111/j.1539-6924.2009.01216.x
https://doi.org/10.1111/j.1539-6924.2009.01216.x
http://www.ncbi.nlm.nih.gov/pubmed/19335545
https://doi.org/10.1016/S2212-5671(14)00952-6
https://doi.org/10.1016/j.ress.2015.08.006
https://doi.org/10.1193/1.1623497
https://doi.org/10.1109/JSYST.2009.2017396
https://doi.org/10.1016/j.engstruct.2010.08.008
https://doi.org/10.1016/j.dss.2010.10.001
https://doi.org/10.1063/1.4737204
https://doi.org/10.1016/j.ress.2011.09.002
https://doi.org/10.1016/j.ress.2011.09.002
https://doi.org/10.1193/1.2431396
https://doi.org/10.3141/1882-11
https://doi.org/10.1371/journal.pone.0177668
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