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Purpose: Developing robust artificial intelligence (AI) models for medical image analysis requires large
quantities of diverse, well-chosen data that can prove challenging to collect because of privacy concerns, disease
rarity, or diagnostic label quality. Collecting image-based datasets for retinopathy of prematurity (ROP), a
potentially blinding disease, suffers from these challenges. Progressively growing generative adversarial networks
(PGANs) may help, because they can synthesize highly realistic images that may increase both the size and
diversity of medical datasets.

Design: Diagnostic validation study of convolutional neural networks (CNNs) for plus disease detection, a
component of severe ROP, using synthetic data.

Participants: Five thousand eight hundred forty-two retinal fundus images (RFIs) collected from 963 preterm
infants.

Methods: Retinal vessel maps (RVMs) were segmented from RFIs. PGANs were trained to synthesize RVMs
with normal, pre-plus, or plus disease vasculature. Convolutional neural networks were trained, using real or
synthetic RVMs, to detect plus disease from 2 real RVM test datasets.

Main Outcome Measures: Features of real and synthetic RVMs were evaluated using uniform manifold
approximation and projection (UMAP). Similarities were evaluated at the dataset and feature level using Fréchet
inception distance and Euclidean distance, respectively. CNN performance was assessed via area under the
receiver operating characteristic curve (AUC); AUCs were compared via bootstrapping and Delong’s test for
correlated receiver operating characteristic curves. Confusion matrices were compared using McNemar’s chi-
square test and Cohen’s k value.

Results: The CNN trained on synthetic RVMs showed a significantly higher AUC (0.971; P ¼ 0.006 and P ¼
0.004) and classified plus disease more similarly to a set of 8 international experts (k ¼ 0.922) than the CNN
trained on real RVMs (AUC ¼ 0.934; k ¼ 0.701). Real and synthetic RVMs overlapped, by plus disease diagnosis,
on the UMAP manifold, showing that synthetic images spanned the disease severity spectrum. Fréchet inception
distance and Euclidean distances suggested that real and synthetic RVMs were more dissimilar to one another
than real RVMs were to one another, further suggesting that synthetic RVMs were distinct from the training data
with respect to privacy considerations.

Conclusions: Synthetic datasetsmay be useful for training robustmedical AImodels. Furthermore, PGANsmay
be able to synthesize realistic data for use without protected health information concerns. Ophthalmology
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Artificial intelligence (AI), specifically deep learning (DL),
for automated image-based disease detection and segmen-
tation has gained significant traction over the last decade.1e8

Convolutional neural networks (CNNs), a subset of DL
techniques, have demonstrated clinician-level efficacy in
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(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
pattern recognition in many medical research applications;
however, a number of barriers exist to development and
implementation.1e6 Institutional regulations can limit access
to patients’ medical imaging data for privacy reasons.9e14

Rare diseases can be challenging to acquire enough data
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even without institutional barriers.9e12 Discrepancies may
exist in the label quality or consistency of annotators,
leading to an increased training data requirement.15 Finally,
models trained in one population may not generalize well to
external populations that differ from the training population.
One disease that suffers from all of these challenges is
retinopathy of prematurity (ROP), a potentially blinding
disease that affects prematurely born infants.12,16

Previously, using thousands of retinal fundus images
(RFIs) collected by the Imaging and Informatics in ROP
multicenter study over the course of many years, we trained
and evaluated the ability of CNNs to diagnose plus dis-
easeda strong indicator of treatment-requiring ROP,
defined as venous dilation and arterial tortuositydand
found that they could achieve clinician-level performance.1

However, it is likely that the development process could
have been expedited had other sites been willing to share
data, because CNN training efficiency and generalizability
are not only related to the ease of a pattern recognition
task, but also the size and diversity of the training
data.9,11,12 For optimal generalizability, the bigger and
more diverse a dataset, the better. One way to address this
issue is to simulate new data. Generative adversarial
networks (GANs), another subset of DL techniques, could
be used for this task.17,18 As is implied in the name,
GANs are generative models which aim to synthesize new
observations of data based off of supplied labels, as
opposed to classification models which aim to label
observations based off of already existing data. Generative
adversarial networks have an uncanny ability to synthesize
highly realistic images, evidenced by our prior study
demonstrating that medical experts have a difficult time
discerning between real and synthetic RFIs.19

We hypothesize that progressively growing GANs
(PGANs) can be trained to generate an infinitely large
synthetic dataset of images representing a spectrum of
vascular severities, which can then be used to train CNNs
for plus disease detection.18 If CNNs trained on synthetic
images are able to detect plus disease from real images as
well as CNNs trained on real images, it stands to reason
that synthetic medical datasets may be a viable option for
artificially enhancing small datasets. Furthermore, if it can
be shown that synthesized images are not similar to those
on which GANs were trained, then the risk of
inadvertently revealing protected health information in
synthetic image datasets is low, supporting their
dissemination as a privacy-preserving alternative to data
sharing. Ultimately, GANs may allow researchers to in-
crease the size and diversity of medical datasets and to share
those datasets with other researchers without privacy
concerns.

Methods

Imaging and Informatics in Retinopathy of
Prematurity Dataset

The Imaging and Informatics in Retinopathy of Prematurity study
was approved by the institutional review boards at the coordinating
center (Oregon Health & Science University) and at each of 7 study
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centers (Columbia University, University of Illinois at Chicago,
William Beaumont Hospital, Children’s Hospital Los Angeles,
Cedars-Sinai Medical Center, University of Miami, and Weill
Cornell Medical Center) and was conducted in accordance with the
tenets of the Declaration of Helsinki.20 Written informed consent
was obtained from parents of all enrolled infants.

Between July 2011 and December 2016, a RetCam (Natus) was
used during routine ROP screenings to collect posterior pole-centered
RFIs from premature infants born weighing< 1501 g or born before
31 weeks of gestation. A reference standard diagnosis was assigned to
each RFI using previously published methods based on independent
image-based diagnoses by at least 3 trained graders (2 ROP specialists
and 1 ROP study coordinator; S.O., R.V.P.C., M.F.C., J.P.C.) and the
clinical diagnoses (dilated, in-person, ophthalmoscopic evaluation) by
expert ophthalmologists.21 TheRFIswere classified as havingnormal,
preplus, or plus disease vasculature. Those not centered on the
posterior pole, labeled as “not of acceptable quality for diagnosis”
by most image graders, or of stage 4 or 5 ROP were excluded (in
stages 4 and 5 ROP, the retinal blood vessels prove difficult to
visualize because of partial or total retinal detachments, respectively,
and the diagnosis of plus disease is not relevant).16All but 100
images were split at the patient level into training, validation, and
test datasets at a ratio of 3:1:1, while maintaining the natural disease
prevalence. The remaining 100 images were placed into an expert
test dataset that was specifically designed to have a higher
prevalence of plus disease images to better capture the incidence of
ROP worldwide and was designated for use as the final dataset for
evaluating model performance.1,22,23 Images in this dataset were
graded for plus disease by a set of 8 international ROP experts
(M.F.C., R.V.P.C.), each with more than 10 years of clinical ROP
experience and more than 5 peer-reviewed articles on ROP pub-
lished. Five of the 8 experts served as principal investigators for the
multicenter Early Treatment for ROP study.24

Our previous study used retinal vessel maps (RVMs)dgray-
scale segmentations of the major retinal arteries and veins in
RFIsdrather than RFIs to train CNNs to detect plus disease
because they strictly focus DL techniques on evaluating the retinal
vasculature, rather than other clinical abnormalities that may be
present in RFIs.1 To produce RVMs, a previously trained u-net was
used, which takes 640 � 480 color RFIs as input and outputs single
channel 640 � 480 RVMs, where each pixel intensity value
represents the overall probability of that pixel belonging to a
major artery or vein.1,25 All pixel intensity values that
represented a < 20% probability of said pixels indicating the
presence of major retinal blood vessels (pixel intensity values, <
51) were set equal to 0, because most of these pixels encode
information related to choroidal blood vessel patterns, which are
not relevant for plus disease diagnosis.16,19 Finally, RVMs were
resized to 256 � 256, because that was the size of the images
used to pretrain the ResNet-18 CNN (discussed below).
Generative Adversarial Network Development

Progressively growing GAN code was acquired from Facebook
Research’s publicly available GitHub repository.18,26 This GAN
was used, as opposed to a more state-of-the-art GAN, because
the desired outputs were black-and-white 256 � 256 images as
opposed to larger, more complex color images. Three PGANs were
trained to synthesize 256 � 256 de novo RVMs by learning the
data distribution of real RVMs in the training dataset and, specif-
ically, learning how to generate RVMs representing normal, pre-
plus, or plus disease vasculatures. Models were trained at 7
progressively grown image sizes (4 � 4, 8 � 8, 16 � 16, 32 � 32,
64 � 64, 128 � 128, and 256 � 256). All parameters were set at
the default values reported by Karras et al.18



Table 1. Partitions of the Informatics in Retinopathy of Prematurity Dataset

Dataset No. of Patients No. of Images Normal (%) Preplus (%) Plus (%)

Training 534 3477 2908 (83.6) 464 (13.4) 105 (3.0)
Validation 178 1167 903 (77.4) 222 (19.0) 42 (3.6)
Test 179 1098 927 (84.4) 136 (12.4) 35 (3.2)
Expert test 72 100 54 (54.0) 31 (31.0) 15 (15.0)
Total 963 5842 4792 (82.0) 853 (14.6) 197 (3.4)

Coyner et al � Synthetic Medical Images for Training AI
Unlike discriminative CNNs, monitoring loss statistics of GANs
during training does not provide information regarding the ability of
the GANs to synthesize images, and it is best to continue training
even if loss metrics have begun to diverge.17,18 After training, a
synthetic dataset consisting of the same number of images and
Figure 1. The main arteries and veins present in color retinal fundus images (RF
maps (RVMs; right column) using a previously trained u-net.
disease distribution as the training dataset was generated using the
PGANs, and a subset of images were evaluated visually and
subjectively to ensure that images represented grayscale RVMs
with medically plausible vascular trees that represented the desired
vascular severities (normal, preplus, or plus).
Is; left column) can be automatically segmented into grayscale retinal vessel
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Figure 2. Synthetic retinal vessel maps (RVMs) of eyes with (A) normal retinal vasculature, (B) preplus disease, or (C) plus disease can be generated by
progressively growing generative adversarial networks trained on a limited number of real RVMs.
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Feature Space Analysis

To confirm, beyond visual inspection, that synthetic RVMs rep-
resented real RVMs, features of real RVMs from the training
dataset were extracted from the penultimate layer of a CNN trained
to diagnose plus disease (as discussed below) from those same
RVMs. This layer output 512 features to the last layer of the CNN,
which was responsible for predicting normal, preplus, or plus
disease using said features. Uniform manifold approximation and
projection (UMAP) was used to reduce these features into a 2-
dimensional space (manifold). The Euclidean distance between
the 25 nearest neighbors for each point, with a minimum distance
of 0.99, was used to develop the manifold. All other parameters
remained at the default values reported by McInnes et al.27 The
features of the synthetic RVMs were then extracted from the
same CNN, and their place on the manifold, given these features,
was predicted.

Similarity Analysis

Although demonstrating that real and synthetic RVMs of matching
disease severity overlap in a dimensionally reduced feature space
suggests that synthetic RVMs are similar to real RVMs and that the
desired disease severities are being produced, it does not inform
4

whether the RVMs produced by the PGANs are unique or simply
reproductions or slightly modified versions of the RVMs from
which they were trained. Therefore, to evaluate image similarity,
the Fréchet inception distance (FID)da measure of similarity be-
tween two datasets of images, where the minimum score of 0 in-
dicates that 2 image datasets are identicaldwas computed between
real and synthetic RVMs.28 This metric compares datasets by
fitting 2 Gaussians to the extracted features of RVMs from each
dataset output by a ImageNet-pretrained InceptionV3 CNN, and
the FID between the two is calculated.29,30 To get an expected FID
value, the FID between real RVMs in the training dataset and real
RVMs in the combined validation and test datasets were compared.
This essentially tested how similar RVMs are between different
people. The FID was then used to compare real RVMs in the
training dataset with synthetic RVMs.

However, FID is a dataset-level measure of similarity. To
investigate at the image level, the Euclidean distances of images to
one another, determined using the features output by the same
InceptionV3 network used to compute FID, were determined.
Specifically, the closest pair of RVMs in the (1) training
dataset alone, (2) training dataset versus combined validation and
test dataset, or (3) synthetic dataset versus training dataset were
evaluated. These comparisons allowed us to test the following,
respectively: (1) the shortest Euclidean distance between RVMs



Figure 3. Two-dimensional manifold generated by uniform manifold
approximation and projection (UMAP) using the extracted image features
of real retinal vessel maps from a convolutional neural network trained to
diagnose plus disease using said retinal vessel maps (opaque triangles).
Features of synthetic retinal vessel maps (transparent circles) were extrac-
ted from the same model and their locations on the UMAP manifold were
predicted. Real and synthetic normal (green), preplus (orange), and plus
disease (red) retinal vessel maps, respectively, overlapped with one another
on the UMAP manifold.
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from the same participant, (2) the shortest Euclidean distance be-
tween RVMs from different participants, and (3) the shortest
Euclidean distance between synthetic RVMs and the real RVMs on
which the PGANs were trained.

Convolutional Neural Network Development

A SoftMax layer, which converts raw CNN predictions into a
probability distribution for all classes, was appended to 2 ResNet-
18 CNNs, pretrained on the ImageNet database.29,31,32 These
CNNs were fine tuned on real RVMs or synthetic RVMs
produced by PGANs. During training, the CNN trained on real
RVMs was validated using real RVMs, and the CNN trained on
synthetic RVMs was validated using a synthetic dataset with the
same size and same disease distribution as the validation dataset.
Both models were tested on real RVMs from 2 test datasets.

During training, RVMs were input to CNNs at a resolution of
224 � 224. Random rotations (e45� to 45�) and horizontal or
vertical flips, or both, were applied to the crops, each with a
probability of occurring equal to 0.5. Pixel values were standard-
ized with mean of 0 and standard deviation of 1. For validation and
testing, images were input at a resolution of 224 � 224 and only
image standardization was applied. To train the real RVM CNN
using the natural disease prevalence, a weighted random sampler
was used. The Adam optimizer was used at a learning rate of 0.001
with a batch size of 8.33 Models were trained for up to 50 epochs;
however, early stopping was implemented (with patience of 10
epochs) and only epochs that resulted in progressively better
accuracy on the validation dataset were saved.

Convolutional neural network performances were evaluated
using area under the receiver operating characteristic curve
(AUC).32 Specifically, discrimination between the binary outcome
of plus disease versus normal or preplus disease, as compared with
the reference standard diagnosis, was evaluated. To evaluate
differences between respective AUCs, CNN predictions were
bootstrapped 1000 times to compute sample means and 95%
confidence intervals.34 Significance was determined if the
bootstrapped mean of the AUC of the CNN trained on synthetic
RVMs fell outside of the 95% confidence interval of the
bootstrapped mean of the AUC of the CNN trained on real
RVMs. In addition, Delong’s test for correlated receiver
operating characteristic curves was used to verify these findings
(significance determined if P < 0.05). Finally, model
performances were evaluated on the expert test dataset.
Confusion matrices were statistically evaluated for similarity
using McNemar’s chi-square test and Cohen’s k value (inter-
preted using a commonly accepted scale: 0e0.20, slight agree-
ment; 0.21e0.40, fair agreement; 0.41e0.60, moderate agreement;
0.61e0.80, substantial agreement; and 0.81e1.0, near-perfect
agreement).35

Results

Imaging and Informatics in Retinopathy of
Prematurity Dataset

Retinal fundus images were partitioned into training, vali-
dation, test, and expert test datasets (Table 1), which
contained similar distributions of normal, preplus, and
plus disease RFIs. The expert test dataset was additionally
enriched with plus disease images. Color RFIs in each
dataset were segmented into grayscale RVMs (Fig 1).

Generative Adversarial Network Development

Throughout the GAN training process, synthetic RVMs
were evaluated visually. After subjective review, we found
that generated images: (1) appeared similarly to RVMs, (2)
showed medically plausible vascular trees, and (3) showed
dilation and tortuosity consistent with normal, preplus, and
plus disease (Fig 2).

Feature Space Analysis

Uniform manifold approximation and projection analysis
suggested that real and synthetic RVMs had similar features
because they overlapped with one another on the dimen-
sionally reduced UMAP manifold (Fig 3). Furthermore,
synthetic normal, preplus, and plus disease RVMs
overlapped with real RVMs of the same diagnoses. Taken
together, these results suggest that real and synthetic
RVMs not only contain the same general features, but
also disease-specific features. Furthermore, this result
shows that synthetic RVMs span the entire disease spectrum
represented by real RVMs, because real RVM features were
encapsulated entirely within the space of synthetic RVM
features.

Similarity Analysis

The FID for real RVMs from the training dataset compared
with real RVMs from the combined validation and test
datasets was 4.64, whereas the FID for synthetic RVMs
compared with the real RVMs from the training dataset was
6.53. This finding suggests that more similarity exists be-
tween real RVMs from different groups of participants than
exists between synthetic RVMs and the real RVMs on
which they were trained. Furthermore, the pair of RVMs
closest in Euclidean distance (5.54) were from the same
participant’s eye, and the closest pair of RVMs from
different participants showed a Euclidean distance of 5.71
(Fig 4). However, the closest pair of a synthetic RVM and a
5



Figure 4. Pairs of real retinal vessel maps (RVMs) are closer in feature space than pairs of real and synthetic RVMs. Using the same features output by
InceptionV3 to compute Fréchet inception distance, the Euclidean distances between RVMs from the same participants, different participants, and synthetic
RVMs and the real RVMs they were trained on were calculated. A, The closest Euclidean distance was 5.54 and occurred between RVMs from the same
participant’s eye. B, The closest RVMs from different participants showed a distance of 5.71. C, The closest synthetic RVM to a real RVM from the training
dataset showed a Euclidean distance of 6.15.
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real RVM from the training dataset showed a Euclidean
distance of 6.15. These results suggest that real RVMs
from different participants are more similar to one another
than any synthetic RVMs are to real RVMs from the
training dataset. That is, the PGAN is not simply
reproducing real images that could be identifiable.

Convolutional Neural Network Evaluation

The ability of CNNs trained on real or synthetic RVMs to
discriminate between plus disease and normal or preplus dis-
ease was evaluated via receiver operating characteristic curves
on the test dataset (Fig 5). The bootstrappedmeanAUC(0.934)
for the CNN trained on real RVMs was significantly different
6

from the bootstrapped mean AUC (0.971) of the CNN
trained on synthetic RVMs (P ¼ 0.004). Delong’s test for
correlated receiver operating characteristic curves confirmed
significance (P ¼ 0.006). Taken together, these findings
suggest that, for detection of plus disease, models trained on
synthetic RVMs are at least as performant as, if not superior
to, those trained on real RVMs.

Finally, both models’ predictions of 100 RVMs were
compared with the consensus diagnoses of 8 international ex-
perts (Table 2). McNemar’s chi-square test suggested that
predictions made by the CNN trained on real RVMs (P ¼
0.450) and thosemade by the CNN trained on synthetic RVMs
(P> 1.000)were not significantly different from the diagnoses
of 8 international experts. However, although Cohen’s k value



Figure 5. Models trained on synthetic retinal vessel maps (RVMs) detect
plus disease better than those trained on real RVMs. Receiver operating
characteristic curves (ROCs) of convolutional neural networks (CNNs)
trained on (A) real or (B) synthetic RVMs for detection of plus disease
versus normal or preplus disease from real RVMs in the test dataset are
depicted. Areas under the ROC curves (AUCs) were significantly different
as determined by 2 different tests (P ¼ 0.004, P ¼ 0.006).

Table 2. A Model Trained on Synthetic Retinal Vessel Maps
Predicts Plus Disease Diagnoses More Similarly to International
Experts Than a Model Trained on Real Retinal Vessel Maps

Ground Truth

Not Plus Plus

Real RVMs
Not Plus 83 5
Plus 2 10

Synthetic RVMs
Not Plus 84 1
Plus 1 14

RVM ¼ retinal vessel map.

Coyner et al � Synthetic Medical Images for Training AI
suggested moderate agreement (k ¼ 0.701) between expert
diagnoses and predictions of the model trained on synthetic
RVMs, the model trained on synthetic RVMs showed near-
perfect agreement (k ¼ 0.922) with experts’ diagnoses.
Discussion

In this work, we trained multiple PGANs to generate RVMs
depicting normal, preplus, or plus disease vasculature. We
then trained 2 ResNet-18 CNNs, one on real RVMs and the
other on synthetic RVMs, to diagnose plus disease. The 3
key findings are: (1) PGANs can synthesize realistic RVMs
that accurately represent the desired disease state, (2) syn-
thesized RVMs are less similar to the RVMs they were
trained on than real RVMs are to one another, and (3) CNNs
trained on synthetic RVMs can detect plus disease at least as
well as, if not better than, those trained on real RVMs.

Plus disease, by definition, is a disease of the main retinal
blood vessels.16 For this reason, the main arteries and veins
present in color RFIs were segmented into grayscale RVMs
using a previously trained u-net (Fig 1).1 These RVMs were
then used to train PGANs to generate RVMs with normal,
preplus, or plus disease vasculature. In general, RVMs
produced by these GANS were highly realistic, especially
when compared visually with real RVMs (Figs 1 and 2).
Uniform manifold approximation and projection
visualization confirmed that real and synthetic RVMs were
contained within the same feature space, meaning that
they shared similar features (Fig 3). Furthermore, synthetic
and real RVMs overlapped by disease severity (i.e.,
normal, preplus, and plus), suggesting that not only were
PGANs generating images that had similar features to real
RVMs, but also that each PGAN was generating features
unique to normal, preplus, or plus disease vasculatures
and that synthetic RVMs spanned the entire spectrum of
disease represented within real data. Taken together, these
results suggested that synthetic RVMs accurately depicted
their real RVM counterparts and could be useful for
training CNNs to detect plus disease.

However, the high degree of overlap between real and
synthetic normal, preplus, and plus disease RVMs in the
visualized UMAP embedding provoked the question of
whether the PGANs were simply replicating the RVMs they
had been trained on. To investigate this possibility, the FID
between real and synthetic RVMs was assessed. First, to
obtain an expected or baseline FID value, participants in the
training dataset were compared with participants in the
combined validation and test datasets (FID ¼ 4.64). Retinal
vessel maps from participants in the training dataset were
then compared with synthetic RVMs (FID ¼ 6.53). Syn-
thetic RVMs were more dissimilar (higher FID scores) from
the training RVMs than the training RVMs were dissimilar
to real RVMs from other participants. That is, synthetic
RVMs are not just copies of the training data. In fact, their
diversity seems to supersede the natural diversity found
between humans at the population level in our dataset.

We performed further analysis on the Euclidean distances
of CNN output features between all RVMs in the training
dataset compared with one another, RVMs in the training
dataset compared with RVMs in the combined validation
and test datasets, and synthetic RVMs compared with
training dataset RVMs. The pair of RVMs with the closest
Euclidean distance belonged to the same participant (Fig 4).
7
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However, the closest real and synthetic RVMs were further
apart from one another than the closest real RVMs that
belonged to different participants. This finding, once
again, suggests that more dissimilarity exists between real
and synthetic RVMs than exists between real RVMs from
different participants. Together, UMAP, FID, and
Euclidean distance analyses suggest that: (1) the PGANs
are not simply replicating the RVMs on which they were
trained, meaning that (2) the synthesized RVMs likely
contain less protected health information than real RVMs,
but (3) they still have features relevant not only to RVMs,
but specifically to normal, preplus, and plus diseases with
(4) a diversity that supersedes that of our dataset of real
RVMs.

Given these findings, real or synthetic RVMs were used to
train CNNs to detect real normal, preplus, or plus disease
RVMs. The CNN trained on synthetic RVMs was signifi-
cantly better able to detect plus disease than the CNN trained
on real RVMs, as evidenced by their respective AUCs (Fig
5). Both models were ultimately evaluated on the expert
test set, which was graded by a set of 8 international
experts. The model trained on synthetic RVMs
outperformed the model trained on real RVMs, as
evidenced by the Cohen’s k value. Given that the real and
synthetic RVM datasets contained the same number of
normal, preplus, and plus disease images, it is reasonable to
assume that the performance increase is the result of there
being more diversity among synthetic RVMs as compared
with real RVMs (supported by the higher FID score
between synthetic and real RVM datasets than between real
RVM datasets). That is, although the GANs learned to
generate RVMs from the same dataset that a CNN was
trained on to diagnose plus disease, the diversity of the
synthetic data they were able to generate may have
increased the performance of the CNN trained on synthetic
RVMs as compared with the CNN trained on real RVMs.

As shown above, using synthetic data has at least 2 potential
benefits. First, PGAN synthesizes de novo RVMs. In theory,
this means that GANs, which capture underlying disease
characteristics and data distributions, could be used to generate
synthetic medical images that can be shared publicly with a
lower degree of risk of identifying unique patients. Although
RFIs and RVMs currently are difficult to link to individual
patients without a reference scan to which they can be
compared, it is still theoretically possible.36UsingGANs could
allow for entirely synthetic datasets to be created and shared, so
that broader teams of researchers can investigate and train
models on existing data without privacy concerns. Second,
8

synthetic images may contain more variations in their
patterns and textures than real images, which may serve as a
viable data augmentation technique for increasing robustness
of CNNs for disease classification. In addition to increasing
the prevalence of rare diseases, this may be especially useful
in cases where one wishes to increase the proportion of
demographic minorities within a dataset. For example,
GANs have been used to alter the retinal pigmentation
present in RFIs to better ameliorate racial imbalances in
datasets.37

Still, because we did not use any privacy-preserving
techniques during GAN training, theoretical concerns
remain about whether synthetic images are truly de-iden-
tifed.38 Although FID suggests that real and synthetic RVMs
are not similar at the dataset level, and Euclidean distances
between RVMs suggest that real RVM features were more
similar to one another than to synthetic RVM features at
the image level; further image-level analyses should be per-
formed because the consequences of being wrong could be
detrimental. However, this proves more difficult than initially
thought. For example, one could compute the structural
similarity index measure or peak signal-to-noise ratio be-
tween image pairs to test for similarity.39 However, if a GAN
were to output training dataset images that were slightly
warped or rotated, then structural similarity index measure
and peak signal-to-noise ratio would suggest that the im-
ages were different, even though they were actually the same
image. This is why FID and Euclidean distance computed
over Inceptionv3 features were used, because they are more
invariant to flips, rotations, and so forth (because of data
augmentation techniques used during training) and have been
shown to correlate well with human judgement of visual
quality and diversity.28,40 Future work will investigate ways
to further validate these findings, for example, by building
siamese networks for identifying whether 2 images are
from the same patient.41

In conclusion, these findings suggest that GAN-generated
medical images may be just as powerful for training CNNs
for disease diagnosis and may even increase their robustness.
Ultimately, this may be broadly relevant to other medical
domains, where datasets are often limited and disseminating
datasets containing patient-identifiable images or proprietary
information is of concern. Future work will center around
exploration of similarity metrics, as well as applications to
other imaging methods and diseases within and outside of
ophthalmology. Adopting this technology could not only
improve medical CNN diagnoses, but could also allow for
legal, ethical sharing of medical datasets.
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