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Tau hyperphosphorylation is a typical pathological change in Alzheimer’s disease (AD) and is involved in the early onset and
progression of AD. Epigenetic modification refers to heritable alterations in gene expression that are not caused by direct
changes in the DNA sequence of the gene. Epigenetic modifications, such as noncoding RNA regulation, DNA methylation, and
histone modification, can directly or indirectly affect the regulation of tau phosphorylation, thereby participating in AD
development and progression. This review summarizes the current research progress on the mechanisms of epigenetic
modification associated with tau phosphorylation.

1. Introduction

Alzheimer’s disease (AD), also known as senile dementia, is a
common neurodegenerative disorder among the elderly.
Mild memory impairment is the primary first sign of AD.
As the disease progresses, cognitive functions, such as com-
prehension, intelligence, emotion, and language proficiency,
along with self-care abilities gradually decline in AD patients.
Notably, the onset of AD is closely associated with aging [1].
In fact, AD has become one of the major health-threatening
disorders among the elderly, having the 6th highest mortality
rate in the United States (US) and with a rapidly rising prev-
alence rate of 1 million new cases per year. It is estimated that
there will be 132 million AD patients by the year 2050. As the
global population continues to age, AD has become one of
the top medical and social concerns worldwide [2]. The
pathogenesis of AD is very complex and involves β-amyloid
protein metabolism disorder and deposition, neurofibrillary
tangle (NFT) formation due to abnormal or excessive tau
phosphorylation, cholinergic neuron damage, neuroinflam-
mation, abnormal epigenetic modification, intestinal micro-
biota dysbiosis, abnormal glucose and lipid metabolism, and

oxidative stress [3]. The interrelationships between these
mechanisms thus create a complex pathogenic network.

Epigenetic modifications refer to heritable alterations in
gene expression by means of DNA regulation, RNA methyl-
ation, histone modification, and noncoding RNA, which are
not caused by changes in the DNA sequence of the gene.
Epigenetic modifications can act as a medium between the
external environment and the genome. Importantly, envi-
ronmental changes and stress responses can induce intracel-
lular epigenetic modifications leading to gene transcription
or gene silencing [4]. Therefore, understanding the regula-
tory mechanisms underlying epigenetic modification will
provide new strategies for the prevention and treatment of
AD. There is currently no clear correlation between early
onset AD (5-10% of total AD) or late onset AD and gene
mutations [5, 6]. Although the β-amyloid cascade hypothesis
emphasizes the dominance of senile β-amyloid plaques in the
pathogenesis of AD [7], many of the β-amyloid-targeting
drugs developed in recent years have demonstrated poor effi-
cacy and safety in the treatment of AD patients [8]; therefore,
the β-amyloid theory has been increasingly questioned.
Previous studies have demonstrated that the severity and
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progression of AD are closely associated with the number
of NFTs formed and less with the number of senile β-
amyloid plaques developed [9, 10]. Importantly, paired
helical filaments (PHFs), which are formed via tau protein
aggregation, are a major component of NFTs [11]. Thus,
the ability to target tau protein signaling has become a
major goal of drug research and development for AD. In
addition, epigenetic modulation on tau phosphorylation
is now the primary focus of targeted drug development.
Here, we will provide a review on the epigenetic modifica-
tions of tau phosphorylation identified in AD.

2. Structure and Biological Function of
Microtubule-Associated Tau Proteins

Tau is a microtubule-associated protein (MAP) encoded by
the 16 exon-containing MAPT gene on chromosome 17
(17q21.31). Tau proteins are rich in neurons in the frontal,
temporal, hippocampal, and entorhinal regions of the brain.
Intraneuronal tau is predominantly localized in the axons,
and it is also present in somatodendritic compartments in
much lower levels and contributes to synapse physiology
[12, 13]. Markedly, tau proteins bind with a higher affinity
to axons than to the cell body or dendrites of a neuron.
Depending on the presence or absence of 1 or 2 amino acid
insertions in the N-terminus (0N, 1N, and 2N) of the protein
and the insertion of either 3 or 4 repeated amino acid
sequences in the microtubule-binding domain (3R and 4R)
of the protein, a healthy adult human brain can express up
to six tau isomers, a result of selective splicing of the MAPT
gene at exons 2, 3, and 10. The ratio of 4R/3R tau is normally
close to 1 : 1 [14, 15]. However, an imbalance in this ratio can
lead to neurodegenerative diseases, such as dementia and
AD [16, 17]. These tau isomers are comprised of 352, 381,
383, 410, 412, and 411 amino acids and present a molecular

weight of approximately 37 to 46 kilodaltons (kDa) [18, 19].
Genetic studies have revealed a relationship between the
structural changes in tau and the development of disease
pathology. Over 50 mutations in the MAPT gene have been
identified to date [15], which have been shown to cause
abnormal 4R-tau elevation and excessive tau aggregation
via interference with the tau protein structure or exon 10
splicing. H1 and H2 are the two haplotypes of MAPT. The
H1 haplotype is closely associated with an increased risk of
late onset AD [20] and Parkinson’s disease [21], whereas
the H2 haplotype is associated with a reduced risk of late
onset AD. The tau protein (Figure 1) is primarily comprised
of a N-terminus projection domain, a proline-rich domain, a
C-terminus microtubule-binding domain, and a tail domain.
The main biological functions of the tau protein include the
promotion of microtubule formation, as well as the assembly
and promotion of microtubule stability in the cytoskeleton
to ensure normal axoplasmic transport and synaptic plastic-
ity [14, 22]. Tau interacts with a large number of partners,
thereby acting as the center in cellular protein-protein inter-
action networks [19]. Interactions between tau and microtu-
bules are mediated by the microtubule-binding repeats and
are highly dynamic. The binding of tau to microtubules
occurs via 3 or 4 imperfect 18-amino acid repeats (R1–R4)
which are located in the microtubule-binding region with
a single repeat as the basic microtubule interacting unit
[23]. The microtubule-binding region is also involved in
the binding of tau to actin filaments and is required for tau
aggregation [24]. Several other tau interaction partners have
been identified in addition to microtubules. These include
membrane-associated proteins such as annexin A2, which
contributes to tau’s axonal localisation [25]; src-family non-
receptor tyrosine kinases such as Fyn [26], which may be
associated with mediating amyloid-beta toxicity at the post-
synapse [27]; and protein phosphatase 2A, which serves as
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Figure 1: Isoforms of tau protein. The six isoforms of tau are by alternative splicing of exons 2, 3, and 10.
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the primary tau phosphatase [28]. Evidence indicates that tau
oligomers rather than higher aggregates represent the toxic
species [29].

The tau protein contains approximately 77 serine/-
threonine phosphorylation sites. In addition to phosphoryla-
tion, other posttranslational modifications on tau including
acetylation, methylation, ubiquitination, small ubiquitin-
like modifier (SUMO) modification, nitration, glycosylation,
truncation, and splicing[14] have been reported and may
contribute differentially to physiological functions of tau
and disease [30]. In particular, the phosphorylation of tau is
the main posttranslational modification event [31]. It should
be noted that tau phosphorylation not only just causes
damage to neurons but also exerts protective effects. Evi-
dence indicated that tau phosphorylation at the Ser396
and Ser404 sites can render cells antiapoptotic by stabiliz-
ing beta-catenin [32]. And tau hyperphosphorylation at
the Thr205, Thr231, Ser262, and Ser396 sites can attenuate
the endoplasmic reticulum stress- and death-associated
protein kinase-induced apoptosis [33, 34]. In addition, tau
phosphorylation may also play an important role in adult
hippocampal neurogenesis [35]. But when tau is hyperpho-
sphorylated, its affinity for microtubules can be reduced
[14]. Hyperphosphorylated tau has been found in the brain
of AD patients, with the level of phosphorylation being 3
to 4 times more than that observed in normal individuals
[31, 36, 37]. Consequently, tau hyperphosphorylation is cur-
rently recognized as an early pathology in AD pathogenesis
[38]. The dynamic imbalance between tau phosphorylation
and dephosphorylation is mainly caused by abnormal tau
protein kinase and protein phosphatase activities. These
kinases include glycogen synthase kinase- (GSK-) 3β, cyclin
AMP- (cAMP-) dependent protein kinase A (PKA), mitogen-
activated protein kinase (MAPK), protein kinase (PKC),
calmodulin kinase II (CaMK II), microtubule affinity regu-
lating kinase (MARK), and protein phosphatase type 2A
(PP2A) [31, 39]. Notably, aberrant tau phosphorylation can
lead to microtubule collapse, axon degeneration, and axo-
plasmic transport disorders, which can subsequently affect
neurotransmitter synthesis, transport, release, and uptake,
thereby resulting in neurodegeneration [40]. Therefore, the
modulation of protein kinases and protein phosphatase
activities during tau phosphorylation is currently a major
direction of anti-AD drug research and development [41–43].

3. Regulation of Tau Phosphorylation by
Epigenetic Modification

3.1. Noncoding RNA and Tau Phosphorylation. Noncoding
RNAs (ncRNAs), including microRNAs (miRNAs), long
ncRNAs (lncRNAs), and circular RNAs (circRNAs), are
types of non-protein-coding transcription factors that regu-
late cell function via the regulation of gene expression [44].
There is increasing evidence demonstrating that abnormal
ncRNA expression in the brain can affect AD development
and progression through multiple molecular pathways [45].
In particular, 20- to 24-nucleotide-long miRNAs are endoge-
nous ncRNAs that have been well studied and are known to
play a role in AD pathogenesis. These miRNAs are widely

found in the central nervous system (CNS) and play an
important regulatory role in neural development, differentia-
tion, and maturation. Furthermore, the miRNA-mediated
regulation of target genes is considered a type of post-
transcriptional regulation. miRNAs can interact with the
3′ untranslated region (3′-UTR) of the target gene messen-
ger RNAs (mRNAs) via complementary base pairing and
induce the degradation or transcriptional suppression of
the target mRNA, thereby affecting gene expression. An
increasing number of clinical and laboratory studies have
now shown that miRNAs play an important regulatory func-
tion in the expression of AD-associated genes, including
amyloid precursor protein (APP), β-site APP cleaving
enzyme 1 (BACE1), GSK-3β, and Sirtuin 1 (SIRT1) [46]. In
addition, miRNAs circulating in the peripheral blood and
cerebrospinal fluid (CSF) are also considered potential early
diagnostic markers [47] and drug targets [45] for AD. Previ-
ous studies have found that many miRNAs, including miR-
124, miR-9, miR-132, and miR-137, can alter the 4R/3R tau
ratio in neurons by modulating the splicing process of the
MAPT gene [45].

To this end, a study by Santa-Maria et al. showed that
miRNA-219 is downregulated in the brain of AD patients,
and subsequent cellular experiments showed that miRNA-
219 binds directly to the 3′-UTR of the tau mRNA and
represses tau synthesis [48]. Furthermore, miRNA-132
has also been found to be significantly downregulated in
AD [49]. miRNA-132 is involved in tau metabolism, as
miRNA-132 inhibition can increase amyloid-beta peptide
(Aβ) deposition [50] and tau hyperphosphorylation, whereas
miRNA-132 upregulation can promote ITPKB and p-
ERK1/2 expression, thereby inhibiting tau hyperphosphory-
lation [51]. It was previously found that the upregulation of
miRNA-132 reduced total, phosphorylated, acetylated, and
cleaved tau protein levels through the regulation of tau ace-
tyltransferase EP300, GSK-3β, RNA binding fox-1 homolog
1 (Rbfox1), calpain 2, and caspases 3/7 protein levels [52].
These changes in turn promote axon extension and bifur-
cation, enhance synapse plasticity, and prevent neuronal
loss. The inhibition of miRNA-132/miRNA-212 can also
promote tau protein overexpression, hyperphosphorylation,
and aggregation, resulting in cognitive dysfunction [53].
Therefore, given the multitarget properties of miRNA-132,
its regulation may be a new potential prevention and treat-
ment strategy for AD [49]. Aside from miRNA-132, many
other miRNAs also participate in and influence tau metabo-
lism. For example, the downregulation of brain-derived neu-
rotrophic factors (BDNFs), which are important for the
regulation of synapse plasticity, as well as neural growth
and differentiation, is closely associated with anxiety and
progressive memory loss in AD patients [54]. Evidence indi-
cated that the downregulation of BDNFs is accompanied by
the upregulation of miRNA-322 in a mouse model of AD,
and further research revealed that miRNA-322 is involved
in the phosphorylation of tau proteins via targeted regulation
of BDNF gene expression and the activity of the TrkB recep-
tor [55]. Binding of BDNF to the TrkB receptor can activate
several downstream intracellular signaling cascades includ-
ing the phosphatidylinositol 3-kinase- (PI3K-) Akt pathway
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and the Ras-mitogen-activated protein kinase (MAPK)
pathway that affect tau phosphorylation [54, 56], while the
effects of miRNA-322 on downstream signaling pathways
associated with tau phosphorylation such as the PI3K/Akt/
GSK-3β or MAPK/ERK1/2 pathway remained elusive.
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a
target of miRNA-922, and inhibition of UCHL1 expression
by miRNA-922 promotes tau hyperphosphorylation [57].
Moreover, in vitro and in vivo experiments demonstrated
that miRNA-146a inhibits the expression of the rho-associ-
ated, coiled-coil-containing protein kinase 1 (ROCK1) gene
and then suppresses tau hyperphosphorylation via ROCK1
regulation through the protein phosphatase and tensin
homolog (PTEN) [58]. Evidence has shown that the binding
of UCHL1 to PTEN is important for PTEN phosphorylation
which promotes tau dephosphorylation [59–61]. In addition,
miRNA-12-3p can regulate the expression of the Caveolin-
1 gene and modulate the Caveolin-1-PI3K/AKT/GSK-3β
signaling pathway to inhibit tau hyperphosphorylation
and neuronal apoptosis [62]. Wang et al. reported that
the retinoic acid receptor alpha (RARA) is a target gene of
miRNA-138 and miRNA-138 can modulate RARA/GSK-3β
to promote tau hyperphosphorylation [63]. Sun et al. showed
that the knockout of miRNA-195 activates Cdk5/p25 signals
and promotes the phosphorylation of tau at Ser202, Thr205,
Ser262, Thr231, and Ser422 residues. A subsequent study by
the authors demonstrated that miRNA-195 can bind to the
3′UTR of the Cdk5r1 mRNA to downregulate the protein
expression of p35 and miRNA-195 upregulation in turn
suppresses p25 activity, thereby inhibiting tau hyperpho-
sphorylation [64]. miRNA-125b can directly inhibit the
expression of Bcl-w to indirectly enhance the activities of
tau phosphorylation-associated kinases including Cdk5,
p35, and p44/42-MAPK, thus promoting tau hyperpho-
sphorylation [65]. In addition, in vitro experiments have dem-
onstrated that members of the miRNA-15 family, such as
miRNA-15, miRNA-16, miRNA-195, miRNA-497 [66], and
miRNA-26a [67], directly target other tau phosphorylation-
associated genes (e.g., ERK1 and GSK-3β) to participate in
the development of AD. miRNA-98 is involved in the regula-
tion of tau phosphorylation and β-amyloid synthesis via
the regulation of the insulin-like growth factor-1 (IGF-1)
expression [68]. IGF-1 plays a major role in regulating
tau phosphorylation in the aging brain [69], and insulin-
or IGF-1-activated PI3K/Akt/GSK-3β signaling may be
involved in several tauopathies [70, 71]. Evidence showed
that the inhibition of tyrosine-protein phosphatase nonre-
ceptor type 1 (PTPN1) can suppress Aβ-induced tau phos-
phorylation by targeting Akt and GSK-3β [72], and PTPN1
was a direct target of miR-124 as validated by the luciferase
reporter assay [73]. Rebuilding the miR-124/PTPN1 pathway
by suppression of miR-124 or overexpression of PTPN1
restored synaptic dysfunction and memory loss in AD [73].
In addition, Kim et al. identified that the death-associated
protein kinase 1 (DAPK1) overexpression increased tau
protein stability and phosphorylation at multiple AD-
related sites including Ser262, Ser396, and Thr231 [74].
DAPK1 was also a direct target of miR-26a, and miR-
26a/DAPK1 signaling cascades were associated with cellular

pathologies in neurodegenerative disorders such as Parkin-
son’s disease [75].

Furthermore, Xiong et al. reported that miRNA-218 can
modulate GSK-3β and phosphatase 2A activities by regulat-
ing the expression of the protein tyrosine phosphatase alpha
(PTPα) [76]. This in turn affects the homeostasis between
phosphorylated and dephosphorylated tau proteins. These
aforementioned miRNAs were all involved in regulating sev-
eral signaling pathways which play a significant role in tau
phosphorylation.

In addition to those reported miRNAs associated with
tau phosphorylation-related signaling pathways, there are
also other miRNAs not targeting these pathways but eventu-
ally promoting tau hyperphosphorylation. A whole-genome
expression analysis indicated that methyl-CpG-binding
protein-2 (MeCP2) was a key regulator of tauopathy [77]; a
further study confirmed the direct regulation of MeCP2 by
miR-132, and the miR-132/MeCP2/dynamin 1 pathway par-
ticipated in hTau-induced neuronal endocytosis deficiency
[78]. In addition, the activation of N-methyl-D-aspartate
(NMDA) receptor NR2A, which can also be regulated by
miR-125b [79], can decrease tau phosphorylation via the
PKC/GSK-3β pathway [80]. The protooncogene tyrosine-
protein kinase Fyn is a nonreceptor tyrosine kinase primarily
expressed in the axons of neurons, which is involved in the
regulation of nervous system development and in neuroin-
flammation, as well as synapse function and neural plasticity
[81]. Previous studies have shown that the interaction
between tau and Fyn impairs the stability of receptor com-
plexes in the postsynaptic density (PSD) structure and plays
an important role in AD pathogenesis [82]. Liu et al. reported
that Fyn is a target gene of miRNA-106b. Fyn overexpression
can promote tau phosphorylation at the Tyr18 site, and
miRNA-106b upregulation can inhibit Fyn-induced Tyr18
phosphorylation [83].

Moreover, tau acetylation promotes not only tau auto-
phosphorylation but also abnormal tau aggregation. The
acetyltransferase p300 [84] and deacetylase SIRT1 [85]
are involved in the regulation of tau acetylation. Reduced
SIRT1 levels in the brain of AD patients lead to tau hyper-
acetylation and consequently tau hyperphosphorylation.
Numerous studies have now found that the SIRT1 gene
is directly targeted by miRNA-9, miRNA-212, miRNA-
181c, and miRNA-132 [86, 87]. In summary, miRNAs can
directly or indirectly (Table 1) affect the expression and
activity of several tau phosphorylation-associated proteins
and signaling pathways and then modulate tau phosphory-
lation. Therefore, regulation of these miRNAs may serve as
a potential strategy for the development of effective anti-
AD therapeutics.

3.2. DNA Methylation and Tau Phosphorylation. DNA
methylation is a common form of epigenetic modification.
This process occurs when the cytosine-guanine dinucleotide
(CpG) is modified into 5-methylcytosine by the addition
of a methyl group, donated by the S-adenosylmethionine
(SAM), on the C5 of CpG in the presence of DNA methyl-
transferases (i.e., DNMT1, DNMT3A, DNMT3B, and
DNMT3L) [90]. The synthesis of SAM is closely associated
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with vitamin B and folic acid, with CpG being the primary
site of DNA methylation. CpG sites are densely found in
certain regions of the genome and can be up to 200 base
pairs (bp) in length. The CpG island (CpGI) is a region
of the genome in which CpG sites comprise 60% to 70%
of the sequence and the CpG observed/expected ratio
(ObsCpG/ExpCpG) has been shown to be less than (<) 0.6.
CpGIs are primarily found upstream of the promoter
region/transcription initiation site [91]. The methylation of
CpGIs in the promoter region can repress the transcription
of target genes and is therefore considered a form of tran-
scriptional regulation [92]. Numerous studies have demon-
strated that DNA methylation plays an important role in
the aberrant expression of AD-associated genes. Further,
immunohistochemical (IHC) analysis of pathological brain
tissue sections from deceased AD patients has revealed
decreased DNA methylation levels in the prefrontal cortex
[93], entorhinal cortex [94], and hippocampus [95]. More-
over, reduced DNA methylation can promote the activation
of astrocytes and microglia and proinflammatory cytokine
secretion during aging, which consequently results in the
vicious cycle of a number of pathological processes [96].

Current clinical and basic research studies have con-
firmed the presence of abnormal methylation levels in the
promoter regions of tau phosphorylation-related genes. For
instance, analysis of DNA methylation in the promoter
region of the GSK-3β gene from the prefrontal cortex tissue
of deceased AD patients indicated that the GSK-3β promoter
region is methylated at low levels during early AD develop-
ment. The mRNA of GSK-3β is upregulated during this
period, but the protein expression levels of GSK-3β remain
unchanged [97]. Some studies have found that vitamin B
deficiency can lead to low levels of cytosine methylation in

the GSK-3β promoter region and hence the GSK-3β overex-
pression [98]. Using chromatin immunoprecipitation (ChIP)
and bisulfite sequencing technologies, Li et al. found that
the promoter region of Cdk5 has a low level of cytosine
methylation in the hippocampal CA1 region of a rat model
with Aβ1-42-induced memory deficiency. The upregulation
of Cdk5 expression leads to tau hyperphosphorylation and
suppressed long-term synaptic potentiation, resulting in spa-
tial learning and memory impairment in this rat model [99].
In addition, it was previously reported that AD patients have
increased methylation in the promoter region of the dual-
specificity phosphatase 22 (DUSP22) gene and downregulated
DUSP22 expression, which in turn inhibited PKA-mediated
tau phosphorylation and cAMP response element-binding
protein (CREB) activation [100] and affected synapse plas-
ticity and long-term memory formation [101]. Besides,
DNA demethylation regulated by ten-eleven translocation
proteins (Tet1-3) that oxidize 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC) [102] could also affect
tau phosphorylation. Several studies have proved that Tet1
activity functions in active DNA demethylation and gene
regulation during learning and memory [103–105]. It is
known that BDNF is a key component in the maintenance
of synaptic plasticity and synaptogenesis in the hippocampus
[56] and is closely related to tau hyperphosphorylation [54,
55, 106]. Ambigapathy et al. reported that Tet1 and ERK1/2
were critical partners regulating BDNF chromatin status
and promoter accessibility [107]. It is reasonably assumed
that BDNF DNA demethylation regulated by Tet1 could
influence the tau phosphorylation levels. These studies
demonstrate that targeted regulation of methylation levels
of tau phosphorylation-related genes is a potential treat-
ment strategy for AD.

Table 1: MicroRNAs (miRNAs) associated with tau phosphorylation in Alzheimer’s disease.

Dysregulated miRNA(s) Level in AD Target site(s) Reference

miRNA-132 Downregulated ITPKB, MeCP2, GSK-3β, and SIRT1 [51, 52, 78, 87, 88]

miRNA-322 Downregulated BDNF [55]

miRNA-922 Downregulated UCHL1 [57]

miRNA-146a Upregulated ROCK1 [58]

miRNA-124-3p Downregulated Caveolin-1 [62]

miRNA-138 Upregulated RARA [63]

miRNA-195 Downregulated Cdk5r1 [64]

miRNA-125b Upregulated Bcl-w, DUSP6, PPP1CA, NMDA, and GSK-3β [65, 79, 89]

miRNA-15 Downregulated ERK1 [66]

miRNA-98 Upregulated IGF-1 [68]

miRNA-124 Upregulated PTPN1 [73]

miRNA-26a Downregulated DAPK1 [75]

miRNA-106b Downregulated Fyn [83]

miRNA-218 Upregulated PTPα [76]

miRNA-212 Downregulated SIRT1 [86, 87]

ITPKB: inositol 1,4,5-trisphosphate 3-kinase B; MeCP2: methyl-CpG-binding protein-2; GSK-3β: glycogen synthase kinase-3β; SIRT1: Sirtuin 1; BDNF: brain-
derived neurotrophic factor; UCHL1: ubiquitin carboxy-terminal hydrolase L1; ROCK1: rho-associated, coiled-coil-containing protein kinase 1; RARA:
retinoic acid receptor alpha; DUSP6: dual-specificity phosphatase 6; PPP1CA: protein phosphatase 1 catalytic subunit alpha isoform; NMDA: N-methyl-D-
aspartate; Bcl-w: Bcl-2-like protein 2; ERK1: extracellular-regulated kinase; IGF-1: insulin-like growth factor 1; PTPN1: tyrosine-protein phosphatase
nonreceptor type 1; DAPK1: death-associated protein kinase 1; PTPα: protein tyrosine phosphatase α.
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3.3. Histone Modifications and Tau Phosphorylation. A
nucleosome is the basic unit of DNA packaging, which con-
sists of a segment of DNA wound around histone proteins.
H1/H5, H2A, H2B, H3, and H4 are the primary histone
proteins important for maintaining the chromosome con-
figuration in DNA material. H2A, H2B, H3, and H4 are
core histone proteins, whereas H1/H5 are linker histones.
Histones can be modified by acetylation, methylation,
phosphorylation, ubiquitination, SUMO modification, and
glycosylation. These modifications can affect gene transcrip-
tion by modulating the spatial conformation of chromatins.
For example, acetylation and methylation of lysine (K) and
arginine (R) in the N-terminus of histones can neutralize
the positive charges on these residues, leading to a reduced
affinity between the DNA and histones and loosened chro-
matin structure (euchromatin) that are favorable for the
binding of transcription factors to DNA and hence gene tran-
scription. In contrast, deacetylation of histones tightens the
spatial conformation of chromatins (heterochromatin) and
suppresses gene transcription [108]. Enzymes that are mainly
involved in histone acetylation include histone acetylase
(HAT) and histone deacetylase (HDAC). Several studies
have recently shown that histone modification plays a role
in AD development and progression. It was reported that
AD patients and AD mouse models have elevated levels of
HADC2 in the brain [109], and inhibition or knockout of
HADC2 can significantly improve cognitive dysfunction
[110]. Furthermore, both AD patients and the 3xTg and
APP_SDI mouse model have an elevated level of Lys12
acetylation on histone H4 (H4K12) as seen in brain tissue
samples [111]. Notably, treatment with an HDAC inhibi-
tor can induce hippocampal axonal regeneration, increase
axon number, and improve learning and memory in CK-
p25 mice [112]. The HADC inhibitor phenylbutyrate can
reduce tau hyperphosphorylation, increase axon density,
and improve the spatial learning and memory impairment
seen in Tg2576 AD mice [113]. In addition, a study by Li
et al. showed that increased histone H3 acetylation can lead
to tau hyperphosphorylation and impaired synaptic plasticity
by promoting Cdk5 transcription and expression [99]. Hip-
pocampal HDAC2 overexpression in 3xTg-ADmice resulted
in the deacetylation of the hepatocyte nuclear factor 4 alpha
(HNF-4α), which allows HNF-4α to bind to the promoter
of miRNA-101b and repress miRNA-101b expression. This
subsequently upregulates AMPK expression and tau hyper-
phosphorylation, resulting in a reduced density and abnor-
mal morphology of dendrites and consequently cognitive
dysfunction in ADmice [114]. Aside from the regulatory role
of histone acetylation in tau phosphorylation, Mastroeni
et al. also found that an increased Lys4 methylation of his-
tone H3 (H3K4me3) may be involved in tau pathology as
an early event in AD pathology. Analysis of brain tissue sec-
tions from deceased AD patients revealed that the level of
H3K4me3 in the cytoplasm of neurons is elevated as the
Braak staging increased [115]. HDAC6 is another important
epigenetic component of the etiopathogenesis of AD, and its
specific role in AD has been extensively discussed in previous
reviews [116, 117]. HDAC6 significantly increased during
AD progression [118]. Recent evidence showed that the

inhibition of HDAC6 can reverse tau phosphorylation
and restore microtubule stability, leading to the normaliza-
tion of synaptosomal mitochondrial function and synaptic
integrity [119, 120]. This evidence indicates that HDAC6
inhibitors may be a promising avenue for therapeutic inter-
vention in AD and other neurodegenerative diseases. How-
ever, how HDAC6 impacts genes or signaling cascades
related to tau phosphorylation is less reported which war-
rants further investigation.

4. Summary and Future Directions

AD is a pathologically complex neurodegenerative disease,
and elucidating the underlying molecular mechanisms of
related epigenetic modifications has provided new insights
into the understanding of AD pathogenesis, creating new
strategies for AD prevention and treatment. As previously
mentioned, tau hyperphosphorylation is a key early event
in AD pathology, and its development and progression is
closely associated with aberrant epigenetic modifications
such as miRNAs, DNA methylation, and histone modifica-
tion. However, whether aberrant epigenetic modifications
are the cause or consequence of AD development is still
unclear. A review of the mechanisms by which epigenetic
modification participates and regulates tau phosphorylation
shows that ncRNAs, DNA methylation, and histone modifi-
cation can directly or indirectly affect the expression and
activity of tau-related kinase genes, forming a complex epige-
netic regulatory network (Figure 2). Yet, it is still unclear
which type of epigenetic modification plays a dominant role
in tau hyperphosphorylation, as well as in NFT formation
and deposition. This particular point is especially important
for the development of specific antitau hyperphosphoryla-
tion agents. Therefore, the exact mechanisms by which epige-
netic modification participates in tau phosphorylation will
need to be further investigated.

Since the different phosphorylation sites of the tau pro-
tein can yield different effects which may be protective for
neurons instead of causing damage, the potential effects of
selected phosphorylation sites modified by epigenetic mech-
anisms of tau protein kinases and protein phosphatases
should be considered. Also, to which degree the epigenetic
modulation on tau phosphorylation will be protective should
be investigated. So far, no existing evidence mentioned above
has taken these issues into account which are important
and need to be studied further. Importantly, the occurrence
of the altered expression of distinct miRNAs, aberrant
DNA methylation, and histone modification involved in tau
hyperphosphorylation could be used as new and promising
biomarkers for AD in the future. This approach could pro-
vide a scientific foundation for the preclinical use of drugs.

There is increasing evidence pointing to the brain stem
nucleus as a possible initial site of AD pathology and dissem-
ination. In particular, the raphe nuclei and locus coeruleus
may be early regions of NFT formation and aggregation
[121–124]. A magnetic resonance imaging (MRI) study
revealed that AD patients have altered brain stem volume
and morphology [125]. Furthermore, symptoms of cognitive
dysfunction in early AD, such as depression and abnormal
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emotion, in addition to changes in breathing and electrocar-
diogram (ECG) readings, are closely associated with the
secretion of 5-hydroxytryptamine (5-HT) and norepineph-
rine by the locus coeruleus and raphe nuclei [126–128]. The
locus coeruleus is the primary region of norepinephrine syn-
thesis, and noradrenergic neurons in the nuclei project to
various regions of the brain in a long-range and extensive
manner. Braak et al. showed that NFT formation occurs ear-
lier in the locus coeruleus than in any other brain regions and
may be present without any significant clinical symptoms
[129]. Neurons in the raphe nuclei are long-range projecting
neurons that secrete 5-HT. NFT deposition in the raphe
nuclei may explain the abnormal emotional symptoms, such
as depression and irritability, that develop during early AD
[130] and has also been shown to be associated with the pro-
gressive exacerbation of clinical symptoms [131, 132]. Many
studies have demonstrated that hyperphosphorylation-
mediated tau deposition occurs earlier in the locus coeruleus
and raphe nuclei than in other regions of the brain [133] and
is often accompanied by neuronal apoptosis [134]. Therefore,
early targeted regulation of tau hyperphosphorylation,
inhibition of NFT deposition, and formation in the locus
coeruleus and raphe nuclei are especially important for the
prevention of AD. As key regulators of early AD pathology,
epigenetic modifications are also involved in tau hyper-
phosphorylation in the brainstem nucleus. Andres-Benito
et al. found that the neurons in the locus coeruleus in an
aging brain presented low katanin-interacting protein gene
(KIAA0566) methylation levels along with downregulated
mRNA and NFT deposition [135]. Researchers have com-
pared the association between the NFT pathology and related

miRNA levels in the locus coeruleus, entorhinal cortex, hip-
pocampal CA1 region, and dentate gyrus between Braak
stages I and II and stages III and IV and found that
miRNA-27a-3p, miRNA-124-3p, and miRNA-143-3p levels
in the locus coeruleus, but not any in other regions of the
brain, are already elevated in Braak stages I and II and are sig-
nificantly increased in stages III and IV. Only miRNA-143-
3p is elevated in the entorhinal cortex, with all the other
miRNA levels remaining unchanged in the hippocampal
CA1 region [136]. These findings demonstrate that abnormal
epigenetic modification in the locus coeruleus is likely to be
involved in the development and progression of tau hyper-
phosphorylation during early AD pathology. However, the
mechanisms by which these epigenetic modifications regu-
late NFT aggregation in the raphe nuclei are still elusive
and will need to be further investigated. Understanding the
epigenetic modification mechanisms underlying these AD-
related pathologies in associated brain nuclei may provide
new insights into the elucidation of AD pathogenesis and
the development of actionable drug targets.

However, for now, clinical epigenetics would not be
useful as a potential therapeutic strategy to ameliorate AD
because epigenetic-based therapy may affect numerous tar-
gets due to the lack of locus specificity. DNA methyltrans-
ferase inhibitors (DNMTi) and the histone deacetylase
inhibitor (HDACi) class are classified as broad reprogram-
mers because of their large-scale effects on genomic sites
[137]. ncRNA-oriented drugs may also yield potential non-
specific off-target effects [138]. Despite these challenges, a
range of epigenetic biomarkers for AD diagnosis are in devel-
opment [139–141]. Integrating all epigenetic aspects and
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Figure 2: Epigenetic modulation on tau phosphorylation and possible impacts on synapses and neurons. Dysregulated epigenetic
modification on genes associated with the tau phosphorylation process could lead to NFT aggregation which can then cause
neuroinflammation, axonal transport dysfunction, and mitochondrial and synaptic plasticity injuries.
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considering epigenetic factors as highly dynamic and interac-
tive players with cellular metabolism by adopting multiomics
technologies such as epigenomics, transcriptomics, metabo-
lomics, and proteomics could help in the discovery of novel
diagnostic biomarkers or potential drugs for AD.
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