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Abstract
The translational decoding properties of tRNAs are influenced by post-transcriptional modification of nucleosides in their 
anticodon region. The Elongator complex promotes the first step in the formation of 5-methoxycarbonylmethyl (mcm5), 
5-methoxycarbonylhydroxymethyl (mchm5), and 5-carbamoylmethyl (ncm5) groups on wobble uridine residues in eukaryotic 
cytosolic tRNAs. Elongator mutants in yeast, worms, plants, mice, and humans not only show a tRNA modification defect, 
but also a diverse range of additional phenotypes. Even though the phenotypes are almost certainly caused by the reduced 
functionality of the hypomodified tRNAs in translation, the basis for specific phenotypes is not well understood. Here, we 
discuss the recent finding that the phenotypes of Saccharomyces cerevisiae Elongator mutants are modulated by the genetic 
background. This background-effect is largely due to the allelic variation at the SSD1 locus, which encodes an mRNA-binding 
protein involved in post-transcriptional regulation of gene expression. A nonsense ssd1 allele is found in several wild-type 
laboratory strains and the presence of this allele aggravates the stress-induced phenotypes of Elongator mutants. Moreover, 
other phenotypes, such as the histone acetylation and telomeric gene silencing defects, are dependent on the mutant ssd1 
allele. Thus, SSD1 is a genetic modifier of the phenotypes of Elongator-deficient yeast cells.
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Introduction

Post-transcriptionally modified nucleosides are found within 
all tRNA molecules. Modified nucleosides in the anticodon 
region usually promote proper anticodon-codon interactions 
and they are consequently important for the efficiency and 
fidelity of translation (Agris et al. 2017; Björk and Hager-
vall 2014). Uridine residues present at the wobble position 
(nucleoside 34) in eukaryotic cytosolic tRNAs are fre-
quently modified to an xm5U-type of modified nucleoside 
where the xm5 moiety is either a 5-methoxycarbonylmethyl 
(mcm5), 5-methoxycarbonylhydroxymethyl (mchm5), or 
5-carbamoylmethyl (ncm5) group (Machnicka et al. 2014). 
The xm5U residues sometimes also contain an additional 

2′-O-methyl (xm5Um) or 2-thio (xm5s2U) group. The pres-
ence of an xm5U34, xm5Um34, or xm5s2U34 residue is gener-
ally believed to improve pairing with the cognate codon(s) 
(Agris et al. 2017; Björk and Hagervall 2014; Björk et al. 
2007; Johansson et al. 2008; Lim 1994). In this review, we 
discuss the phenotypic consequences of the lack of wob-
ble xm5 groups in Saccharomyces cerevisiae, focusing on 
the recent finding that the phenotypes are modulated by the 
genetic background.

The first step in formation of the xm5 groups is dependent 
on the Elongator complex, which is composed of two sets 
of the six Elp proteins (Elp1–Elp6) (Dauden et al. 2017, 
2018; Huang et al. 2005; Johansson et al. 2018; Kolaj-Robin 
and Seraphin 2017; Setiaputra et al. 2017; Winkler et al. 
2001). Elongator is thought to catalyze the formation of a 
cm5U34 residue, which is then further modified by additional 
enzymes. The xm5 moiety found in cytosolic S. cerevisiae 
tRNAs is either an mcm5 or ncm5 group. Such groups are 
present in 11 U34-containing tRNA species of which two 
carry mcm5U34, three mcm5s2U34, five ncm5U34, and one 
ncm5Um34 (Fig. 1) (Johansson et al. 2008 and references 
therein). In addition to the lack of mcm5/ncm5 groups in 
the 11 tRNAs (Huang et al. 2005; Johansson et al. 2008), 
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the inactivation of yeast Elongator leads to a wide range 
of phenotypes. These phenotypes include slow growth as 
well as increased sensitivity to various stress-inducing sub-
stances and conditions (Frohloff et al. 2001; Karlsborn et al. 
2014; Otero et al. 1999). Moreover, Elongator mutants have 
been reported to show defects in histone acetylation, RNA 
polymerase II transcription, telomeric gene silencing, mito-
chondrial function, exocytosis, and protein homeostasis (Li 
et al. 2009b; Nedialkova and Leidel 2015; Otero et al. 1999; 
Rahl et al. 2005; Tigano et al. 2015; Winkler et al. 2002). 
All of these phenotypes, except for the tRNA modification 
defect, are suppressed by increased expression of various 
combinations of tRNALys

UUU
 , tRNAGln

UUG
, and tRNAGlu

UUC
 which 

are the three S. cerevisiae tRNA species that normally carry 
a mcm5s2U34 residue (Chen et al. 2011; Esberg et al. 2006; 
Nedialkova and Leidel 2015; Tigano et al. 2015). These 
findings indicate the lack of the mcm5/ncm5 groups pref-
erentially affects the functionality of tRNALys

UUU
 , tRNAGln

UUG
, 

and tRNAGlu
UUC

 and that the phenotypes of Elongator mutants 
are caused by inefficient decoding of the respective cognate 
codons. This notion is further supported by the observation 

that the inactivation of the Ncs2/Ncs6 complex, which 
catalyzes the formation of the s2 group, induces essentially 
the same phenotypes that are also suppressed by increased 
expression of the tRNALys

UUU
 , tRNAGln

UUG
, and tRNAGlu

UUC
 com-

binations (Björk et al. 2007; Chen et al. 2011; Esberg et al. 
2006; Huang et al. 2008; Leidel et al. 2009; Nakai et al. 
2008; Noma et al. 2009). Moreover, ribosome profiling 
experiments have shown that the lack of wobble mcm5/
ncm5 and/or s2 groups leads to an accumulation of ribo-
somes with AAA, CAA, and GAA codons in their A-site 
(Chou et al. 2017; Nedialkova and Leidel 2015; Zinshteyn 
and Gilbert 2013). The mechanism by which the inefficient 
decoding of these codons induces the phenotypes are not 
well understood. One model suggests that the phenotypes 
may be caused by reduced expression of factors encoded 
from mRNAs enriched in AAA, CAA, and/or GAA codons 
(Bauer et al. 2012; Chen et al. 2011; Fernandez-Vazquez 
et al. 2013; Rezgui et al. 2013). In this model, the slower 
decoding of the mRNA leads to reduced protein abun-
dance by a mechanism that may involve elevated levels of 
frameshifting or inhibition of translation initiation through 
ribosome queuing. Another model suggests that the phe-
notypes may be caused by the proteotoxic stress that arises 
from defects in co-translational protein folding and the con-
sequent accumulation of protein aggregates (Nedialkova and 
Leidel 2015). As the proteins that show increased aggrega-
tion in strains lacking the mcm5/ncm5 and s2 groups are not 
encoded by mRNAs enriched in AAA, CAA, and/or GAA 
codons (Nedialkova and Leidel 2015), it remains unclear if 
the protein aggregation is a direct or indirect consequence 
of the inefficient decoding of these codons.

The recent finding that the phenotypes of Elongator-defi-
cient cells are influenced by the allelic variant at the SSD1 
locus provides additional information into the pleiotropic 
effects of Elongator (Xu et al. 2019). Several wild-type labo-
ratory S. cerevisiae strains harbor a nonsense mutation in 
the SSD1 gene, which encodes an mRNA-binding protein 
that associates with a subset of mRNAs and regulates their 
stability, translation, and/or localization (Hogan et al. 2008; 
Jansen et al. 2009; Jorgensen et al. 2002; Kurischko et al. 
2011; Ohyama et al. 2010; Sutton et al. 1991; Uesono et al. 
1997; Wanless et al. 2014). The notion that the SSD1 locus 
influences the phenotypes of Elongator mutants was inferred 
from the observation that the temperature sensitivity (Ts) of 
cells deleted for ELP3, which encodes an Elongator subu-
nit, is significantly stronger in the W303 than in the related 
S288C genetic background (Xu et al. 2019). Strains in the 
W303 genetic background contain the nonsense ssd1-d2 
allele whereas those in S288C harbor an SSD1 allele that 
encodes the full-length functional protein (Jorgensen et al. 
2002; Sutton et al. 1991). Analyses of congenic ssd1-d2 
elp3Δ and SSD1 elp3Δ strains, in both genetic backgrounds, 
showed that the ssd1-d2 allele not only aggravates the Ts 
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Fig. 1   Schematic secondary tRNA structure and the chemical struc-
tures of U, mcm5U, mcm5s2U, ncm5U, and ncm5Um. The wobble 
position and posttranscriptional modifications are indicated in red
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phenotype of elp3Δ mutants but also the growth defects 
induced by various stress-inducing agents (Xu et al. 2019). 
In these assays, the effect of the ssd1-d2 mutation is compa-
rable to an ssd1Δ allele. Further, the telomeric gene silenc-
ing and histone H3 acetylation defects of W303-derived 
Elongator mutants were found to be dependent on the ssd1-
d2 allele, i.e., the phenotypes are suppressed by the introduc-
tion of the SSD1 gene.

The SSD1 gene has been genetically implicated in a 
diverse range of cellular pathways and processes, includ-
ing cell morphogenesis, cell wall integrity, cellular aging, 
virulence, several signal transduction pathways, protein 
homeostasis, and transcription by RNA polymerase I, II, and 
III (Jorgensen et al. 2002; Kaeberlein et al. 2004; Kaeber-
lein and Guarente 2002; Stettler et al. 1993; Wheeler et al. 
2003; Wilson et al. 1991). A likely explanation to the large 
number of genetic interactions is the function of Ssd1 in 
post-transcriptional gene regulation. For the Ssd1-associated 
mRNAs that encode factors involved in cell wall biosyn-
thesis, Ssd1 is thought, depending on its phosphorylation 
status, to promote either translational repression or polarized 
localization (Jansen et al. 2009; Kurischko et al. 2011; Wan-
less et al. 2014). Moreover, the inactivation of SSD1 alters 
the abundance and stability of many mRNAs and this effect 
is not restricted to Ssd1-associated transcripts (Jansen et al. 
2009; Li et al. 2009a). The precise mechanisms by which 
the allele at the SSD1 locus influences the phenotypes of 
Elongator mutants are not known, but they may involve both 
direct and indirect effects of Ssd1´s function in messenger 
ribonucleoprotein complexes. The ssd1-d2 allele does not 
influence the formation of the mcm5/ncm5 groups and analy-
ses of the ssd1-d2 elp3Δ and SSD1 elp3Δ strains revealed 
no apparent difference in tRNA levels or the abundance of 
other modified nucleosides (Xu et al. 2019). Further, +1 
frameshifting assays indicated that the A-site selection 
rate at the AAA codon is comparable in ssd1-d2 elp3Δ and 
SSD1 elp3Δ strains. While these observations suggest that 
the ssd1-d2 allele does not influence the abundance or func-
tionality of the hypomodified tRNAs, it remains possible 
that the lack of Ssd1 may affect tRNA function under stress 
conditions. However, the two phenotypes that are depend-
ent on the ssd1-d2 allele, the histone H3 acetylation and 
telomeric gene silencing defect, are detected under standard 
growth conditions, indicating that at least these phenotypes 
are not caused by a synergistic effect on tRNA function. 
The telomeric gene silencing defect in Elongator mutants is 
thought to be caused by reduced levels of the Sir4 protein, 
which is involved in the assembly of silent chromatin (Chen 
et al. 2011). The SIR4 open reading frame is enriched in 
AAA codons and the telomeric gene silencing defect is sup-
pressed by increased expression of tRNALys

UUU
 (Chen et al. 

2011). Further, the overexpression of tRNALys

UUU
 restores 

Sir4 levels without significantly influencing the mRNA 
levels (Chen et al. 2011). Even though these observations 
imply that the decreased silencing at telomeres is caused 
by reduced Sir4 levels, it is not known if the reduction is 
large enough to cause the phenotype and if it is a direct 
consequence of inefficient decoding of the SIR4 mRNA. 
Nevertheless, the finding that the telomeric gene silencing 
defect is dependent on the ssd1-d2 allele shows that the lack 
of the mcm5/ncm5 groups is not sufficient to induce the phe-
notype (Xu et al. 2019). Additional experiments are needed 
to investigate if the levels of Sir4 are modulated by the allele 
at the SSD1 locus.

The effect of the SSD1 locus also partially explained why 
an elp3Δ ncs2Δ double mutant, which lacks both the mcm5/
ncm5 and s2 groups, is nonviable in the W303 but not in the 
S288C genetic background (Björk et al. 2007; Klassen et al. 
2015; Nedialkova and Leidel 2015; Xu et al. 2019). An ssd1-
d2 elp3Δ ncs2Δ strain is, however, viable but very slow-
growing in the S288C background, indicating the growth 
phenotype is influenced by additional genetic factors (Xu 
et al. 2019). Consistent with the finding that Ssd1 promotes 
Hsp104-mediated protein disaggregation (Mir et al. 2009), 
the levels of aggregated proteins were found to be higher 
in ssd1-d2 elp3Δ ncs2Δ than in SSD1 elp3Δ ncs2Δ cells 
(Xu et al. 2019). Although these observations indicate that 
the slow growth of the ssd1-d2 elp3Δ ncs2Δ strain may be 
caused by the accumulation of protein aggregates, it is not 
known if the aggregation is the cause or the consequence of 
the growth defect.

The presence of the nonsense ssd1-d2 allele sensitizes 
yeast cells to the translational defects induced by the lack of 
Elongator-dependent tRNA modifications. Future work is 
needed to define the mechanisms by which SSD1 modulates 
the phenotypes of Elongator-deficient cells. It also remains 
to be determined if the phenotypes of Elongator mutants in 
other organisms are modulated by polymorphisms in genes 
for mRNA-binding proteins.
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