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A B S T R A C T

NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant
response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations that
disrupt the interaction between NRF2 and KEAP1, an inhibitor of NRF2, lead to NRF2 hyperactivation and promote oncogenesis. The mechanisms underlying NRF2's
oncogenic properties remain unclear, but likely involve aberrant expression of select NRF2 target genes. We tested this possibility using an integrative genomics
approach to get a precise view of the direct NRF2 target genes dysregulated in tumors with NRF2 hyperactivating mutations. This approach revealed a core set of 32
direct NRF2 targets that are consistently upregulated in NRF2 hyperactivated tumors. This set of NRF2 “cancer target genes” includes canonical redox-related NRF2
targets, as well as target genes that have not been previously linked to NRF2 activation. Importantly, NRF2-driven upregulation of this gene set is largely independent
of the organ system where the tumor developed. One key distinguishing feature of these NRF2 cancer target genes is that they are regulated by high affinity AREs that
fall within genomic regions possessing a ubiquitously permissive chromatin signature. This implies that these NRF2 cancer target genes are responsive to oncogenic
NRF2 in most tissues because they lack the regulatory constraints that restrict expression of most other NRF2 target genes. This NRF2 cancer target gene set also
serves as a reliable proxy for NRF2 activity, and high NRF2 activity is associated with significant decreases in survival in multiple cancer types. Overall, the pervasive
upregulation of these NRF2 cancer targets across multiple cancers, and their association with negative outcomes, suggests that these will be central to dissecting the
functional implications of NRF2 hyperactivation in several cancer contexts.

1. Introduction

NRF2 is a Cap-n-Collar (CNC) basic leucine zipper (bZIP) tran-
scription factor encoded by the gene NFE2L2 (Nuclear Factor, Erythroid 2
Like 2; hereafter referred to as NRF2 for simplicity). NRF2's primary role
is cytoprotective; specifically, it controls the transcriptional response to
reactive oxygen species (ROS) [1]. These chemically reactive species
can come from endogenous or exogenous sources, and have the po-
tential to react with all classes of cellular molecules, including DNA.
However, ROS, and H2O2 in particular, are also used for a range of
physiological cell signaling processes [2]. Accordingly, ROS levels must
be kept in check but not eliminated: too little and redox signaling is
disrupted, too much and cell damage occurs. Damage induced by ROS is
associated with a wide range of chronic diseases, from neurodegen-
erative disease to cancer [3–6], so the cellular responses that limit these
species (i.e. antioxidant pathways) must be finely tuned. NRF2 is a
central component of one such pathway, and research over the past
decade has demonstrated the importance of proper balance in this
pathway (reviewed in [1,7–9]).

NRF2 is a deeply conserved and widely expressed regulator of the
response to ROS [1]. NRF2 regulates redox-responsive gene expression
via its interaction with cis-regulatory sequences commonly referred to
as antioxidant response elements (AREs), but also referred to as elec-
trophile response elements (EpREs) or CNC-sMAF-binding elements
(CsMBEs) [10–13]; for simplicity we will refer to NRF2's target se-
quence as the ARE. NRF2 does not interact with AREs alone, but as an
obligate heterodimer with one of the three small MAF (sMAF) bZIP
proteins (MAF-F, MAF-G, MAF-K) [14,15]. The interaction between
NRF2-sMAF complexes and AREs drives induction of a host of cyto-
protective genes in response to oxidative stress (excess ROS). The ROS-
linked inducibility of this system is a result of NRF2's interaction with
the inhibitory protein KEAP1 (Kelch-like ECH Associated Protein 1)
[16–19]. KEAP1 can bind to cytoplasmic NRF2 and target it for ubi-
quitination and proteasomal degradation; this inhibitory process keeps
NRF2 activity low under basal (low ROS) conditions. However, KEAP1-
mediated inhibition of NRF2 is suppressed as ROS levels increase.
KEAP1 contains 27 redox-sensitive cysteine residues that altogether
essentially act as an oxidative stress sensor. ROS modify KEAP1's
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reactive cysteine residues, and this modification prevents KEAP1 from
binding newly synthesized NRF2 [20]. Thus, as ROS levels increase,
KEAP1 activity decreases, NRF2 is stabilized, and nuclear NRF2 con-
centration increases. Once in the nucleus, NRF2 can pair with one of the
widely expressed sMAF proteins and upregulate ARE-driven target
genes [19,21]. The genes targeted by NRF2 in this stress response are
varied. Antioxidant genes, proteostasis genes, and intermediary meta-
bolism genes are key NRF2 targets likely to play a central role in
helping cells mitigate and recover from oxidative stress [22–25].

The regulatory reach of NRF2 extends far beyond the cytoprotective
gene sets described above, however. Notably, NRF2 also directly acti-
vates the expression of its own repressor, KEAP1 [24,26]. This negative
feedback loop is conserved from fly to human, suggesting tight controls
on nuclear NRF2 are an integral part of the regulatory network [24,27].
This NRF2-KEAP1 feedback loop allows for modulation of NRF2-
mediated transcriptional activation, presumably ensuring precise

expression of NRF2 target genes across a wide range of redox en-
vironments. Although NRF2 activity is cytoprotective [8,28,29], lim-
itation of its activity by KEAP1 is crucial: mutations that impair KEAP1-
mediated degradation of NRF2 are associated with tumorigenesis
[30–34]. KEAP1 mutations leading to constitutive NRF2 activity were
first observed in lung cancer, and cancer-associated NRF2 mutations
disrupting KEAP1's inhibition of NRF2 were identified shortly there-
after [30,31,35]. Although these NRF2 hyperactivating mutations are
especially prevalent in tumors of the lung, such mutations are also
found in a number of other tumor types [34,36–39]. Importantly,
coding mutations in NRF2 or KEAP1 are not the only route to con-
stitutive NRF2 activity. For example, in certain tumors the KEAP1 locus
is hypermethylated, leading to low KEAP1 expression and high NRF2
activity [40–44], and NRF2 is also indirectly activated via oncogenic
KRAS or BRAF signaling [45]. Multiple other proteins that bind KEAP1/
NRF2 and/or modulate NRF2 activity have also been identified

Fig. 1. A subset of NRF2 target genes consistently upregulated in tumors with oncogenic NRF2 mutations. (A) Venn diagram comparing genes called as consistently
upregulated with NRF2 hyperactivating mutations in each cancer type, as indicated. Differential gene expression data are from [62]. Out of the 499 genes differ-
entially upregulated: 102 were upregulated in ≥ 2 cancers, 47 were upregulated in ≥ 3, and 24 were upregulated in all 4 cancers. Cancers listed correspond to the
following types from TCGA: Bladder, BLCA; Head and Neck, HNSC; Lung, LUSC; Uterine/Endometrial, UCEC. (B) Same as (A), only for genes consistently down-
regulated with NRF2 hyperactivating mutations. Out of 366 genes differentially downregulated, only three were shared between more than one cancer type, and
none were shared between more than two cancer types. (C) Graph representing the percentage of genes in each overlap category that are called as direct NRF2 targets
based on ChIP-seq data. The following fractions of genes were direct NRF2 targets in (x) cancers: (1–4 cancers), 78/499 genes; (2−4), 32/102; (3−4), 18/47; (all 4),
12/24. (D) STRING-based network analysis of the 32 NRF2 targets that are consistently upregulated in at least two cancers. Nodes represent the proteins encoded by
the 32 NRF2 target genes, and edge widths are scaled by the strength of evidence supporting an interaction between two nodes. Nodes shaded in red are classified as
cancer-associated genes by OncoScore (see (E)). (E) OncoScore [76] values for all 32 NRF2 cancer target genes. At an empirically determined threshold of 21,
OncoScore reliably discriminates cancer-associated genes (based on the Cancer Gene Consensus [77]) from non-cancer-associated genes; NRF2 cancer targets with a
score above this threshold are highlighted red.
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[46–51]. Considering the diverse molecular changes that can result in
hyperactivation of NRF2, it is quite plausible that a number of as-yet
unidentified mechanisms exist. Ultimately the routes to constitutive
NRF2 activity are varied, and cancer cells make use of the many
available options.

Constitutive NRF2 activity gives cancer cells a selective advantage
across a number of organ systems, including the lung, bladder, uterus,
and more [34,36–39,52]. The precise mechanisms by which NRF2
benefits cancer cells are not fully understood, but certainly include
chemoresistance, metabolic, and proliferative advantages [25,53–61].
Additionally, because NRF2 is a transcription factor, many of these
advantages are likely due to aberrant expression of its direct target
genes. In the work described here, we identify a gene expression sig-
nature for oncogenic NRF2 activity. Specifically, we describe a set of
direct NRF2 target genes consistently upregulated in tumors with on-
cogenic NRF2 mutations across multiple organ systems. This function-
ally important subset of NRF2 targets includes many of the core cyto-
protective genes of the NRF2-mediated antioxidant response, and the
expression of these NRF2 “cancer targets” is associated with poor out-
come across a number of cancers. Importantly, we determine what
mechanistically sets these NRF2 cancer targets apart from other non-
cancer-associated NRF2 target genes – chiefly, these cancer target loci
contain strong AREs in constitutively accessible chromatin, and thus
can be turned on in many different cancer-associated tissues.

2. Results

2.1. A gene expression signature associated with oncogenic NRF2

A recent analysis of transcriptome data from The Cancer Genome
Atlas (TCGA) identified hundreds of gene expression changes that occur
with cancer-associated NRF2 mutations that disrupt the NRF2-KEAP1
interaction interface [62]. This work focused on carcinomas from four
tissues – bladder urothelial carcinoma (BLCA); lung squamous cell
carcinoma (LUSC); head-neck squamous cell carcinoma (HNSC);
uterine corpus endometrial carcinoma (UCEC) – and identified genes
significantly up- or downregulated in NRF2-mutant tumors as compared
to non-NRF2-mutant tumors of the same cancer type [62]. Importantly,
NRF2 is classified as a cancer driver gene in all four of these cancers
[52]. We used this differential cancer gene expression data to identify
genes commonly dysregulated across cancers with NRF2 hyper-
activating mutations.

To explore the tissue specificity of gene expression changes in
cancers with mutated NRF2, we compared the differential gene ex-
pression lists from the four cancers analyzed in [62] to identify shared
up- or downregulated gene sets. The overlap pattern for the upregulated
gene set (Fig. 1A) was noticeably different from the downregulated
gene set. Of the 499 genes upregulated in any of the four cancers, ap-
proximately 20% (102 genes) were upregulated in at least two of the
four cancers, and ~5% (24 genes) were upregulated in four out of four
cancers (Fig. 1A). There was very little overlap of downregulated genes
(Fig. 1B). Thus, consistent with NRF2's long-recognized role as a tran-
scriptional activator [15,19], oncogenic NRF2 is associated with a
consistent gene activation signature. Overall, this shared expression
profile implies that a common set of gene regulatory changes have
taken place in this class of NRF2-mutated cancers.

The above results highlight a gene set commonly upregulated with
oncogenic NRF2 in cancers derived from a variety of organ systems, yet
the data do not provide information indicating a direct role for NRF2 in
regulating these genes. To identify likely direct targets of NRF2 within
the upregulated gene set, we crossreferenced it with a list of NRF2
target genes based on our own ChIP-seq data (see Methods) [23,63]. For
this comparison we used our data from human lymphoblastoid cell line
cultures treated with sulforaphane, a dietary isothiocyanate that acti-
vates NRF2 [23,24,64], because it is a robust dataset that is highly
concordant with NRF2 ChIP-seq data from additional conditions and
cell lines [23,24,63]. We calculated the percent overlap between the
ChIP-seq derived direct NRF2 targets and various groupings of the
cancer upregulated genes (i.e., those upregulated with NRF2 mutation
in 1–4 cancer types, 2–4 cancer types, etc.). We observed a clear trend
that the genes upregulated in multiple cancer types were more likely to
be direct NRF2 targets (Fig. 1C). Indeed, almost a third of the genes
upregulated in at least two cancer types (32/102) are direct NRF2
targets, and fully half of all genes upregulated across all four cancer
types (12/24) are such NRF2 targets. The remainder of this study fo-
cuses on the 32 direct NRF2 target genes consistently upregulated in at
least two distinct cancer types; we will subsequently refer to these as
the NRF2 “cancer target genes” (Table 1).

2.2. NRF2 cancer target genes are functionally interconnected and relevant
to oncogenesis

Gene ontology (GO) enrichment analysis [65,66] of the NRF2
cancer targets revealed that most of these genes play a role in main-
taining cellular redox balance and/or responding to toxicants and other
stressors (Table 1 and data not shown). However, because GO anno-
tations are not truly comprehensive, a number of the genes not char-
acterized as playing role in redox or stress responses in Table 1 have, in
fact, been implicated in these processes. For example, the ATP-binding
cassette transporters encoded by ABCB6 and ABCC3 both play roles in
maintaining redox balance [67–70], as do the proteins encoded by

Table 1
NRF2 Cancer Target Genes. Gene Ontology analysis of the 32 direct NRF2 target
genes, as called by ChIP-seq, that are consistently upregulated in at least two of
the four cancer types, as indicated. Differential expression calls are based on
data from Araya et al. [62].

Gene Cancer Typesa Redox Balanceb Response to Stress/Toxicityc

ABCB6 4 − −
ABCC3 2 − −
AKR1C3 4 ✓ ✓
ANXA10 2 − −
ASF1A 2 − ✓
DNAJB4 2 − ✓
EPHX1 4 − ✓

FECH 4 − ✓
FTH1 2 ✓ −
GCLC 3 ✓ ✓
GCLM 4 ✓ ✓
GSR 3 ✓ ✓
GSTM3 2 − ✓
KEAP1 2 − −
MAFG 2 − ✓

ME1 4 ✓ −
NAMPT 3 − −
NECAB2 2 − −
NQO1 4 ✓ ✓
PANX2 4 − ✓
PIR 2 ✓ −
PRDX1 3 ✓ ✓
SLC3A2 2 − −
SLC7A11 3 ✓ ✓
SRXN1 4 ✓ ✓
TKT 4 − −
TLK1 2 − ✓
TMTC3 2 − −
TRIM16L 4 − −
TXN 3 ✓ ✓

TXNRD1 4 ✓ ✓
ZNF746 2 − −

a Number of cancer types in which gene is upregulated (out of 4 total – BLCA,
LUSC, UCEC, HNSC).

b Includes the 'response to oxidative stress' and 'oxidation-reduction process'
GO categories (GO:0006979 and GO:0055114).

c Includes the 'response to stress' and 'response to toxic substance' GO cate-
gories (GO:0009636 and GO:0006950).
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NAMPT, SLC3A2, and TKT [71–74]. And, as described multiple times
above, KEAP1 is intimately linked to the NRF2 antioxidant pathway;
KEAP1 is transcriptionally regulated by NRF2 as part of a negative
feedback loop [24,26], but this feedback mechanism is broken in cancer
cells carrying mutations that disrupt the NRF2-KEAP1 interaction in-
terface [30,35]. However, despite the imperfect nature of ontology
annotations, GO analysis still reveals a strong enrichment for genes
involved in the cellular response to oxidative stress or other toxic
stresses.

STRING-based network analysis [75] provides further evidence that
the NRF2 cancer target genes encode proteins that are strongly inter-
connected at a functional level (Fig. 1D). STRING identifies potential
functional associations between proteins based on both physical and
indirect interactions. In Fig. 1D, putative interactions are indicated by
lines (“edges”) connecting the individual proteins (“nodes”); the
thickness of each edge is proportional to the confidence that the in-
teraction is robust and biologically meaningful, given the supporting
evidence [75]. The NRF2 cancer target network contains 64 edges.
Using a background model based on the human proteome, a network of
32 proteins would be expected to contain 5 edges at random. Using a
more conservative background model based on all potential NRF2
targets (as measured by ChIP-seq), a network of 32 proteins would be
expected to contain 11 edges. Accordingly, based on the conservative
background model, the observed/expected ratio for edges within the
NRF2 cancer target genes is 5.8 (p < 0.0001). Overall, it is clear that
the NRF2 cancer target gene network is significantly interconnected.

The above results do not, however, indicate whether this NRF2
cancer target gene set is relevant to oncogenesis. To address this, we
also assessed the cancer relevance of the NRF2 cancer target genes
using OncoScore, a text-mining tool that discriminates cancer-asso-
ciated genes from other genes based on citation frequencies from bio-
medical literature [76]. We used this tool to move beyond lists of genes
associated with cancer based on mutation frequencies alone, which can
miss many genes that play important functional roles in oncogenesis.
Rather, OncoScore uses automated PubMed queries and text-mining
algorithms to identify genes enriched for citations in the cancer re-
search literature. Indeed, 75% (24/32) of the NRF2 cancer target genes
are called as cancer associated (Fig. 1E), surpassing an OncoScore
threshold that reliably discriminates cancer-associated genes (based on
the Cancer Gene Consensus [77]) from genes not associated with cancer
[76]. This result, combined with manual analysis of the existing lit-
erature (see Discussion) suggests a significant fraction of the NRF2
cancer target genes are likely to play an important role in NRF2's on-
cogenic potential.

2.3. NRF2 binds strong AREs at its cancer target gene loci

We next asked whether the NRF2 cancer target genes possess any
unique features that could explain why they are more broadly re-
sponsive to oncogenic NRF2 than other NRF2 target genes. Because
NRF2 is a DNA-binding transcription factor, we focused on character-
izing ChIP-seq-derived NRF2 binding sites near the cancer target genes
and non-cancer target genes (i.e., NRF2 targets not upregulated in 2+
cancer types). At the ChIP-seq peak-calling threshold used for this
study, NRF2 has 3122 genome-wide DNA binding sites. Because some
loci contain more than one binding site, this translates into 2016 po-
tential direct NRF2 target genes – 32 cancer target genes and 1984 non-
cancer target genes.

To explore the relationship between NRF2 binding at its cancer
versus non-cancer target genes, we first focused on strength of NRF2's
ChIP-seq binding signals (fold enrichment over background) at these
two classes of target genes. ChIP-seq binding reflects the degree to
which a transcription factor is bound at a regulatory DNA region,
averaged across a population of cells. This signal is often positively
correlated with a transcription factor's regulatory potential at a given
locus, although there are exceptions to this pattern [78,79]. For NRF2,

we found that its cancer target genes are generally associated with
stronger NRF2 binding (median fold enrichment of 9.38; mean 19.64)
relative to its non-cancer target genes (median fold enrichment of 6.46;
mean 7.35) (Fig. 2A). A similar pattern was observed when we looked
at the ARE sequences within NRF2 binding sites near its cancer and
non-cancer target genes (Fig. 2B). For this comparison, we used position
weight matrix (PWM) scores to quantify how closely a given region's
strongest ARE matched the consensus ARE sequence; the NRF2 cancer
target gene AREs were significantly stronger than the AREs at the non-
cancer targets (median PWM score of 16.3 versus 13.1). Thus, one
difference between the NRF2 cancer and non-cancer targets is that the
cancer gene enhancers tend to be regulated by strong ARE sequences
that are associated with robust NRF2 binding.

2.4. NRF2 cancer target AREs reside in constitutively permissive chromatin
environments

Despite the fact that the 32 cancer target genes tend to be associated
with strong NRF2 binding, a number of non-cancer target genes are also
associated with strong NRF2 binding (orange box in Fig. 3A). We next
focused on this set of robust non-cancer NRF2 targets – the top 200
based on ChIP-seq fold enrichment values – as a reference for com-
parison with the NRF2 cancer targets. This is a more stringent com-
parison than the one described in the previous section, but our intention
remained the same: to identify features that might explain why the
NRF2 cancer targets are more broadly responsive to oncogenic NRF2.
This more stringent comparison revealed no significant differences in
ChIP-seq enrichment (Fig. 3B) or ARE PWM scores (Fig. 3C) between
NRF2's cancer targets and the top 200 non-cancer targets. Thus, ARE
sequence and binding strength alone are not sufficient to explain the
broad responsiveness of NRF2's cancer target genes.

If the NRF2 bound AREs are equivalent at the cancer targets and the
strongest non-cancer targets, what other regulatory features at the
cancer AREs could allow for their activation across organ systems?
Transcription factor interactions with DNA take place in the context of
chromatin, and the local chromatin environment at a transcription
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factor binding site can have a significant effect on binding and reg-
ulatory output [79–83]. With this in mind, we next tested whether AREs
at the NRF2 cancer target genes were more likely to fall within per-
missive chromatin environments.

We first focused on DNA accessibility. Nuclear DNA is associated
with nucleosomes, and this interaction can act as an impediment,
making regulatory DNA elements inaccessible to transcription factors.
Nucleosome positioning is a regulated process that can constrain or
allow transcription factor access to DNA in a cell-type specific manner,
and it can be monitored genome-wide using DNase-seq (DNase I

hypersensitive site sequencing) [84,85]. DNase-seq is based on the fact
that nucleosome-associated inaccessible DNA is protected from clea-
vage by DNase I, whereas more accessible DNA presents as DNase hy-
persensitive sites (DHS). The ENCODE (Encyclopedia of DNA Elements)
consortium has generated genome-wide DHS maps for 125 human cell
lines and primary cells [85]; we used these data to test whether NRF2
binding sites at its cancer target loci are more broadly accessible than
its non-cancer-associated binding sites. Indeed, in comparison to the
NRF2 cancer targets, the full list of non-cancer-associated NRF2 bound
regions had a significantly higher fraction of targets with a DHS score of
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0, meaning these NRF2 binding regions are inaccessible in most cell
types (Supplemental Fig. 1B). Importantly, this pattern also held true
when comparing cancer-associated NRF2 bound regions to the top 200
non-cancer-associated NRF2 bound regions – the cancer-associated re-
gions had a significantly higher median DHS score than the top 200
non-cancer-associated NRF2 bound regions (Fig. 3D). In fact, the small
number of cancer-associated NRF2 bound regions that are not broadly
accessible are either: (1) weaker secondary binding events at a locus
with a separate strong, accessible NRF2 binding region, or (2) fall
within repetitive DNA elements (SINEs or LINEs), which can be asso-
ciated with nonconsensus transcription factor binding and/or present
with sequencing mappability issues that can lead to false positive or
negative results in various -seq assays (Supplemental Fig. 2) [86–88].
Thus, with a few explainable exceptions, these results support a model
in which NRF2's cancer target genes are activated in multiple organ
systems because strong AREs located in constitutively accessible reg-
ulatory DNA regions drive their expression.

A comparison of NRF2 binding sites with chromatin state data from
the Roadmap Epigenomics Consortium provides further support for the
model proposed above. The Roadmap project used ChIP-seq data for a
set of five histone modifications profiled across 127 diverse tissues and
cell types (including>70 primary cell or tissue types and> 25 pri-
mary cultures) to generate a high resolution view of cell-specific
chromatin states across the human genome [89]. In total, 15 chromatin
states were defined in the chromatin state model we used. To determine
if there is a correlation between chromatin state and NRF2 binding at its
cancer-associated and non-cancer-associated targets, we used GIGGLE
[90] to calculate the significance of overlap between the different
classes of NRF2 binding and the 127 cell- and tissue-specific chromatin
state models (Fig. 3E and Supplemental Fig. 3). In general, NRF2
binding occurs in chromatin states associated with cis-regulatory DNA
across all cell types, particularly in: (1) TssA, which is characterized by
high levels of histone H3 lysine 4 trimethylation (H3K4me3); (2)
TssAFlnk, which is characterized by a combination of H3K4me3 and
histone H3 lysine 4 monomethylation (H3K4me1); and (3) Enh, which
is characterized by high levels of H3K4me1. However, NRF2's chro-
matin state preferences are not uniform across its cancer-associated and
non-cancer-associated binding sites (Fig. 3E and Supplemental Fig. 3).
Cancer-associated NRF2 binding is strongly enriched in the TssA
(H3K4me3) chromatin state across all 127 cell types, whereas the non-
cancer-associated NRF2 binding is far less TssA-enriched across cell
types (Fig. 3E). On the other hand, non-cancer-associated NRF2 binding
is uniquely enriched in the Enh (H3K4me1) chromatin state (Fig. 3E).
Importantly, although both H3K4me1 and H3K4me3 mark regulatory
DNA regions, H3K4me1 does not indicate whether an enhancer or
promoter is active; only H3K4me3 is positively correlated with active
promoter or enhancer regions [91–93], and regions classified as TssA
have more permissive cis-regulatory activity than Enh regions based on
massively parallel reporter assays [94]. Thus, cancer-associated and
non-cancer-associated NRF2 binding sites correlate with distinct chro-
matin landscapes, with the cancer-associated NRF2 binding sites more
strongly linked to ubiquitously permissive chromatin regions.

Multiple results described thus far indicate that the regulatory en-
vironments at NRF2's cancer target gene loci are more permissive than
at NRF2's other target genes. Consistent with this, we found that the
NRF2 cancer target genes are also more likely to be broadly expressed
than the non-cancer targets (Fig. 3F).

A comparison of four classical NRF2 target genes highlights the key
difference between its cancer target genes and its other targets. NQO1,
GCLC, GCLM, and HMOX1 (also known as HO-1) are all well-estab-
lished, highly responsive NRF2 target genes [1], however, only NQO1,
GCLC, and GCLM are called as NRF2 cancer targets (see Table 1). In-
deed, a closer look at expression of these four classic NRF2 targets in
tumors with no NFE2L2 mutation versus tumors with an NFE2L2 mu-
tation reveals that HMOX1 is not as consistent in its activation by
NFE2L2 mutation (Fig. 4A). While NQO1, GCLC, and GCLM induction is

strongly significant in almost all cancer contexts, HMOX1 induction is
robust (Wilcoxon p-value<0.01) only in LUSC. HMOX1 induction is
nominally significant in HNSC (Wilcoxon p-value<0.05), and is not
significant in UCEC or BLCA. The dominant ARE sequences within the
two high confidence NRF2 binding sites at HMOX1 are just as strong as
the AREs at the other three genes, so this discrepancy in HMOX1 ex-
pression cannot be explained by ARE sequence (Fig. 4B). Similarly,
ChIP enrichment signals at the two NRF2 binding sites near HMOX1 are
as strong as, or stronger than, binding at NQO1, GCLC, or GCLM
(Fig. 4C). Thus, ARE sequence and NRF2 binding strength are not suf-
ficient to explain the less consistent induction of HMOX1 by oncogenic
NRF2.

A far different pattern emerges when we look at the dominant
chromatin states at the NRF2 binding sites near NQO1, GCLC, GCLM,
and HMOX1. As described above, the Roadmap Epigenomics project has
generated high-resolution maps of chromatin states across 127 human
tissues and cell types [89]. We used these data to identify the dominant
chromatin state at each of these NRF2-targeted AREs across all 127
tissues/cells (Fig. 4D). NRF2 binding at the three cancer-associated
genes (NQO1, GCLC, or GCLM) falls in regions classified as TssA or
TssA-flanking (permissive, H3K4me3-associated) chromatin states in
essentially all 127 cell/tissue types profiled (Fig. 4D). The NRF2
binding sites near HMOX1, however, fall within regions with sub-
stantial variation in chromatin state across the 127 cell/tissue types
(Fig. 4D). For example, the HMOX1 enhancer with the most robust
NRF2 binding (labeled HMOXEnh1 in Fig. 4) is classified as TssA or TssA-
flanking in< 50% (55/127) of the Roadmap-profiled samples, and is
classified as Enh (less permissive, H3K4me1-associated) in> 30% (42/
107) samples. In fact, the HMOX1Enh1 region is even classified as
quiescent chromatin in 11 samples. Therefore, these data support a
model where NQO1, GCLC, and GCLM are broadly responsive to on-
cogenic NRF2 because their AREs fall within ubiquitously permissive
chromatin; HMOX1 is less broadly responsive because its AREs fall
within chromatin environments that are only permissive in select cell or
tissue types.

Taken together, these analyses suggest that oncogenic NRF2 is able
to upregulate its cancer target genes in a variety of cell types because
these genes contain fewer cell-specific repressive inputs, particularly in
the chromatin environment surrounding their ARE-containing reg-
ulatory DNA regions.

2.5. High expression of NRF2 cancer target genes is associated with NRF2
pathway variation

Since the NRF2 cancer target genes are consistently upregulated by
oncogenic NRF2, and their AREs fall within permissive chromatin in
most cell types, we reasoned that they could serve as proxies for NRF2
activation status beyond the four tumor types addressed above. This is
an important point because identifying tumors with hyperactive NRF2
is not as simple as looking for mutations in NRF2 – there are many
routes to NRF2 activation [37]. Thus, we used RNA-seq data from TCGA
to infer NRF2 activity across> 9000 tumors based on mean expression
of the 32 NRF2 cancer target genes (Fig. 5). The tumor populations of at
least ten different cancer types show a clear positively skewed or bi-
modal distribution, indicative of a significant tumor subset with higher
than average inferred NRF2 activity. Cancer types with this profile in-
clude the four discussed so far (LUSC, HNSC, BLCA, UCEC), as well as
liver hepatocellular carcinoma (LIHC), esophageal carcinoma (ESCA),
lung adenocarcinoma (LUAD), kidney renal papillary cell carcinoma
(KIRP), cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), and kidney renal clear cell carcinoma (KIRC). In
addition, although not as dramatic, additional cancer types also have
distributions that are positively skewed (e.g. breast invasive carcinoma,
or BRCA). These patterns of inferred NRF2 activity imply that NRF2
hyperactivation is common in a range of carcinomas and adenocarci-
nomas.
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Fig. 4. Gene expression, NRF2 binding, and chromatin state properties at NQO1, GCLC, GCLM, and HMOX1. (A) Gene expression values (RNA-seq) from TCGA for three
NRF2 cancer target genes (NQO1/GCLC/GCLM) and a strong, non-cancer target gene (HMOX1) in the four cancers described in Fig. 1. For each cancer, tumors with
mutated NRF2/NFE2L2 were separated from tumors with normal NRF2/NFE2L2; each dot represents a single tumor. Horizontal lines represent the mean (+/- SE)
expression for each gene. (***p≤ 0.001; **p≤ 0.01; *p≤ 0.05) (B) ChIP-seq fold enrichment (FE) across NRF2-bound enhancers at NQO1, GCLC, GCLM, and
HMOX1. HMOX1 is associated with two NRF2-bound enhancers, represented here as HMOXEnh1 and HMOXEnh2. (C) Same setup as (B) only comparing ARE position
weight matrix (PWM) scores at NQO1, GCLC, GCLM, and HMOX1. (D) As in Fig. 4E, NRF2 peaks were aligned to the 15-state chromatin state maps for 127 cell lines
and primary cells/tissues from Roadmap Epigenomics using GIGGLE [89,90]. NRF2 peaks were assigned a single chromatin state (based on largest genomic overlap)
for each cell/tissue, and these assignments were tallied for all 127 cells/tissues. The y-axis indicates the number of cell/tissues, out of a total of 127, in which the
NRF2 binding site overlapped with the indicated chromatin state (each bar represents a chromatin state, as indicated in graph legend).
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Fig. 5. Inferred NRF2 activity across cancer types. Inferred NRF2 activity based on mean transcript expression of the 32 NRF2 cancer target genes across> 9000
tumors profiled by The Cancer Genome Atlas. Each dot represents an individual tumor, and black lines represent the mean value for each cancer type.
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The data presented in Fig. 5 are mutation agnostic – NRF2 activity is
inferred based on gene expression data alone – so it is not clear which
mutations are driving high NRF2 activity. Thus, although the NRF2
cancer target genes were identified based on changes associated with
NRF2 mutation in a limited number of tumors, our inferred activity
data might identify additional genetic alterations driving high NRF2
activity. To test this possibility, we used a receiver operating char-
acteristic (ROC) based approach to ask which cancer driver mutations
[52] are enriched in tumors with high NRF2 activity. First, for each
cancer type a mean inferred NRF2 activity value was determined.
Cancer-specific mean inferred NRF2 activity values were then used to
normalize the inferred NRF2 activity for each tumor across all cancers,
thus removing cancer specific differences in basal NRF2 activity (see
Supplemental Fig. 4). Next, all tumors were ranked in decreasing order
of inferred NRF2 activity. We screened all 439 cancer driver genes [52]
for positive association with inferred NRF2 activity by calculating the
area under a ROC curve (AUC) (see Supplemental Fig. 4). To calculate
the AUC for a given driver gene, ranked tumors were called ‘positive’ if
they had a mutation in the gene, and ‘negative’ if they had no mutation
in the gene. For this analysis, AUC values closer to 1 correspond to
enrichment (high NRF2 activity is a strong classifier for tumors with a
mutation in given gene), 0.5 corresponds to no enrichment (random
relationship between NRF2 activity and mutation), and values< 0.5
correspond to inverse relationships (low NRF2 activity identifies tumors
with a mutation in given driver gene). This approach essentially asks
whether inferred NRF2 activity alone is a strong classifier for a given
mutation. We limited our analysis to driver genes that were mutated in
at least 50 of the 7679 tumors with both RNA-seq data and non-silent
mutation data. Using this method, the top three genes with mutations
associated with high NRF2 activity were NFE2L2/NRF2 (AUC= 0.843),
KEAP1 (AUC = 0.826), and CUL3 (AUC = 0.609) (Fig. 6A, solid lines).
Importantly, in addition to mutations, NFE2L2/NRF2 amplification
(copy number gain) and KEAP1 or CUL3 deletion (copy number loss)
are also associated with high inferred NRF2 activity (Fig. 6A, dashed
lines). Together, mutations in these three genes can account for many of
the “high NRF2” tumors in multiple cancer types (Fig. 6B). Ultimately,
considering it captures multiple mutations and copy number variations
known or expected to alter NRF2 activity, these results suggest this gene
set is a reliable NRF2 pathway signature.

2.6. High expression of NRF2 cancer target genes is associated with poor
cancer prognosis

The work described in the previous sections implies that the NRF2
cancer target genes (1) are potentially important mediators of NRF2-
driven oncogenesis, and (2) could serve as proxies for NRF2 activation
status in a tumor. Thus, considering the functional relevance and bio-
marker potential of this gene set, we next asked whether inferred NRF2
activity, based on expression of the NRF2 cancer target genes, is asso-
ciated with significant differences in survival across 29 cancers profiled
by TCGA. First, for each cancer type, we used expression data to group
tumor samples according to the expression levels of the 32 NRF2 cancer
target genes. Using hierarchical clustering, we divided the tumors for
each cancer type into “normal NRF2” and “high NRF2” groups, and
compared the long-term survival outcomes for the patients from which
the tumors were obtained (Fig. 7 and Supplemental Fig. 5). A total of 10
cancers allowed for clear clustering of tumors into groups of high and
normal NRF2 cancer target gene expression. This included the four
cancer types that were used to generate the NRF2 signature (BLCA,
LUSC, HNSC, and UCEC), as well as kidney renal papillary cell carci-
noma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarci-
noma (LUAD), esophageal carcinoma (ESCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC), and testicular
germ cell tumors (TGCT). Within this overall group of 10, there was a
distinct trend toward high NRF2 activity corresponding to decreased
survival (Fig. 7 and Supplemental Fig. 5A), and four cancer types –

BLCA, HNSC, KIRP, and LIHC – exhibited a significantly lower overall
survival in the high NRF2 group. No cancers showed a significant in-
crease in overall survival with high NRF2 activity.

Although clustering-based separation of tumors of a given cancer
type into high and normal NRF2 groups is ideal for these analyses, this
was not possible for more than half of the TCGA profiled cancers.
Therefore, to further verify our clustering-based survival analysis, we
used a simple thresholding method to separate the tumors for each
cancer type profiled by TCGA. Briefly, for each cancer type, we first
ordered the tumors based on average NRF2 cancer target gene ex-
pression, and then used a 90th percentile cut-off to split them into
normal (< 90th percentile) and high (≥90th percentile) NRF2 activity.
We then looked for differences in overall survival between the high and
low NRF2 tumor sets. Despite the weaknesses inherent in this thresh-
olding approach – high NRF2 tumors will be placed in low NRF2 ca-
tegory in cancers with many (> 10%) high NRF2 tumors – this analysis
was consistent with the trends in the hierarchical clustering-based
analysis. Again, high expression of the NRF2 cancer target genes is
primarily associated with decreased overall survival (Supplemental
Fig. 6), and 11 cancer types showed a significant decrease in overall
survival in the high NRF2 group using this method. Three cancer types
– KIRP, BLCA, and LIHC – were associated with significant decreases in
overall survival using both methods, and the clustering-based results for
these three cancer types are shown in Fig. 7. Overall, this work implies
that, at least for certain cancers, high expression of the NRF2 cancer
target genes is associated with significantly shortened overall survival
times.

3. Discussion

Dysregulation of transcription factor function is a common occur-
rence in cancer [52,95–97]. In order to understand the role of cancer-
associated transcription factor dysregulation, one must have an accu-
rate view of the factor's target genes, as these encode the effector
proteins that ultimately drive oncogenic outcomes. Here, we focused on
the transcription factor NRF2, which is often hyperactivated in cancer
via mutations that disrupt the NRF2-KEAP1 interaction interface
[1,7,30,35]. In fact, based on these mutations, NFE2L2 (which encodes
NRF2) is considered a cancer driver gene in several cancer types, in-
cluding carcinomas of the lung, bladder, head/neck, and uterus/en-
dometrium; and KEAP1 is classified as a cancer driver in both lung
carcinoma and adenocarcinoma [34,38,52,98–100]. To gain insight
into the core oncogenic NRF2 regulatory network, we used an in-
tegrative genomics approach that combined our own ChIP-seq data
with TCGA gene expression data to identify direct NRF2 target genes
consistently upregulated by oncogenic NRF2 across multiple cancer
contexts. Below we discuss what makes these NRF2 cancer target genes
unique from a gene regulation standpoint, as well as the implications of
this gene set for understanding NRF2's role in oncogenesis.

Like most transcription factors, NRF2 binds to thousands of genomic
regions based on ChIP-seq experiments. At the relatively stringent peak
calling threshold used in this study, NRF2 has approximately 3100
genome-wide binding sites, and these binding sites map to approxi-
mately 2100 unique genes (based on the nearest transcription start site
to a peak). Thus, NRF2 could potentially alter expression at a con-
siderable number of loci. However, when we compared these potential
NRF2 targets to gene expression changes associated with oncogenic
NRF2 mutation in carcinomas of the lung, bladder, head/neck, or
uterus/endometrium [62], only 32 direct target genes were upregulated
by NRF2 in at least two cancer types. These 32 genes tend to be robust
NRF2 targets, in that NRF2 binding at these loci is strong based on
ChIP-seq fold enrichment, and these binding events are associated with
sequences that are strong matches to the ARE consensus. Yet many
other NRF2 target genes (e.g. HMOX1) share these features but fail to be
consistently upregulated with oncogenic NRF2 mutations; thus, ARE
sequence and NRF2 binding strength alone do not mechanistically
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differentiate NRF2-targeted cancer AREs from its non-cancer AREs.
Instead, what differentiates the cancer AREs from the strong, non-
cancer AREs is the chromatin environment in which the AREs are lo-
cated. Cancer AREs are located in regions of the genome that are
characterized by high DNA accessibility and permissive chromatin
signatures in the vast majority of cell and tissue types tested, whereas
equivalent non-cancer AREs fall in regions with more complex chro-
matin environments that vary by tissue. It is not yet clear which reg-
ulatory factors establish and maintain the unique, broadly permissive
chromatin environment at the cancer AREs. Nor is it clear which factors
regulate the restrictive chromatin environment at strong, non-cancer
AREs, although BACH1 is one candidate. BACH1 is a repressive tran-
scription factor that can also partner with small MAF proteins to bind
ARE sequences, and it plays a role in context-specific repression of
HMOX1 [101]. Importantly, BACH1 can also recruit the chromatin

remodeling factor CHD8 and the DNA methyltransferase DNMT3B to
DNA, so it has the potential to create a repressive chromatin environ-
ment at ARE sequences [102]. However, it is also likely that tran-
scription factors targeting non-ARE sequences can modulate NRF2 ac-
tivity at many of its binding sites, so there may be distinct mechanisms
limiting the activity of individual non-cancer AREs. Nevertheless, re-
gardless of the mechanism(s) restricting non-cancer ARE activity, our
work supports a model in which cancer AREs are unique: at the cancer
AREs, NRF2 can bind and elicit a transcriptional response in almost all
cellular contexts because these AREs are not subject to the same tissue-
specific regulatory constraints as most other AREs.

One implication of the NRF2 cancer target gene set's potential broad
responsiveness to NRF2 is that it will serve as a reliable proxy for NRF2
activation status in many cellular contexts. We therefore used this ex-
pression signature to infer NRF2 activity across thousands of TCGA-

Fig. 6. Inferred NRF2 activity and mutation or copy number variation in the NRF2-KEAP1-CUL3 axis. (A) Receiver operating characteristic (ROC) curves for the
classification of mutation or copy number variation using pan-cancer inferred NRF2 activity. Left panel: NRF2/NFE2L2 non-silent mutation (solid red line) or
amplification (dashed red line). Center panel: KEAP1 non-silent mutation (solid blue line) or deletion (dashed blue line). Right panel: CUL3 non-silent mutation (solid
purple line) or deletion (dashed purple line). Area under the curve (AUC) values are also represented for each mutation/amplification/deletion. (B) Inferred NRF2
activity for a subset of cancer types is presented in the same manner as in Fig. 5. Tumors with mutations in NFE2L2/NRF2 (red), KEAP1 (blue), or CUL3 (purple) are
highlighted for the indicated cancer types.
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profiled tumors, and test whether high NRF2 tumors are associated with
the expected NRF2 pathway mutations. Indeed, the top three mutated
genes identified were NFE2L2, KEAP1, and CUL3 – all central players in
the NRF2 signaling pathway. As discussed previously, mutations that
disrupt NRF2-KEAP1 interaction lead to constitutive NRF2 activity
[1,7]. CUL3 encodes the ubiquitin ligase that KEAP1 uses to target
NRF2 for proteasomal degradation [103–105]. Mutations in CUL3 have
previously been linked to NRF2 activation in papillary renal cell car-
cinoma [106], and our analysis confirms this, although we also see
CUL3 mutation associated with high NRF2 activity in breast, esopha-
geal, and head/neck cancer (see Fig. 6B). Importantly, we also found
copy number variation in the NRF2-KEAP1-CUL3 axis is linked to high
NRF2 activity: NRF2 copy number gain (amplification) and KEAP1 or
CUL3 copy number loss (deletion) are all associated with high NRF2
activity. This is consistent with the prevailing model where gain of
function variation in NRF2 and loss of function variation in KEAP1 or
CUL3 drive high NRF2 activity, and highlights the potential broad on-
cogenic impact of copy number variation across the NRF2-KEAP1-CUL3
axis.

The NRF2 cancer target genes are also useful for exploring the
consequences of NRF2 hyperactivation. The genetics described above
demonstrate that our inferred NRF2 activity is mutation-agnostic – a

range of mutations or copy number variants that increase NRF2 activity
are captured – so it allows for a more inclusive look at the clinical
implications of hyperactive NRF2. In general, when comparing high
NRF2 tumors (top 10%) to all other tumors of a given cancer type, high
inferred NRF2 activity is associated with poor survival, with significant
decreases in overall survival in 11 cancer types. Further, ten cancer
types have expression profiles that result in unambiguous clustering of
tumors into groups of high and normal NRF2 cancer target gene ex-
pression, thus bypassing the need for an arbitrary threshold defining
“high” NRF2 activity. High NRF2 is associated with significant de-
creases in overall survival in four of these cancers, and three of the four
(KIRP, BLCA, and LIHC) were also deemed significant in the thresh-
olding-based comparisons. Thus, NRF2 hyperactivation is associated
with decreased overall survival in multiple cancer types, and this re-
lationship is especially evident for papillary renal cell carcinoma
(KIRP), bladder carcinoma (BLCA), and hepatocellular carcinoma
(LIHC).

Although NRF2's role in oncogenesis has attracted significant at-
tention, it is still not clear exactly how NRF2 provides cells with an
oncogenic advantage. Notably, several of the NRF2 cancer target genes
from this study have been functionally linked to metabolic, pro-
liferative, and chemoresistance advantages in cancer. Many of the NRF2

Fig. 7. Survival outcomes associated with high inferred NRF2 activity. (A) Kaplan-Meier survival analysis for three cancer types – KIRP (top), BLCA (middle), and LIHC
(bottom) – where high expression of NRF2 target genes is associated with decreased overall survival. (B) Hierarchical clustering of KIRP (top), BLCA (middle), and
LIHC (bottom) tumors based on expression of NRF2 cancer target genes. Clusters were annotated as “High NRF2″ and “Normal NRF2″ groups as indicated, and these
classifications were used for survival analysis in (A).
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targets described here directly or indirectly increase nucleophilic tone,
which would help cancer cells compensate for the increased ROS levels
associated with rapid proliferation [107,108]. The antioxidants glu-
tathione and thioredoxin are essential for cancer initiation and pro-
gression [109], and key regulators of these two antioxidant pools are
NRF2 cancer target genes. Glutathione levels are largely dependent on
the actions of GCLC and GCLM, which encode the catalytic and modifier
subunits of glutamate-cysteine ligase, SLC7A11 and SLC3A2, which
encode the two subunits of the system xc– cystine/glutamate antiporter,
and GSR, which codes for glutathione reductase. Thioredoxin is en-
coded by the gene TXN, and reduced thioredoxin is regenerated by
thioredoxin reductase, which is encoded by TXNRD1. Moreover, the
NRF2 cancer targets TKT (encodes transketolase) and ME1 (encodes
malic enzyme 1) are important for generation of the reducing agent
NADPH that are also key regulators of oncogenic metabolic repro-
gramming [110–112], and the metabolic enzymes and transporters
encoded by ABCB6, ABCC3, AKR1C3, EPHX1, GSTM3, and NQO1 have
been implicated in chemoresistance and/or radiation resistance
[70,113–117]. In addition, multiple NRF2 cancer targets have cell
cycle-related functions that could contribute to NRF2's oncogenic po-
tential. For example, the antioxidant enzyme peroxiredoxin 1 (encoded
by PRDX1) selectively protects telomeres from ROS-mediated damage
during S and G2 phases of the cell cycle, which facilitates telomere
elongation and delays cellular aging [118]. And TLK1 and ASF1A en-
code a kinase and histone chaperone, respectively, that are important
for chromatin assembly during DNA replication and DNA repair
[119–122]. Taken together, the core cancer target genes described here
offer a multitude of functions that could explain the oncogenic effects of
constitutive NRF2 activity.

In summary, our results demonstrate that this mechanistically jus-
tified, cell-type-independent readout of NRF2 activity is a useful tool for
dissecting the pathways driving NRF2 activation and for exploring the
implications of NRF2 activation in cancer. The NRF2 cancer gene set
will also be a valuable resource for asking more mechanistic questions
about how NRF2 influences clinical outcomes beyond overall survival
(chemoresistance, metastasis, etc.) and for exploring how additional
genetic or environmental variables interact with NRF2 status in various
cancer types. And, importantly, now that “high NRF2″ tumors are
readily identifiable, future work must move beyond this ubiquitously
responsive gene set and focus on identifying tissue-specific NRF2 target
genes that might further modify NRF2's malignant potential, especially
in cancer types where activation of this pathway is associated with poor
prognosis.

4. Materials and methods

4.1. Data sources

A table summarizing data sources for all analyses in this study is
provided in the Supplemental Materials (Table S1), and further analysis
details are provided in specific subsections below.

4.2. Differential expression analysis, ChIP-seq, and identification of NRF2
cancer target genes

We obtained the full list of genes differentially expressed in NRF2
mutant tumors from Araya et al., Supplementary Table 11 (RNA-seq
Differential Expression) [62]. We then extracted all data corresponding
to genes carrying an “NFE2L2” tag in the Code: Cancer_Region_Gene
column. This data was loaded into the R environment, where we split
the differentially expressed genes by their logFC (log fold change) value
into separate upregulated and downregulated sets. We then generated
separate lists of up- or downregulated genes for each cancer type from
TCGA (BLCA, HNSC, LUSC, and UCEC) [123,124]. Finally, we calcu-
lated the extent of overlap between each of the groups (shown in
Fig. 1), using the match function and generated the final Venn diagrams

using the R package VennDiagram [125].
Direct NRF2 targets were identified based on reprocessing of our

previously published ChIP-seq data from lymphoblastoid cell lines
treated with sulforaphane – the sequencing data for this ChIP-seq ex-
periment can be accessed under GEO Accession Number GSE37589
[23,63]. ChIP peaks and fold-enrichment values were called using
MACS2, with merged “NRF2 ChIP SFN” sample replicates from
GSE37589 treated as the “ChIP-seq” file, and merged “IgG ChIP SFN
treated” and “input SFN treated” samples from GSE37589 treated as the
“Control” file. Peaks were called using a q-value cutoff of 1×10−2, but
to focus on the most robust NRF2 peaks, we implemented a stringent
cutoff and only used peaks with a q-value ≤ 1×10−5 for the re-
mainder of our analyses (Table S2). ChIP-seq peaks were assigned to
target genes as previously described [23,63], and the strongest putative
ARE in each peak was identified using PWM calculations based on a set
of 57 published AREs [126].

To identify direct NRF2 cancer targets, we cross-referenced the list
of upregulated genes identified in the differential expression analysis
with the list of NRF2 targets obtained by ChIP-seq. We made the fol-
lowing four groups of differentially upregulated genes based on the
previously described differential expression overlap analysis: 1) those
found in any of the four NRF2-associated cancers, 2) those found in at
least 2 cancers, 3) those found in ≥ 3, and 4) those found in all 4
cancers. We then used the match function in R to determine how many
of these genes were found in the set of> 3000 high-confidence
(-log10(q) ≥ 5) NRF2 targets. The 32 direct NRF2 target genes that
were upregulated in at least two cancer types were used for subsequent
analyses.

4.3. Integration with DNase hypersensitivity and chromatin state data

To investigate the DNA accessibility of NRF2 target regions in chro-
matin across many tissue/cell types, we looked at DNase hypersensitivity
(DHS) data. We obtained this data from the ENCODE project at http://
hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeReg-
DnaseClustered/ (file name: wgEncodeRegDnaseClusteredV3.bed.gz) [127].
This data includes both genomic regions of DHS sites, as well as the
number of cell lines each DHS site is shared across (the name column in
this dataset, described here: https://genome.ucsc.edu/cgi-bin/hgTa-
bles?db=hg19&hgta_group=regulation&hgta_track=wgEncodeRegDn-
aseClustered&hgta_table=wgEncodeRegDnaseClusteredV3&hgta_doSch-
ema=describe+table+schema). We then used the intersect function of
the BEDTools software suite [128] to find regions of overlap between
high-confidence NRF2 targets and the DNase hypersensitivity sites, and
combined the ChIP-seq data with this DHS overlap data. In R, we then
extracted only DHS sites that shared at least 50 bp of overlap with an
NRF2 target site. We finalized the DHS data by assigning any NRF2 target
with at least 50 bp overlap a DHS score corresponding to the number of
cell types the DHS signal was detected across in the ENCODE data (the
name score), and any target with no DHS overlap or an overlap less than
50 bp a DHS score of 0.

To ‘score’ the amount of overlap for each NRF2 target with the
chromatin states present in the Roadmap Epigenomics 5-mark, 15-state
chromatin state model (http://egg2.wustl.edu/-roadmap/data/byFile-
Type/chromhmmSegmentations/ChmmModels/coreMarks/jointModel-
/final), we used the Python branch of the GIGGLE genomics search
engine (https://github.com/ryanlayer/giggle, [90]). Briefly, we used
an index, built across the 15 chromatin states and 127 tissue and cell
types found in the Roadmap model, to query each NRF2 target interval
(from ChIP-seq MACS2 peaks). We then calculated the fraction of
overlap of the target sequence with each of the 15 chromatin states per
cell/tissue type, and assigned a score of 1 to the chromatin state with
the largest fraction of overlap and a 0 to all other (minor or zero-
overlap) states. Finally, we calculated the sum score for each state
across all cells/tissues and recorded this. Thus, each NRF2 target had a
single score/value for each chromatin state, which represents the
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number of cell types in Roadmap for which that chromatin state was the
‘dominant’ signal (Fig. 4D).

4.4. Inferred NRF2 activity and receiver operator characteristic analysis

To assess the usefulness, or accuracy, of our 32 target NRF2 activity
signature in classifying NRF2-related mutations or variants, we em-
ployed a receiver operator characteristic (ROC) curve approach on
TCGA gene expression and mutation (or copy number variation) data.
First, we downloaded three sets of data for all samples in TCGA using
XenaPython: 1) pan-cancer normalized gene expression values from the
UCSC TOIL recompute, 2) all non-silent mutation data for these samples
for NFE2L2, KEAP1 and CUL3, and 3) all ordinal copy-number variation
(CNV) scores for these samples for NFE2L2, KEAP1 and CUL3. The CNV
data we used had been assigned a score using a simple thresholding
approach and the GISTIC2 algorithm [129], with the following cate-
gories: −2≈ homozygous loss, −1≈ heterozygous loss, 0≈ normal
diploid, + 1≈ low-level copy number gain, + 2≈ high-level amplifi-
cation. We then extracted a set of 7679 samples that had gene ex-
pression values for all 32 targets, as well as mutation and CNV data for
the three genes.

We then ‘binned’ each sample according to which of the 33 cancer
types in TCGA it corresponded to and calculated its NRF2 signature
score: the average of all gene expression values for the 32 NRF2 cancer
targets, in each sample (dots in Fig. 5). Next, we calculated the mean
NRF2 signature across all samples, as well as all samples within each
cancer separately (black lines in Fig. 5; see also Supplemental Fig. 4), as
it is expected that different tissues will require different basal levels of
NRF2 activity. We used these mean ‘pan-cancer’ and ‘cancer-specific’
NRF2 signature scores to control for tissue-specific NRF2 activity;
specifically, we normalized each sample by subtracting the difference
between the pan-cancer and cancer-specific score from the sample's
individual score. For instance, if a LUSC sample had: NRF2 signature
score = 12 and cancer-specific score = 11.4, and the pan-cancer score
= 10.5, the normalized NRF2 signature score for that sample would be
12− (11.4− 10.5) = 11.1.

4.5. Inferred NRF2 activity and survival analysis

Gene expression and survival data for the four NRF2-associated
cancers (BLCA, HNSC, LUSC, and UCEC) were obtained using the Xena
Browser tool from UCSC Xena at http://xena.ucsc.edu/. Briefly, we
selected the TCGA cohort associated with each cancer − for instance
‘TCGA Bladder Cancer (BLCA)’ – and then added the following data
types: gene expression RNAseq (polyA+ IlluminaHiSeq pancan normal-
ized), phenotype: _TIME_TO_EVENT (overall survival in days), phenotype:
_EVENT (overall survival indicator, 1=death 0=censor), and phenotype:
sample type. We downloaded the generated information in a comma-
separated table, and then used R to extract only samples with: 1) a
sample type of ‘Primary Tumor’, ‘Metastatic’ or ‘Recurrent Tumor’ (ex-
cluding ‘Normal Tissue’), and 2) data for all data types (gene expression
and survival). This ‘pruned’ dataset was then used for the remaining
analyses. Gene expression and survival data for all other TCGA-asso-
ciated cancers were obtained using the XenaPython tool (http://xena.
ucsc.edu/xena-python-api/) with the same filtering criteria as above.

With the TCGA data retrieved using Xena, we carried out agglom-
erative hierarchical clustering of the tumor sample gene expression data
(for the 32 cancer target genes) with the hclust function of the stats
package in R. ‘Euclidean’ distance and the ‘average’ clustering method
were employed. The heatmaps in Fig. 7 and Supplemental Fig. 5 were
generated using the same clustering parameters with the pheatmap
function [130] (pheatmap package). Tumor samples (and the patients
they were derived from) were assigned to groups based on these clus-
tering results; specifically, the samples were split at the highest branch
in the dendrogram produced by the clustering algorithm, into two
groups. The samples in the group with the highest average expression of

the cancer target genes were dubbed “high NRF2”, the others were
labeled “normal NRF2”.

For the thresholding results shown in Supplemental Fig. 6, we used
the same TCGA data as for cluster analysis and calculated the NRF2
signature score from the 32 targets (as above) for each sample. We then
computed the value for the 90th percentile of this NRF2 signature score
across all samples. Any sample with an NRF2 signature score above this
90th percentile was assigned to the high NRF2 group, and any at or
below this value was assigned normal NRF2. Four cancer types (DLBC,
KICH, PCPG, and TGCT) were omitted from the thresholding-based
analysis in Supplemental Fig. 6 because hazard ratios and p-values
could not be computed due to no deaths in one of the groups; these
cancers all have good long-term outcomes, with both groups (normal or
high NRF2) having a 9+ year survival probability greater than 70%.

For survival analysis, the survival data (_EVENT and
_TIME_TO_EVENT) were then loaded into either R or Graphpad Prism for
analysis. Samples were assigned to “high NRF2” or “normal NRF2”
groups either according to hierarchical clustering, or as part of the top
10% based on their NRF2 signature score. Hazard ratios (HR), con-
fidence intervals (CI), and log-rank (Mantel-Cox) p-values were gener-
ated using the R survival package, with a Surv() object and fit to a coxph
() proportional hazards regression model (default settings for both). HR
and CI values were log2 transformed for presentation in Supplemental
Figs. 5 and 6. Kaplan-Meier plots were generated using the Survival
function in Prism.

4.6. Statistics

For comparisons of NRF2 targets by fold enrichment, PWM score
and DHS score, p-values were obtained using the non-parametric Mann-
Whitney-Wilcox (alternatively known as Wilcoxon rank sum) test in R,
with the wilcox.test function set to unpaired, two-sided and using con-
tinuity correction.
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