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Abstract

We evaluated a neural network model for prediction of glucose in critically ill trauma and post-operative cardiothoracic
surgical patients. A prospective, feasibility trial evaluating a continuous glucose-monitoring device was performed. After
institutional review board approval, clinical data from all consenting surgical intensive care unit patients were converted to
an electronic format using novel software. This data was utilized to develop and train a neural network model for real-time
prediction of serum glucose concentration implementing a prediction horizon of 75 minutes. Glycemic data from 19
patients were used to ‘‘train’’ the neural network model. Subsequent real-time simulated testing was performed in 5
patients to whom the neural network model was naive. Performance of the model was evaluated by calculating the mean
absolute difference percent (MAD%), Clarke Error Grid Analysis, and calculation of the percent of hypoglycemic (#70 mg/
dL), normoglycemic (.70 and ,150 mg/dL), and hyperglycemic ($150 mg/dL) values accurately predicted by the model;
9,405 data points were analyzed. The models successfully predicted trends in glucose in the 5 test patients. Clark Error Grid
Analysis indicated that 100.0% of predictions were clinically acceptable with 87.3% and 12.7% of predicted values falling
within regions A and B of the error grid respectively. Overall model error (MAD%) was 9.0% with respect to actual
continuous glucose modeling data. Our model successfully predicted 96.7% and 53.6% of the normo- and hyperglycemic
values respectively. No hypoglycemic events occurred in these patients. Use of neural network models for real-time
prediction of glucose in the surgical intensive care unit setting offers healthcare providers potentially useful information
which could facilitate optimization of glycemic control, patient safety, and improved care. Similar models can be
implemented across a wider scale of biomedical variables to offer real-time optimization, training, and adaptation that
increase predictive accuracy and performance of therapies.
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Introduction

Severe traumatic injury represents a significant injury burden

for the human body. Previous research clearly associates

significant physiologic stress and acute hyperglycemic spikes, with

elevated glucose levels serving as a form of ‘‘physiologic

barometer’’ [1]. It is not surprising, therefore, that acute

hyperglycemia is present in 25% or more of severely injured

patients [2]. If hyperglycemia is sustained, indicating ongoing

metabolic stress and/or difficulty maintaining glycemic control,

mortality and morbidity are significantly increased [3–5]. If

admission glucose levels exceed 200 mg/dL in severely injured

patients, their expected survival may be reduced by as much as

50% [3]. Persistence of hyperglycemia during the first 2 days post-

trauma has been shown to further reduce survival [5] and

hyperglycemia during this early post-trauma period is associated

with a multitude of adverse outcomes [3]. Moreover, delayed

treatment of hyperglycemia does not appear to improve these

outcomes [2]. Aggressive therapy to maintain serum glucose levels

below 150 mg/dL is associated with improved outcomes [6]. In

fact, active glycemic management aimed at lowering glucose levels

after severe trauma has been associated with a reduction in

mortality, length of time on ventilators, incidence of infection, and

length of stays in the intensive care unit and hospital. Unfortu-

nately, this goal can be elusive in trauma patients that require

multiple critical care therapies [4]. In addition to maintaining

serum glucoses within the relatively narrow therapeutic window

described above, it is important to note that glycemic variability

also plays an important role as a predictor of survival in critically ill

surgical patients, with glycemic variability among non-survivors

being twice the variability of survivors [1].

Appropriate glycemic control (glucose ,180 mg/dL) in cardiac

surgical patients also correlates with reduced morbidity and

mortality [7–12]. Although the need for accurate glycemic

prediction is clear, especially when optimizing glycemic control
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in critically ill surgical patients, the area of predictive modeling

continues to receive little attention.

In this context, real-time continuous glucose monitoring

(rtCGM) represents an important element in the overall aggressive

approach to treatment of hyperglycemia. At a specified range of

time horizons, rtCGM facilitates the assessment of trends in

glycemic excursions over time. Utilization of rtCGM in critically ill

patients has only recently gained increasing attention as a topic of

active clinical research [13]. In a recent study, rtCGM utilized in

an intensive care setting did not appear to result in improved

outcomes [14]. However, rtCGM was noted to be especially useful

in the context of detection and treatment of hypoglycemia.

Importantly, rtCGM in the aforementioned investigation was

utilized as only a monitoring tool. We hypothesize that the

utilization of rtCGM in critical care patients combined with a

system capable of predicting hyper- and hypoglycemia may

enhance glycemic control, reduce glycemic variability, and

consequently result in improved patient outcomes [6,15–17].

The objective of this study was to evaluate the feasibility of

utilizing a neural network model (NNM) for glycemic predictions

across a broad range of critically ill surgical patients. The current

NNM was configured to forecast projected glucose concentration

75 minutes into the future. Our NNM was integrated with CGM

data and electronic medical records, reflecting real-time data

acquisition throughout each patient’s intensive care stay. We

hypothesized that a NNM configured to take into account diverse

factors would demonstrate enhanced performance in comparison

to previously developed and tested models.

Materials and Methods

Patient Recruitment and Enrollment Criteria
The study protocol was approved by the University of Toledo

Institutional Review Board. Informed consent was obtained from

all patients or their designated representative prior to enrollment.

The consent was written and was approved by the Ethics Sub-

committee of the Institutional Review Board. All consents had co-

signature of an investigator and were secured using a double-lock

system, i.e., all forms were locked in a secure cabinet that was

locked in a secure room. The study population of this prospective

feasibility trial consisted of patients admitted to the University of

Toledo Medical Center surgical intensive care unit (SICU).

Patients were recruited for study if they met the following criteria:

trauma or cardiothoracic surgical intervention, glucose $150 mg/

dL upon admission to the SICU, male or female aged $18 years.

Cardiothoracic surgical patients previously diagnosed with type

1 or type 2 diabetes mellitus automatically met inclusion criteria.

The only exclusion criterion was pregnancy. The trauma patients

in the study had no documented history of diabetes, and the

cardiac surgery patients all had documented type 2 diabetes. The

model was not controlled for these differences.

Data Acquisition and Collection
Upon study enrollment, a CGM device (Medtronic Diabetes,

CGMS IproH) was placed subcutaneously to record interstitial

glucose concentration measurements every five minutes during the

course of each patient’s SICU stay. The CGM devices were

calibrated (retrospectively prior to downloading CGM data) using

POC blood glucose values measured through each patient’s length

of stay in the SICU. The POC blood glucose meter used was an

Accu-Chek Advantage manufactured by Roche Diagnostics and

this glucose meter was used throughout the study.

Using a custom computer program developed for this investi-

gation, parameters in each patient’s paper-based medical records

were converted to an electronic format. This data included all

medical records collected at regular intervals during each patient’s

SICU stay. The main menu of the computer program (Electronic

Clinical Intensive Data Logger or eCIDL) is shown in Figure 1.

From the main menu, buttons link the user to interfaces where

medical records could be logged in a format suitable for use in

NNM. The electronic medical records were categorized under 15

distinct categories, all found in Figure 1. The model was ‘‘trained’’

using data from 14 trauma and post-operative cardiothoracic

surgical patients. Compared to our early models, the current

NNM is more complex [18]. Our NNM was integrated with CGM

data and electronic medical records, reflecting real-time data

acquisition throughout each patient’s intensive care stay.

From the 15 categories listed in Figure 1, a total of 131

instantaneous distinct electronic medical records could be

documented using the eCIDL software. This data was available

for use in subsequent NNM development. To determine which of

these medical records could be utilized as predictors of glucose

concentration, a genetic algorithm (GA) was implemented. GAs,

which are inspired by the principles of natural evolution, are useful

techniques that have been utilized to optimize generation of useful

solutions and to solve search related problems [19–21]. These

algorithms are problem-solving techniques that use the evaluation

of feedbacks (in computers) to improve performance. They belong

to a larger set of evolutionary algorithms that can generate answers

to problems of optimization using methods spurred by natural

evolution (inheritance, mutation, crossover and selection). For an

x-block of predictor data and y-block of data to be predicted, the key

variables from the x-block can be identified in order to minimize

the error in the y-block predictions. Here, through cross-validation

and regression to determine the root mean squared error of cross

validation, we obtained a subset of variables from the x-block are

utilized for prediction. For this investigation, the x-block included

the documented medical records, CGM device sensor current, and

CGM values categorized as glycemic states. The y-block was

defined as CGM data measured every five minutes.

Neural Network Model Design and Development
The neural network architecture included a three layer design

consisting of a single input layer, a hidden layer for processing and

an output layer; the NNM generated in this investigation was a

feed-forward mechanism. Figure 2 illustrates the NNM architec-

ture and three layer design, and also demonstrates the flow of the

data through the NNM, thereby decreasing computation time.

The NNM was developed using NeuroSolutionsH software

(Neurodimension, Gainesville, FL), and configured to predict

glucose using a prediction horizon of 75 minutes. POC glucose

readings in critical care patients with lack of tight glycemic control

are generally obtained every 1–2 hours. This prediction horizon

would provide insight into the time periods where POC glucose

monitoring gaps. Implementation of models with prediction

horizons .75 minutes may reduce accuracy and performance

[22]. Additionally, there exists a reported time lag between

interstitial and serum glucose concentration of 12.5 minutes [23],

and our model mitigates the effects of this time lag.

The NNM was trained via a backpropagation is demonstrated

in Figure 2. The error of the neural network predictions (mean

squared error between actual and predicted CGM data) optimizes

weights for minimization of error. The weight values that

correspond to the smallest error are thus the optimal solution

(set of NNM weights) for the particular NNM.

Glycemic Prediction in Critical Illness
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Integration of Neural Network Model for Real-Time
Prediction

The NNM functionality was integrated into a computer

application for real-time prediction of glucose. Combined

electronic medical records and CGM data from 5 of 19 patients

consisting of 603 data points (50.3 hours of data not utilized for

model training) were utilized for neural network model perfor-

mance analysis.

For this investigation model weights were kept constant and not

updated using the real-time application. To simulate real-time

glycemic prediction, the real-time software application was

configured such that every five minutes (sampling rate of the

CGM device utilized in the investigation), a new real-time vector

of variables from medical records and a CGM value was presented

to the NNM and real-time prediction cycle was repeated.

Performance Analysis of Real-Time Predictive Application
Model predictions were imported into MATLABH (The Math-

Works, Inc., Natick, MA) for performance analysis, which

included the generation of a Clarke Error Grid to determine the

clinical acceptability of the predictions, error calculation (mean

absolute difference percent [MAD%]) between actual and

predicted CGM values, and the percentage of normal, elevated,

and low glucose predicted. Hyperglycemia was defined as glucose

$150 mg/dL, hypoglycemia was defined as glucose #70 mg/dL,

and normoglycemia was defined as glucose .70 and ,150 mg/

dL.

Results

Data from 14 of 19 critical care patients that consisted of 19,989

input vectors (1,665.8 hours of data) was used for neural network

model development and training. Of these 14 patients, 8 patients

were trauma patients with average age of 49.5 years and average

length of stay in intensive care of 9 days. Six patients were

cardiothoracic surgical patients with average age of 75 years and

average length of stay of 4 days in intensive care. The

demographic characteristics of the enrolled patients used for

predictive model development are detailed in Table 1. Overall,

there was a higher proportion of male patients (M = 10, 71.4%)

than female. The overall patient population also exhibited a wide

age range with a mean age of 59.3 years (SD = 18.1), and a mean

BMI of 30.6 kg/m2 (SD = 4.7). As shown in Table 1, trauma and

Figure 1. The main menu of the developed Electronic Clinical Intensive Data-Logger (eCIDL). This main menu contains buttons that link
the user to various interfaces which contain text fields and drop-down menus to log all medical records present in the comprehensive intensive care
unit medical record. This software application was utilized to convert paper-based medical records into electronic records suitable for direct neural
network model utilization.
doi:10.1371/journal.pone.0069475.g001
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cardiothoracic patients differed in terms of age and BMI. Data

from the remaining 5 of 19 patients was used to test the accuracy

and clinical acceptability of the model. Of these 5 patients, 3

patients were trauma patients and 2 patients were cardiothoracic

surgical patients.

Through implementation of the genetic algorithm, the number

of model inputs was reduced by 69.4% to 40 inputs. Predictor

variables included, but were not limited to, time of day (converted

to a 24-hour scale), heart rate, respiratory rate, usage of

intravenous dextrose solutions, point of care (POC) blood glucose

measurements (and test times), units of insulin delivered, and

insulin delivery type (intravascular infusion or subcutaneous sliding

scale injections). Successful identification of predictor variables via

implementation of the genetic algorithm was verified through

literature review and search. For example, increased heart rate or

tachycardia has been correlated in the literature with increased

glucose concentration [24]. Furthermore, research has substanti-

ated that body temperature is an indicator of glucose concentra-

tion specifically the occurrence of hypoglycemia [25]. Other

factors/inputs such as dextrose solutions (D5, D5W, etc.) which

are infused in critical care patients contain dextrose (glucose)

which would correlate to an increase in glucose concentration.

Therefore the optimized input set determined via implementation

of the genetic algorithm coincides with literature review and

discussion with clinical investigators. A complete listing of all 40

inputs utilized for model development can be found in reference

[22].

The accuracy of current CGM technologies was also assessed

via utilization of CEGA to compare CGM performance to that of

blood glucose meters. Region A contains predicted values within

20% of the reference concentration and region B contains

predictions outside 20% that would not lead to inappropriate

treatment. Regions A and B therefore contain predicted values

which can be classified as ‘‘clinically acceptable.’’ Region C

contains points that lead to unnecessary treatments, and region D

contains points indicating a potentially dangerous failure to detect

hypoglycemia. Region E contains predicted values that confuse

treatment of hypoglycemia for hyperglycemia and vice versa. A

successful predictive model and system would thus need a majority

of predicted CGM to fall within regions A and B of the Clarke

Error Grid.

In order to ensure that the CGM device was providing accurate

measurements, the error of reported CGM values with respect to

POC blood glucose values was calculated. The error (MAD%) of

CGM (interstitial glucose) values with respect to POC blood

glucose values in the model training set was calculated as 10.2%

for 995 paired CGM and blood glucose values. For this

investigation, model predictions were compared against actual

CGM values reported by the CGM device.

Actual CGM and predicted CGM values generated by the real-

time application in the five patients not utilized for model training

are depicted in Figure 3 (this graph represents sample

predictions, not mean predictions, made across five patients not

used for model training. We used only random segments of data to

generate these predictions). Due to the large dataset of 9,405

predicted glucose values (derived from 15 CGM values recorded

every 5 minutes for 75 minutes predicted for every CGM value in

the test dataset) the data was re-sampled to demonstrate predictive

accuracy. Re-sampling was completed via plotting every 20th

Figure 2. Neural network model design. The feed-forward neural network design implemented for real-time prediction of glucose. Error (mean
squared error) is calculated between neural network output and desired response (actual continuous glucose monitoring values). This error is back
propagated to each layer in the neural network architecture and a gradient descent with momentum algorithm is implemented to determine optimal
weight values to minimize model error.
doi:10.1371/journal.pone.0069475.g002

Table 1. Patient Demographics.

N = 14 Trauma
Cardiothoracic
Surgery Overall

n 8 6 14

Male (%) 6 (75%) 4 (66.7%) 10 (71.4%)

Age (yr)* 47.7614.9 74.666.4 59.3618.1

BMI (kg/m2)* 33.163.6 27.764.2 30.664.7

This table includes the demographics of the patients enrolled in the study and
used for model development. The patients are divided into two groups based
on ICU admission type (trauma or cardiothoracic surgical intervention). Key
demographics include: percentage of male patients, age, and BMI.
*Values presented as Mean 6 SD.
doi:10.1371/journal.pone.0069475.t001
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predicted CGM value and corresponding actual glucose value in

the predictive dataset. In calculating overall error between actual

and predicted CGM values, the MAD% was calculated as 9.0%.

In this dataset, 96.7% of normal glucose values and 53.6% of

hyperglycemic values were predicted. No hypoglycemia occurred

in the patient data utilized for assessment of model performance.

Figure 4 contains Clarke Error Grid Analysis (CEGA) of real-

time predictions in five critical care patients. In this dataset, 9,405

predicted values were generated. CEGA demonstrated 100.0% of

predicted values were clinically acceptable with 87.3% and 12.7%

falling within regions A and B of the error grid respectively. CEGA

also indicated that 0.0% of predicted values were in regions C, D,

and E, which would have resulted in inappropriate and potentially

adverse therapy.

Real-time predictive accuracy of the model developed in this

investigation expressed by overall error (MAD%) of 9.0%, falls

within acceptable error limits as defined in previous reports [26].

Furthermore, 100.0% of predictions fell within regions A and B of

the Clarke Error Grid. The test data set consisted of 23.4%

hyperglycemic data and 76.6% normoglycemic data. No hypo-

glycemic data occurred in the 5 patient test dataset used for model

performance analysis. The model successfully predicted 96.7% of

normal glucose values and 53.6% of elevated glucose values.

Predictive accuracy demonstrated in our investigation suggests

that such models can provide useful information that can

potentially facilitate intelligent therapeutic guidance and clinical

decision support.

Discussion

Therapy of hyperglycemia in critically ill patients at the

University of Toledo Medical Center relied on POC blood

glucose measurements obtained every 1–2 hours. Insulin is

administered by continuous infusion or subcutaneous injection

based on glucose-driven protocols. Although sampling of glucose

concentrations via POC measurement provides a means to

glycemic control, hypoglycemia or hyperglycemia can occur

between glucose measurement and correction. Therefore, there

is a need to know or predict glucose concentration during these

time periods where healthcare providers are ‘‘blind’’ to the

glycemic excursions and trends.

This study demonstrates that real-time prediction of glucose

concentration in critical care patients is possible. In this patient

population, prediction of glucose using a horizon of 75 minutes

may provide information to prevent unacceptable glycemic

excursions. Prediction of high or low glucose levels would allow

caregivers to modify insulin infusion rates and, when applicable,

administer exogenous dextrose or glucose to avoid hypoglycemia,

thus further optimizing glycemic control.

Real-time predictive paradigms require data input systems with

high degree of accuracy. There are established methods to

Figure 3. Glycemic predictions generated by neural network model.
doi:10.1371/journal.pone.0069475.g003

Figure 4. Clarke Error Grid Predictions demonstrating 97.5%
clinically acceptable predictive values.
doi:10.1371/journal.pone.0069475.g004
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determine accuracy and quantify the degree of ‘‘clinical accept-

ability’’ of model predictions. It was previously reported that the

error of CGM devices with respect to ‘‘gold standard’’ serum

glucose values ranges from 14–21% [24]. An acceptable forecast-

ing model of CGM values should therefore be characterized by

similar or better predictive error rates. Another method of

analyzing the clinical acceptability of predictive models is through

Clarke Error Grid Analysis CEGA. CEGA was described in 1987

and was originally utilized to assess meter-based patient estimates

of blood glucose compared to those obtained using a ‘‘gold-

standard’’ reference glucose meter [27,28].

Although no hypoglycemic events occurred in the data from the

5 critical care patients used to test model performance, we

hypothesize the model may overestimate hypoglycemic extremes.

The initial model training set composition included 4.5%, 11.7%,

and 83.8% hypo-, hyper- and normoglycemic states respectively.

We speculate that the current model overestimates hypoglycemia

based on the lack of a significant quantity of hypoglycemic training

data. Model training set composition is highly associated with

model performance [29]. Our previous research demonstrated

that similar model training sets with reduced quantities of

hypoglycemic training data would lead to overestimation of

hypoglycemic extremes [30].

The models generated in this investigation also have a reduced

ability to predict hyperglycemia. In this investigation, 53.6% of

hyperglycemia was predicted successfully. This finding can also be

attributed to the percentage of hyperglycemic training data

(11.7%) in the comprehensive model training set. The model

performs with high accuracy in predicting normal glycemic values,

which correlates with the large quantity of normal training data

(83.8%). Further data acquisition is ongoing and will be a focus of

future research such that training sets with larger quantities of

hypoglycemic and hyperglycemic extremes are achieved.

Variations in glycemic patterns characterize the clinical course

of most patients in the critical care setting [31]. However,

prediction of glucose remains challenging. Hemodynamics,

medications, laboratory results, and nutritional intake are potential

modulators of future glucose concentration. A successful model for

prediction of glucose in the critically ill patient population would

need to consider and incorporate real-time influences of numerous

variables that participate in modulation of serum glucose values.

An approach based on NNM is well suited to characterize such a

complex system in which numerous factors are predictive of

glycemic excursions. NNMs can be categorized as non-linear data-

modeling and/or decision-making tools. These systems actively

adapt their structure based on external or internal information as

they are processed.

NNM systems have been studied as a predictive tool in the area

of maintaining desired glucose concentrations using glucose and/

or insulin dosing algorithms in patients with diabetes [32–35]. One

downside to NNMs utilized in previously published studies was the

fact that they were based on discrete blood glucose measurements

obtained by portable glucose meters. Additional limitations to

early NNMs include failure to incorporate additional variables

important to glucose prediction such as circadian cycles, work,

operating a motor vehicle, stress, and depression [36–40]. To this

end, we previously developed an enhanced NNM, which

accurately predicted glucose between 50–180 minutes ahead of

time in patients with insulin-dependent diabetes [41]. This

modeling application was among the first NNMs to integrate

CGM and record multiple metabolic events and activities to

predict future glycemic excursions. Subsequently, modeling

techniques utilizing similar approaches have attracted significant

interest [42].

NNM systems also have been investigated for the potential to

predict glucose and/or optimize glycemic control in the critical

care setting [43]. Many of these modeling approaches have

utilized only conventional inputs that include discrete POC blood

glucose values, insulin infusion data, and nutritional intake. Our

group has investigated the potential of utilizing patient-specific

NNMs for prediction of glucose in the surgical critical care setting

[18]. During these initial studies, we developed simplified NNMs

that utilized a limited number of relevant input variables,

including POC blood glucose determination, CGM, and insulin

delivery data for glycemic prediction.

The NNMs, as generated in this investigation for prediction of

glucose, used model weights obtained via comprehensive model

training. A key feature of NNMs is the ability to adapt model

weights based on the real-time occurrence of input data presented

to the network to minimize model predictive error. Ongoing

research aims to optimize the real-time application utilized in this

investigation to provide real-time model training and weight

adaptation within the sampling rate of the CGM device. Given

this capability, when medical records and CGM data are acquired

in real-time, model weights will be updated such that maximal

predictive accuracy is achieved. Theoretically, models implement-

ing real-time/on-line training will have significant increases in

performance with respect to the model developed in this

investigation.

Given that acute glycemic excursions have been correlated with

adverse clinical events [1], it is reasonable to speculate that models

integrating NNM-based glycemic prediction and indicator-based

system of ‘‘clinical alerts’’ could further enhance the armamen-

tarium of clinical predictive tools available to the intensivist. Such

integrated systems could utilize existing CGM and POC glycemic

testing, not only to alert the bedside practitioner to potential

glycemic dysregulation within a near-term horizon, but also to

alert the critical care team to look for potential underlying events

that may incite such glycemic excursions. Further advantages of

utilizing complex NNM-based glycemic prediction systems include

the potential to integrate additional variables that may indirectly

reflect worsening glycemic hemostasis, such as gradual increases in

insulin drip requirements or escalating need for exogenous glucose

administration.

Several further criticisms of our trial must be noted. We have

defined this study as a feasibility trial because of the small numbers

used to train the model (n = 14) and to test it (n = 5). The lack of

separation between those with stress hyperglycemia and diabetes

diminish our model when the sample size is as small as it was in

this trial. This lack of differentiation between the groups may be

the reason our model poorly predicted hyperglycemia at rates

greater than 54%. Hypoglycemia prediction was a problem since

the patient data was lacking for this. Therefore, the model could

be criticized as less robust a predictor of anything but normal

blood glucose values.

Despite these shortcomings this work demonstrates the feasibil-

ity of using neural network modeling for glycemic prediction in the

critically ill patient, which has not only potential for physiologic,

morbidity and mortality benefits, but also economic benefits.

Further research should include the development of post-

processing algorithms to modify neural network model output

given the occurrence of input data (medical records and CGM

data) in real-time. Factors such as tachycardia, medications, and

real-time trends in CGM data may successfully predict future

glycemic trends. A successful model will be able to account for

such interdependencies, such as medications that increase insulin

resistance or high blood glucose concentration (which functions to

slow gastric glucose absorption). The analysis and modeling of

Glycemic Prediction in Critical Illness
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glycemic responses following such events might provide means for

further development of post-processing algorithms to enhance

neural network model performance.

Conclusion
Real-time application of a CGM-based NNM for glycemic

prediction in critically ill surgical patients is feasible. Knowledge of

predicted glucose values may provide a means to improve and

better optimize glycemic control in patients at risk for develop-

ment of rapid hypo- or hyperglycemic oscillations. The results of

this investigation indicate that a model trained using data from

multiple subjects can provide predictive accuracy with a better-

than-expected degree of clinical acceptability across a diverse

patient base. Future research investigating whether significant

increases in model performance can be achieved via implemen-

tation of real-time/on-line training is warranted.

In the future, model predictions may be able to facilitate

intelligent therapeutic guidance/direction and clinical decision

support. When placed in the appropriate context, prediction of

glucose concentration would provide caregivers a means preemp-

tively to modify therapy and clinical interventions in order to

improve glycemic control. Optimization of glycemic control in

critical care patients would result in significant improvements in

patient safety, care, and outcome. While CGMS alone can provide

an alert to medical providers, it cannot do so 75 minutes out.

Therefore, the addition of a predictive clinical alert systems based

on parallel, multi-indicator processing algorithms may help alert

the bedside clinician not only to glycemic oscillations but also to

the possibility of untoward clinical events that may be underlying

the ‘‘barometer-like’’ behavior of glucose.
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