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Abstract 

Adaptive optics (AO) techniques are designed to restore ideal imaging performance by measuring 

and correcting aberrations originating from both the microscope system and the sample itself. 

Conventional AO methods require additional hardware, such as wavefront sensors and corrective 

devices, for aberration measurement and correction, respectively. These methods often necessitate 

microscopes to adhere to strict design parameters, like perfect optical conjugation, to ensure the 

accurate delivery of corrective patterns for wavefront correction using corrective devices. 

However, in general microscope systems, including commercially available ones, conjugation 

errors are more prone to arise due to incomplete conjugation among optical components by design 

and misalignment of the components, coupled with their limited access and adjustability, which 

hinders the rigorous integration of AO hardware. Here, we describe a general-purpose AO 

framework using neural fields, NeAT, that is applicable to both custom-built and commercial two-

photon fluorescence microscopes and demonstrate its performance in various in vivo imaging 

settings. This framework estimates wavefront aberration from a single 3D two-photon 

fluorescence image stack, without requiring external datasets for training. Additionally, it 

addresses the issue of incomplete optical conjugation by estimating and correcting any conjugation 

errors, which enables more accurate aberration correction by the corrective device. Finally, it 

jointly recovers the sample’s 3D structural information during the learning process, potentially 

eliminating the need for hardware-based AO correction. We first carefully assess its aberration 

estimation performance using a custom-built two-photon fluorescence microscope equipped with 

a wavefront sensor which provides the ground truth aberration for comparison. We further 

characterize and assess the robustness of the aberration estimation to image stacks with low signal-

to-noise ratios, strong aberration, and motion artifacts. As practical applications, using a 

commercial microscope with a spatial light modulator, we first demonstrate NeAT’s real-time 

aberration correction performance in in vivo morphological imaging of the mouse brain. We 

further show its performance in in vivo functional activity imaging of glutamate and calcium 

dynamics within the mouse brain. 
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Introduction 

Fluorescence imaging of living biological organisms provides mechanistic insights into their 

physiology. Two-photon (2P) fluorescence microscopy is an essential tool for live imaging, 

probing structure and function at subcellular resolution deep within complex tissues1. However, as 

2P excitation light propagates through tissue, its wavefront accumulates optical aberrations from 

refractive index mismatches, leading to reduced fluorescence signal, resolution, and contrast. 

When these sample-induced aberrations are measured and corrected, the excitation light can form 

a diffraction-limited focus, increasing fluorescence signal and improving the accuracy of structural 

and functional characterization.  

 Adaptive optics (AO)2–5 measure aberration and correct it with wavefront-shaping devices, 

such as deformable mirrors (DM) and liquid-crystal spatial light modulators (SLM). AO methods2–

4,6 can be grouped into direct wavefront sensing methods, which use a wavefront sensor for 

aberration measurement, and indirect wavefront sensing methods, which include approaches 

utilizing machine learning for wavefront estimation7–12.  

 Regardless of aberration measurement scheme, AO methods are generally developed for 

and deployed on custom-built microscopes, in which individual optical components are carefully 

conjugated and aligned to ensure optimal imaging and correction performance. However, 

microscopes in a general laboratory setting often have imperfect conjugation and misalignment of 

optical components, with commercial microscopes additionally suffering from limited access and 

adjustability of their optical paths. Furthermore, sample motion during in vivo imaging leads to 

artifacts that degrade aberration measurement accuracy, a problem that can be particularly severe 

for deep tissue imaging as well as for indirect wavefront sensing methods that utilize serial 

measurement of images and signals4. 

 Here, we describe NeAT, Neural fields for Adaptive optical Two-photon fluorescence 

microscopy. It utilizes neural fields to present the sample’s 3D structure and incorporates 

additional computational architectures to enhance AO performance for imperfect microscopes and 

living samples. By incorporating a physics prior, specifically, an image-formation model for two-

photon fluorescence microscopy that accounts for both aberration and sample motion, NeAT 

estimates aberrations from a single fluorescence image stack without requiring external datasets 

for training, even in the presence of motion artifacts. NeAT also corrects for conjugation errors in 

the microscope system, ensuring that a corrective phase pattern displayed on a wavefront-shaping 
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device accurately cancels out aberration even after propagation through imperfectly conjugated 

and misaligned optics. Lastly, NeAT jointly recovers the sample’s 3D structure with aberration. In 

scenarios where additional imaging with aberration correction is not needed, NeAT eliminates the 

need for corrective devices, further reducing system cost and complexity.          

The paper is structured as follows. First, we implement NeAT in a perfectly conjugated 2P 

fluorescence microscope equipped with a wavefront sensor capable of direct wavefront sensing 

(DWS). We then compare the performance of NeAT with the ground-truth aberration correction 

from DWS in both in vitro and in vivo scenarios, and determine the performance limits in terms of 

signal-to-noise ratio (SNR) and aberration severity. Next, we implement NeAT in a commercial 

microscope with imperfect conjugation and evaluate its real-time aberration correction 

performance for in vivo 3D morphological and functional imaging within the living mouse brain. 
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Results 

NeAT, a general-purpose AO framework in 2P fluorescence microscopy using 

neural fields 

NeAT is designed to jointly estimate wavefront aberration and recover the sample’s 3D structural 

information from an input 3D image stack. It utilizes neural fields – implicit functions represented 

by a coordinate-based neural network across spatial coordinates14 –  to represent sample structure. 

NeAT also incorporates a mathematical image-formation model for 2P fluorescence microscopy 

into the learning process, which involves aberration and structural estimation, as well as motion 

correction through learnable image transformations. During the learning process, NeAT aims to 

reproduce an image stack closely resembling the input by iteratively adjusting its parameters. This 

process requires no external supervision.  

 The input for NeAT is an image stack (𝑔) acquired through z-axis scanning (Fig. 1a). 

Artifacts caused by sample motion (e.g., body movement, breathing, and heartbeat) in the z stack, 

if present, are corrected by a set of affine transformations (A) whose parameters are optimized 

during the learning process (Fig. 1b, Fig. S1c). In the absence of motion artifacts, 𝐴 is set as an 

identity operator and excluded from the learnable parameters.  

 The image-formation model consists of three components: point spread function (PSF, h), 

structure (s), and baseline (b). The PSF h is computed as15: 

ℎ(𝒓; 𝛼) = |ℱ {𝑃(𝑢, 𝑣) 𝑒𝑖𝜑(𝑢,𝑣;𝛼) 𝑒
−2𝜋𝑖𝑧√𝑘0

2−𝑢2−𝑣2

}|

4

. (1) 

Here, 𝒓 represents the spatial coordinates (𝑥, 𝑦, 𝑧) near the focal plane. 𝑃(𝑢, 𝑣) and 𝜑(𝑢, 𝑣; 𝛼) 

stand for the amplitude and phase maps in the coordinates (𝑢, 𝑣) within the circular pupil of the 

objective lens, respectively. 𝜑(𝑢, 𝑣; 𝛼)  is a linear combination of Zernike modes with their 

associated coefficients 𝛼, with 𝜑(𝑢, 𝑣; 𝛼) = ∑ ∑ 𝛼𝑛
𝑚𝑍𝑛

𝑚(𝑢, 𝑣)4
𝑛=2|𝑚|≤3 . Here 𝑚 and 𝑛 stand for 

the angular meridional frequency and radial order, respectively, following the American National 

Standards Institute (ANSI) standard convention. We only consider the modes with 2 ≤ 𝑛 ≤

4 and |𝑚| ≤ 3, resulting in 10 Zernike modes to be learned, as we observed that including higher-

order modes leads to inaccurate aberration estimation. The 1D tensor 𝛼  are learned Zernike 

coefficients (Fig. S1b). 
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 Next, the 3D structure s is rendered by a neural field (Fig. S1a). It involves both the spatial 

encoding in the Fourier domain16,17 and a multi-layer perceptron13,18 and receives the spatial 

coordinates 𝒓 as input. s is parametrized by the network weights 𝜃 and referred to as 𝑓𝜃(𝒓). 

 The baseline term (b, Fig. S1d) is modeled as the multiplication of three 2D tensors that 

represent baseline elements along each of the x, y, and z axes. This term accounts for both the 

offset due to background fluorescence and noise and, if present, the signal decrease along the z 

axis due to scattering and absorption by tissue. 

 The image-formation model computes an image stack �̂� from PSF ℎ(𝒓; 𝛼), structure 𝑠 =

𝑓𝜃(𝒓), and baseline 𝑏(𝒓) by convolving PSF and structure before summation with baseline:  

�̂�(𝒓) = 𝑓𝜃(𝒓) ⊛ ℎ(𝒓; 𝛼) + 𝑏(𝒓). (2) 

 NeAT then compares the input stack g (or with motion correction, 𝐴𝑔) and the computed 

stack �̂�, running an optimization process to update the parameters over iterations (Fig. 1c). The 

optimization is performed toward minimizing the loss function (Fig. S1e): 

𝜃∗, 𝛼∗, 𝐴∗ = argmin 
𝜃,𝛼,𝐴

(ℒ(𝐴𝑔, �̂�) + ℛ(𝑠)). (3) 

The fidelity term ℒ(𝐴𝑔, �̂�) is a convex combination of SSIM (Structural Similarity Index Metric)19 

and rMSE (relative Mean-Squared Error)20–22 between the two stacks, where SSIM measures the 

similarity between 𝐴𝑔 and �̂� and rMSE computes a weighted L2 loss that reduces the influence of 

bright pixels and places greater emphasis on minimizing errors in dark regions. The regularization 

term ℛ(𝑠) incorporates a generic prior on the spatial piecewise smoothness of the structure and is 

the summation of three regularizations based on second-order total variation23,24, L1, and nonlinear 

diffusion25. Second-order total variation and L1 regularizations are chosen for rendering spatially 

sparse structural features (e.g., sparsely labeled neurons). Nonlinear diffusion regularization is 

employed to avoid both low-frequency and high-frequency artifacts in the structure recovered by 

NeAT. More detailed information about the image-formation model, loss function, and 

regularization is available in Methods. 

 

Performance validation with DWS-AO 

To evaluate the accuracy of NeAT’s aberration estimation, we compared the aberration output by 

NeAT with the ground-truth aberration from DWS with a Shack-Hartmann wavefront sensor, 

using a custom-built 2P microscope with perfect conjugation between optics, including between 
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the X and Y galvos (Fig. S2a). Microscope system aberration was measured with DWS and 

corrected by a DM prior to all experiments.  

 We first validated NeAT’s performance using 2P imaging of fixed Thy1-GFP line M 

transgenic mouse brain slices. A #1.5 coverslip was placed above a brain slice at a 3 tilt, which 

introduced aberrations similar to those typically induced by a cranial window during in vivo mouse 

brain imaging26. We set the correction collar of the objective lens to 0.17, the nominal thickness 

of the coverslip. From an input image stack (Fig. 2a), NeAT output 3D neuronal structure whose 

lateral (xy) and axial (xz) maximal intensity projections (MIPs) showed neuronal processes as well 

as synaptic structures such as boutons and dendritic spines (Fig. 2b). The estimated aberration had 

a similar phase map to the DWS measurement with a root mean square (RMS) difference of 0.09 

wave (Fig. 2c) and comparable coefficients in the dominant aberration modes, e.g., primary coma 

𝑍3
±1 (Fig. 2d). 

 Next, we applied NeAT to in vivo 2P imaging of the mouse brain cortex. In one mouse, 

breathing caused lateral shifts between images at different z (Fig. 2e). Without correcting for these 

motion artifacts, the algorithm misinterpreted the laterally displaced images of the same structure 

at different z as separate structures, leading to striated appearance in the axial MIP of its structural 

output (Fig. 2f). NeAT addressed this by using affine transformations to register the image stack, 

with the transformation matrices jointly learned alongside other parameters (Eq. 3). With sample 

motion corrected, the structural output was free of striation artifacts (Fig. 2g), and the aberration 

output much more closely resembled the ground truth (an RMS error of 0.07 wave) than the output 

without motion correction (an RMS error of 0.16 wave) (Fig. 2h,i). 

 The effectiveness of sample motion correction depends on the SNR of fluorescence images 

and the magnitude of sample motion (Fig. S3). For high SNR images (e.g., SNR of 12), NeAT 

could handle sample motions of ±2 µm of maximum displacement. For noisy images (e.g., SNR 

of 3), its accuracy decreased and can only handle sample motions with < 0.5 µm displacement. 

This finding offers practical guidance for controlling anesthesia level to minimize sample motion 

during image acquisition for AO, particularly during deep tissue imaging when SNR is low. 

 

Performance limit characterizations 

 After validating NeAT’s performance both in vitro and in vivo, we evaluated how robust it 

performed at varying SNR levels. We varied post-objective power and acquired image stacks of 
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1-µm-diameter fluorescence beads at different SNRs with primary astigmatism (𝑍2
−2, Fig. S4a) or 

primary coma (𝑍3
−1 , Fig. S4b) introduced to the DM. At low SNR levels (e.g., SNR < 1.5), 

fluorescent beads were poorly visualized and the structures output by NeAT appeared fragmented 

as they were fitted to noise. Only at sufficiently high SNRs did the structure resemble beads (Fig. 

S4a, b). We quantitatively evaluated NeAT’s performance to identify the cutoff SNR below which 

NeAT’s performance deteriorated abruptly27. We computed the Pearson correlation coefficient 

(PCC) between the recovered structures at different SNRs and that from an image stack acquired 

with no aberration and high SNR (SNR > 7, Fig. S4a, b). By fitting the PCC values to a piecewise 

linear curve with two distinct slopes, we identified the cutoff SNR as 1.94 for astigmatism (Fig. 

2j) and 1.56 for coma (Fig. 2k). Below the cutoff SNRs, the accuracy of structural recovery 

decreased, as indicated by an abrupt drop of PCC values (blue curve, Fig. 2j,k); The accuracy of 

aberration estimation also decreased, as indicated by an increase in wavefront error (quantified by 

the RMS error between NeAT estimate and ground-truth aberrations; green curve, Fig. 2j,k).     

 We repeated the experiment on a fixed Thy1-GFP line M mouse brain slice to determine 

whether similar limits applied to spatially extended biological structures. In this case, we applied 

primary coma (𝑍3
−1, Fig. S4c) and secondary astigmatism (𝑍4

−2, Fig. S4d) to the DM separately. 

Similarly to beads, low-SNR images were associated with structures dominated with artifacts (Fig. 

S4c, d). As before, we calculated the PCC between the recovered structures at different SNRs and 

the ground truth from an image stack acquired with no aberration and high SNR (SNR > 5, Fig. 

S4c, d). We found that the cutoff SNR was 1.90 for coma (Fig. 2m) and 1.53 for astigmatism (Fig. 

2n), similar to the cutoff SNRs from the bead data. This suggests that at sufficiently high SNRs 

(SNR > 2 for aberrations tested here), NeAT achieves accurate structural recovery, independent of 

feature characteristics.  

 Moreover, we characterized NeAT’s performance limit in terms of aberration severity. We 

randomly generated Zernike coefficients to obtain mixed-mode aberrations with RMS values 

ranging from 0.05 to 0.65 waves. We then applied each aberration to the DM and acquired images 

of beads and brain slices at SNR > 8. With the increase of aberration, fluorescence images became 

more degraded in resolution and contrast (Fig. S5). At the largest aberrations tested (e.g., 0.65 

waves for beads and 0.43 waves for brain slices), the recovered structures no longer accurately 

represented the features of the beads or neurons. We computed the PCC between the structures 

retrieved by NeAT from images with varying levels of external aberration and the structure from 
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an image stack without aberration. Similar to above, we defined the cutoff RMS as the value above 

which the PCC exhibited a sudden drop, as identified by fitting the PCC values to a piecewise 

linear curve with two distinct slopes. We found a cutoff RMS of 0.56 wave for 1-µm beads (Fig. 

2n) and 0.36 wave for the brain slice (Fig. 2o), respectively. This difference in cutoff RMS values 

is expected as 3D extended structures generally pose greater challenges than beads. 

 Lastly, we characterized NeAT’s performance limit in terms of sampling rate by varying the 

pixel sizes of input image stacks. We downsampled both in vitro and in vivo image stacks of mouse 

neurons by different factors to control the input pixel size along the lateral (dx, dy) and axial (dz) 

axes, and compared NeAT’s performance in structural recovery and aberration estimation (Fig. 

S6, 7). When pixel size exceeded the Nyquist sampling criterion, the structure outputs from NeAT 

became inaccurate. The aberration estimation also deviated from the ground truth measured by 

DWS, with the estimated aberration matching the DWS measurement until the lateral pixel size 

exceeded 0.20 µm and axial pixel size exceeded 0.67 µm, values dictated by the Nyquist condition, 

for both in vitro (Fig. S6a, Fig. S7a) and in vivo (Fig. S6b, Fig. S7a) cases.  

 

NeAT corrects for conjugation errors in a commercial microscope 

Having demonstrated the successful application of NeAT in a custom-built 2P fluorescence 

microscope and acquired a thorough understanding of its performance in relation to SNR, 

aberration severity, and input pixel size, we next tested whether NeAT worked on a commercial 

2P microscope. This was motivated by the desire to expand the application of AO beyond optical 

specialists to a general laboratory setting with microscopes having imperfect conjugation and 

misalignment of optical components, as well as limited access and adjustability of their optical 

paths. 

 We added a liquid-crystal SLM to the beam path between an excitation laser and a 

commercial 2P fluorescence microscope (Bergamo II, Thorlabs) (Fig. S2b). This system differs 

from our custom-built microscope in several ways. First, the DM, x galvo, and y galvo of the 

custom-built system were conjugated with pairs of lenses (Fig. S2a) to ensures that the corrective 

phase pattern displayed on the DM was accurately relayed to the back focal plane (BFP) of the 

objective lens and stayed stationary during beam scanning. But the commercial microscope, as 

typical for microscopes in biological laboratories, did not conjugate the two galvos but placed 

them close to each other. Second, while the optics of the custom-built system were carefully 
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arranged and aligned to ensure the registration between the x and y axes of the SLM surface and 

the fluorescence images, the commercial microscope had multiple mirrors in an enclosed optical 

path whose placement and alignment were preset and not adjustable. Finally, the commercial 

system was designed to have the whole microscope body move in 3D to accommodate large 

samples, which causes alignment errors between the SLM on the optical table and the objective 

lens in the microscope that for heavily shared microscope can vary daily. As a result, a wavefront 

applied to the corrective device is translated, rotated, scaled, and/or sheared at the BFP of the 

objective lens of the commercial microscope, which in turn degrades the performance of aberration 

correction.  

 To address this problem, we incorporated into NeAT a process to estimate and correct 

conjugation errors of commercial microscopes. Corrective wavefront displayed on the SLM, 𝜑Corr, 

becomes 𝜑BFP at the BFP of the objective lens, with  

𝜑BFP = 𝐻𝜑Corr + 𝛷Sys (4) 

Here 𝛷Sys represents the system aberration and H is a linear geometric transformation describing 

the effects of conjugation errors on 𝜑Corr (Fig. 3a). We model H as an affine transformation with 

parameters for translational, rotational, scaling, and shear transformation (Fig. 3b). For 

microscopes with perfect conjugation, H = I, the identity operator (i.e. translations are 0 pixels in 

x and y, rotation is 0 deg, scaling is 1, and shear is 0). For microscopes with conjugation errors, 

the process of accounting for them requires finding the transformation H and system aberration 

𝛷Sys.  

 We determine system aberration 𝛷Sys by inputting into NeAT an image stack of 200-nm-

diameter fluorescence beads acquired with a flat phase pattern applied to the SLM. The estimated 

system aberration from NeAT is �̂�0, with  

𝛷Sys = �̂�0 + 𝜀0 (5) 

Here 𝜀0 represents estimation error by NeAT, which should be much smaller in RMS magnitude 

than 𝛷Sys.  

 To determine H, we apply 5 calibration aberrations 𝛷𝑛 (n = 1 to 5) that allow us to detect 

translation, scaling, rotation, and shear errors, including primary astigmatism (𝑍2
−2 and 𝑍2

2), coma 

(𝑍3
−1  and 𝑍3

1 ), and spherical aberration ( 𝑍4
0 ), to the SLM. At the objective lens BFP, these 
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aberrations became 𝐻𝛷𝑛 + 𝛷Sys. With image stacks of 200-nm fluorescence beads acquired under 

these external aberrations as inputs (Fig. 3c), NeAT returns �̂�𝑛 (n = 1 to 5), with 

  

𝐻𝛷𝑛 + 𝛷Sys = �̂�𝑛 + 𝜀𝑛 (6) 

Here 𝜀𝑛 represents estimation error by NeAT. Subtracting (5) from (6) and assuming 𝜀𝑛 − 𝜀0 ≈ 0, 

we have 

𝐻𝛷𝑛 ≅ �̂�𝑛 − �̂�0, 𝑛 = 1,2, … , 5 (7) 

Now with 𝛷𝑛 (n = 1 to 5) known, and �̂�𝑛 and �̂�0 from NeAT, we determine the parameters of H 

by minimizing the loss function:  

�̂� = argmin
𝐻

(∑|𝐻𝛷𝑛 − (�̂�𝑛 − �̂�0)|

5

𝑛=1

) (8) 

�̂�, the estimate for H, describes how the conjugation errors in the system translate, rotate, scale, 

and shear the wavefront pattern applied to the SLM on its way to the BFP of the objective lens. To 

correct these errors, we then apply the inverse of �̂�, �̂�−1, to the aberration estimation �̂� from 

NeAT and use �̂�−1�̂� as the corrective pattern on the SLM (Fig. 1d). 

 For example, to correct for system aberration of the commercial microscope, we used an 

image stack of 200-nm fluorescence beads as input to NeAT, which returned �̂�0 as the aberration 

estimation. Directly applying �̂�0 to the SLM increased the signal of a fluorescent bead by 1.7-fold 

(“AO1, w/o H”, Fig. 3d,e). By also correcting for conjugation errors, �̂�−1�̂�0 increased the signal 

by 2.2-fold (“AO1, w/ H”, Fig. 3d,e). Using the image stack acquired with �̂�−1�̂�0 as input into 

NeAT, we obtained the residual aberration �̂�0′ and applied �̂�−1(�̂�0 + �̂�0′) to the SLM, leading 

to a 3.0-fold signal gain over no aberration correction (“AO2, w/ H”, Fig. 3d,e). From the image 

stacks acquired with these corrective patterns, NeAT estimated the residual aberrations. Consistent 

with the fluorescent signal measurements, conjugation error correction substantially reduced 

residual aberration, with 0.14 and 0.12 wave RMS after first and second iterations of AO correction, 

while the residual aberration without conjugation correction had a 0.22 wave RMS (Fig. 3f).  

 We further tested our approach on correcting known astigmatism, coma, and spherical 

aberrations introduced to the SLM. From bead image stacks acquired with these aberrations 

applied, NeAT returned estimated aberrations (“Estimated w/o H”, Fig. 3g), which represented the 
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wavefront distortion at the objective BPF and substantially differed from the applied aberrations 

(“Applied aberration”, Fig. 3g) due to conjugation errors. Transforming the estimated aberration 

with �̂�−1, we obtained aberrations with phase maps (“Estimated w/ H”, Fig. 3g) that closely 

matched the given aberrations in all three cases, leading to much smaller RMS errors (astigmatism:  

0.087 and 0.19 wave RMS with and without H corr; coma: 0.14 and 0.19 wave RMS with and 

without H corr; spherical: 0.16 and 0.23 wave RMS with and without H corr). Once characterized, 

the same �̂�−1 can be applied as long as the conjugation of the microscope remains unchanged. 

Below, the system aberration of the commercial microscope was always corrected for “No AO” 

images so that improvement by AO arose from the correction of sample-induced aberrations.  

 

Real-time aberration correction for in vivo structural imaging of mouse brain 

 We evaluated NeAT’s capacity to improve in vivo structural imaging of the commercial 

microscope. We acquired an image stack of a tdTomato-expressing dendrite at 350 µm depth in 

the primary visual cortex (V1) of a head-fixed awake mouse (“No AO”, Fig. 4a) and used it as 

input to NeAT. Applying to the SLM the corrective wavefront from NeAT with both motion and 

conjugation corrections, we imaged the same dendrite and observed a marked improvement in 

brightness (up to 1.8 for dendritic spines), resolution, and contrast (“Full correction”, Fig. 4a).  

 Correcting for both sample motion and conjugation error was necessary for the observed 

improvement. The corrective wavefront with only motion correction but not conjugation 

correction substantially differed from that with full correction (Fig. 4b) and led to more modest 

improvements in image quality (“Without H”, Fig. 4a). Only correcting for conjugation but not 

motion similarly underperformed (“Without motion correction”, Fig. 4a), as shown quantitatively 

in the lateral and axial intensity profiles of three dendritic spines (Fig. 4c).  

 We investigated further whether image-registration software such as the StackReg plugin in 

ImageJ can work similarly well to the motion correction method integrated into the learning 

process of NeAT. We acquired an image stack of beads with aberration, introduced simulated 

motion artifacts, pre-registered the stack with StackReg, and then used the resulting image stack 

as input to NeAT. Although structural recovery was moderately successful for beads (Fig. S8a, b), 

the accuracy of aberration estimation from the pre-registered image stack was inferior to inputting 

the un-registered stack to NeAT directly (Fig. S8c). Similarly, pre-registration with StackReg on 

an image stack acquired in vivo led to a corrective wavefront with smaller brightness improvement 
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than the corrective wavefront from motion correction by NeAT (Fig. S8d,e). This can be explained 

by whether motion correction considers the existence of aberration. While NeAT integrates motion 

correction into its learning process for aberration (Eq. 3), conventional image registration is 

unaware of aberrations and matches features between adjacent image planes to align them, which 

may inadvertently reduce or exaggerate certain aberrations (e.g., the axially curved tail of comatic 

aberration may be straightened by StackReg).  

 Having established that both conjugation and motion corrections are needed for in vivo 

imaging using the commercial microscope, we further tested NeAT’s performance for 

morphological imaging in the awake brain of a Thy1-GFP line M mouse deep into layer 5 (L5) of 

V1. We first used an image stack acquired at a depth of 280 µm as input to NeAT (“No AO”, Fig. 

4d) to obtain the corrective wavefront (Fig. 4e, 0.36 wave RMS,), which led to resolution 

improvement as well as an ~2 increase in spine brightness (“AO”, Figs. 4d,f). We then acquired 

an image stack at 500 µm depth while applying to the SLM the corrective wavefront at 280 µm 

(“AO280 µm”, Fig. 4g). Using the image stack as input to NeAT, we obtained a corrective wavefront, 

which was then added to the corrective wavefront at 280 µm to obtain the final corrective pattern 

(Fig. 4h, 0.49 wave RMS). This corrective wavefront has a larger RMS magnitude than that at 280 

µm, consistent with previous observation of stronger aberrations at larger imaging depth for the 

mouse brain28. Compared to the image stacks acquired without AO (“No AO”, Fig. 4g) and with 

corrective wavefront at 280 µm (“AO280 µm”, Fig. 4g), images after correction at 500 µm (“AO500 

µm”, Fig. 4g) showed the largest improvement in resolution and brightness, with up to a 2.4-fold 

increase in brightness for dendritic and synaptic structures (Fig. 4i). Here by using the corrective 

wavefront at a shallower depth when acquiring the input image stack at a deeper depth, we 

overcame the limit on aberration severity and used NeAT to correct large aberrations experienced 

in deep tissue imaging.  

 

NeAT improves in vivo glutamate imaging from the mouse brain 

We next used NeAT with motion and conjugation correction to improve in vivo functional imaging 

in head-fixed mice under light anesthesia (0.5% isoflurane in O2). We expressed the genetically 

encoded glutamate indicator iGluSnFR329 sparsely in V1 neurons (Methods). From an image stack 

of dendrites at 400-µm depth (Fig. 5a), NeAT returned a corrective wavefront (Fig. 5b) that 

substantially increased image resolution and contrast, resulting in approximately two-fold 
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improvement in brightness as shown by axial profiles of dendritic spines (i,ii; Fig. 5c) and a lateral 

profile across a dendritic spine and its nearby dendrite (iii; Fig. 5c). 

 Subsequently, we presented gratings drifting in eight different directions 

(0∘, 45∘, ⋯ , 315∘; 10 repetitions) to the mouse and recorded time-lapse images of the dendritic 

spines in the same FOV as in Fig. 5a, with and without aberration correction at a 60 Hz frame rate. 

With iGluSnFR3 labeling, changes in fluorescence brightness reflected glutamate release and thus 

synaptic input strength at these dendritic spines. Consistent with the above result, AO increased 

the brightness of dendrites and spines in the averaged time-lapse image (Fig. 5d;  Fig. 5e, zoomed-

in views of white boxes in Fig. 5d). For four dendritic spines (ROI 1-4, Fig. 5e), AO correction 

doubled the basal intensity (F0) of their trial-averaged fluorescent traces and led to more prominent 

glutamate transients with larger amplitudes (∆F/F0) (left and middle panels, Fig. 5f). Fitting the 

glutamate responses to the 8 drifting grating stimuli with a bimodal Gaussian curve30, we obtained 

the orientation-tuning curves for these spines (right panels, Fig. 5f). Here AO increased the 

response amplitudes to the preferred grating orientations and led to a higher orientation sensitivity 

index (OSI) for these spines. Correcting aberration also shifted  the preferred orientation of some 

spines, resulting in more similar tuning preference for neighboring spines (Fig. 5g), consistent 

with previous findings31. Consistently across dendritic spine populations (52 orientation-sensitive 

ROIs out of 86 (60%), Methods), aberration correction by NeAT significantly increased basal 

fluorescence F0 (two-sided paired t-test, p < 0.001, Fig. 5h). It also increased ∆F/F0 and OSI 

values as indicated by pairwise comparison (two-sided paired t-test, p < 0.001, Fig. 5i and Fig. 5j, 

respectively) and the cumulative OSI distributions (Kolmogorov-Smirnov test, p < 0.001, Fig. 5k).  

 

NeAT improves in vivo calcium imaging in densely labeled brains 

We further demonstrated that NeAT can also be applied to densely labeled brains, a common 

application scenario for in vivo calcium imaging of neuronal populations. As NeAT requires an 

input stack of sparse structures for aberration estimation, we used viral transduction to densely 

express the genetically encoded calcium indicator GCaMP6s32 and sparsely expressed the red 

fluorescent protein tdTomato in L2/3 neurons of the mouse V1 (Methods). Because aberration 

estimation and correction can be performed at different excitation wavelengths without 

compromising correction performance (Fig. S9), we used an image stack of a tdTomato-expressing 

neuron (inside yellow box of Fig. 5l) acquired with 1000 nm excitation light as the input to NeAT 
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(32×32×10 µm3 stack, “No AO”, Fig. 5m) to obtain the corrective wavefront (Fig. 5n). AO 

visibly improved image contrast and resolution of the tdTomato-expressing neuron (“AO”, Fig. 

5m), leading to a >2 increase in intensity in both axial profiles at dendritic spines and lateral 

profiles across dendrites (Fig. 5o).  

 Next, we switched the excitation wavelength to 920 nm and acquired images of GCaMP6s-

expressing neurons over a 484×484 µm2 FOV (green channel of Fig. 5l) without and with the 

corrective wavefront obtained by NeAT from the tdTomato-expressing neuron at 15 Hz, while 

presenting drifting gratings to the head-fixed mouse under light anesthesia (0.5% isoflurane in O2) 

to evoke calcium responses. The standard deviation images of the time-lapse stacks showed greater 

intensity differences across time frames after aberration correction (Fig. 5p, zoomed-in views on 

the white boxes in Fig. 5l), indicative of larger calcium transient magnitude. Indeed, for five 

example ROIs (1-5, Fig. 5p), calcium transients were more apparent and have larger magnitudes 

in both trial-averaged fluorescence (F) and ∆F/F0 traces with AO (left and middle panels, Fig. 5q), 

leading to higher orientation selectivity indices for these structures (right panels, Fig. 5q).  

 Over the population of 125 orientation-selective ROIs out of 255 somatic and neuronal 

structures within the whole FOV, we found statistically significant differences between No AO 

and AO conditions for both basal fluorescence F0 (two-sided paired t-test, p < 0.001, Fig. 5r) and 

∆F/F0 (p < 0.05, Fig. 5s). Here the increase in basal fluorescence was less than what we observed 

for glutamate imaging of dendritic spines, because aberration decreases signal brightness of 

smaller structures such as dendritic spines more than larger structures such as somata28,33,34. 

Similar to glutamate imaging, AO increased the OSIs of neuronal structures (two-sided paired t-

test, p < 0.001, Fig. 5t; for cumulative distributions of OSI, Kolmogorov-Smirnov test, p < 0.001, 

Fig. 5u).   
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Discussion 

In this work, we propose NeAT, a general-purpose AO framework for aberration measurement 

and correction for 2P microscopy using neural fields. Neural fields refer to implicit functions 

represented by a coordinate-based neural network across spatial coordinates14. They have been 

used for various computational imaging applications16,27,35–39, including Neural Radiance Fields 

(NeRF)13 for 3D scene representation. NeAT has several distinct features that set it apart from 

NeRF and other neural field applications, as detailed in Table S1, which include its incorporation 

of a physics-based prior specific to the 2P imaging system, its estimation and correction of sample 

motion and microscopy conjugation errors, and its joint recovery of 3D structural information 

alongside aberration estimation. 

 Using the physics-based prior of the 2P imaging system, implemented through an image-

formation model that accounts for both aberrations and sample motion, NeAT accurately estimates 

optical aberrations from a 2P fluorescence image stack without the need for external supervision, 

even in the presence of motion artifacts during live animal imaging. Importantly, this functionality 

eliminates the need for integration of AO capabilities into microscope control software, making it 

applicable to existing custom-built and commercial 2P microscopy systems in general.  

 Furthermore, NeAT can estimate and correct conjugation errors. Such errors are common 

in custom-built and commercial microscopes used in general biology laboratories and cause the 

distortion of the applied corrective phase pattern at the objective lens back focal plane, leading to 

deteriorated AO performance. NeAT measures the impact of the conjugation errors on calibration 

aberrations and compensates for them by preemptively transforming the corrective phase pattern 

before it is displayed on the wavefront-shaping device. This feature would greatly facilitate the 

broader adoption of AO in a wide range of microscope environments.  

 Additionally, NeAT simultaneously recovers 3D structural information while estimating 

aberration during its learning process. For applications where only structural information is needed, 

this unique capability eliminates the requirement of wavefront-shaping devices or the need for 

additional imaging with AO correction, greatly lowering system complexity and cost. 

 We rigorously evaluated NeAT’s robustness under various conditions, such as different 

SNR levels, aberration severity, and motion artifacts. We established the framework’s 

performance limits for accurate and reliable operation, providing valuable guidelines on imaging 

settings when applying NeAT. 
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 Finally, we applied NeAT to in vivo structural and functional imaging of the mouse brain 

by a commercial microscope, demonstrating its capability in improving image quality for 

demanding real-life biological applications. NeAT effectively estimates and corrects aberrations 

deep into the mouse brain, enabling morphological imaging of synapses at 500 µm with improved 

resolution and contrast. It also improves the signal and accuracy of glutamate and calcium imaging 

of synapses and neurons in the mouse visual cortex responding to visual stimuli. NeAT’s simple 

implementation, robust performance, and ability to correct for motion and conjugation errors in 

imaging systems, offer great potential for broader adoption and impact in biological research.  
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Methods  

Custom-built two-photon microscopy with direct wavefront sensing AO 

The custom-built two-photon fluorescence microscopy was equipped with a wavefront sensor for 

DWS and was described previously40,41 (Fig. S2a). A Ti-Sapphire laser (Chameleon Ultra II, 

Coherent Inc.) was tuned to 920 nm output and was scanned by a pair of carefully conjugated 

galvos (H2105, Cambridge). Pairs of achromatic doublet lenses (L3-L8) were used to conjugate 

the surfaces of galvos with a DM (PTT489, Iris AO) and the BFP of an objective lens (CFI Apo 

LWD ×25, 1.1 NA, 2.0 mm WD, Nikon). During imaging, two-photon excited fluorescence was 

collected by the same objective, reflected by a dichroic mirror (D2, Di02-R785-25x36, Semrock),  

and detected by a GaAsP photomultiplier tube (H7422-40, Hamamatsu). For wavefront sensing, 

the emitted two-photon fluorescence was descanned by the galvo pair, reflected by a dichroic 

mirror (D1, Di02-R785-25x36, Semrock), and directed to a Shack-Hartmann (SH) sensor through 

a pair of achromatic lenses (FL = 60, 175 mm). The SH sensor consisted of a lenslet array 

(Advanced Microoptic Systems GmbH) conjugated to the objective BFP and a CMOS camera 

(Orca Flash 4.0, Hamamatsu) positioned at the focal plane of the lenslet array.  

 

Commercial two-photon fluorescence microscopy with an AO module 

The commercially available multiphoton microscope (Bergamo II, Thorlabs) used a Ti-Sapphire 

laser (Chameleon Ultra II, Coherent Inc.) tuned to 920 nm or 1000nm for two-photon excitation. 

An AO module consisted of a liquid crystal SLM (1024 × 1024, HSP1K, Meadowlark Inc.) and 

two pairs of relay lenses (L1-L4, FL = 200, 50, 500, and 500mm) was added to the beam path 

between the laser and the microscope. The laser output had its polarization rotated by an 

achromatic half-wave plate (AHWP05M-980, Thorlabs) to align with the SLM polarization 

requirement and was expanded 15 times using two beam expanders (GBE03-B, GBE05-B, 

Thorlabs) to fill the active area of the SLM. The two pairs of relay lenses demagnified the laser 

output and conjugated the SLM surface to the non-resonant galvo surface within the galvo-

resonant-galvo scanning head of the microscope. A pair of scan lenses within the Bergamo II 

microscope (L5-L6, FL=50 and 200mm) relayed the laser to the BFP of a water-dipping objective 

(25×, 1.05 NA, 2mm WD, Olympus). Fluorescence emission was collected through the objective 
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and detected by two GaAsP photomultiplier tubes (PMT 2100, Thorlabs) for two-color imaging 

of green (525/50 nm emission filter) and red (607/70 nm emission filter) fluorescence, respectively. 

 

Animals and surgical procedures 

All animal experiments were conducted in accordance with the National Institutes of Health 

guidelines for animal research. Procedures and protocols involving mice were approved by the 

Institutional Animal Care and Use Committee at the University of California, Berkeley. In vivo 

imaging experiments were performed using 2-4-month-old wild-type (C57BL/6J) or Thy1-GFP 

line M mouse lines.  

 Cranial window and virus injection surgeries were conducted under anesthesia (2% 

isoflurane in O2) following established procedures31,42. For in vivo glutamate imaging, sparse 

expression of iGluSnFR3 was achieved in V1 L2/3 by injecting a 1:1 mixture of diluted AAV2/1-

Syn-Cre virus (original titer 1.8 × 1013 GC/ml, diluted 10,000-fold in phosphate-buffered saline) 

and AAV-hSyn-FLEX-iGluSnFR3-v857-SGZ at multiple sites 150-250 µm below pia. 25 nl of the 

virus mixture was injected at each site. For in vivo calcium imaging, dense expression of GCaMP6s 

and sparse expression of TdTomato was achieved in V1 L2/3 by co-injecting a 1:1:1 mixture of 

diluted AAV2/1-Syn-Cre virus (original titer 1.8 × 1013 GC/ml, diluted 1,000-fold in phosphate-

buffered saline), AAV2/1-CAG-FLEX-tdTomato (6 × 1013 GC/ml), and AAV1-Syn-GCaMP6s-

WPRE-SV40 (1 × 1013 GC/ml) at multiple sites 150-250 µm below the pia. 25 nl of the virus 

mixture was injected at each site. A cranial window, made of a glass coverslip (Fisher Scientific, 

no. 1.5), was embedded in the craniotomy and sealed in place with Vetbond tissue adhesive (3M). 

A metal head post was attached to the skull using cyanoacrylate glue and dental acrylic. After 3 

weeks of expression and 3 days of habituation for head fixation, in vivo imaging was conducted in 

head-fixed mice under anesthesia (1% isoflurane in O2) for structural imaging and in lightly 

anesthetized mice (0.5% isoflurane in O2) for functional imaging. 

 

Loss function and regularization in self-supervised learning process 

The fidelity term ℒ(𝐴𝑔, �̂�) in the loss function (Eq. 3) is represented as a convex combination of 

SSIM19 and rMSE20–22 as follows, 

ℒ(𝐴𝑔, �̂�) = 𝛾 SSIM(𝐴𝑔, �̂�) + (1 − 𝛾) rMSE(𝐴𝑔, �̂�), (9) 
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where rMSE is defined as 

rMSE(𝐴𝑔, �̂�) = (
𝐴𝑔 − �̂�

sg(�̂�) + 𝜀𝑙
)

2

. (10) 

Here sg(⋅) denotes a stop-gradient operation that treats its argument as a constant, employed for 

numerical stability during backpropagation20. The parameter 𝛾 controls the weight between the 

two terms. It is set to 0.25 if the RMS contrast of the image stack’s background pixels, i.e., 𝜀𝑙 =

𝜎𝑏(𝑔𝑏𝑓𝑟), is larger than 0.03, where 𝜎𝑏(⋅) computes the standard deviation of the background 

pixels of the operand. If the contrast is smaller than 0.02, 𝛾 is set to 1.0. Otherwise, 𝛾 is linearly 

interpolated between 0.25 and 1.0. Here, 𝑔𝑏𝑓𝑟  represents a background-fluctuation-removed 

version of 𝑔, introduced to remove any unwanted low-frequency fluctuations in the images that 

could otherwise exaggerate the standard deviation.  

 The regularization term ℛ(𝑠) in the loss function (Eq. 3) are designed to render spatially 

sparse and smooth structural details, serving as a generic prior that reflects structural features of 

mouse brain neurons. It includes three regularization terms: second-order total variation (TV) 

ℛ𝑡𝑣(𝑠)23,24, L1 regularization ℛL1(𝑠), and nonlinear diffusion (NLD) ℛNLD(𝑠)25. 

 First, second-order TV ℛ𝑡𝑣(𝑠) aims to recover smooth profiles from noisy measurements 

by sparsifying the spatial gradient components. Unlike first-order TV43, which uses first-order 

derivatives, second-order TV uses second-order derivatives to avoid staircase artifacts23,24. In our 

implementation, we further applied a nonlinear tone mapping function20, an approximated 

logarithmic function (Eq. 12), which strongly penalizes errors in regions with low intensity values. 

For simplicity, the spatial coordinates (𝑥, 𝑦, 𝑧) are expressed as (𝑥1, 𝑥2, 𝑥3) below. 

𝑡𝑣(𝑠) = ∑ |
𝜕2𝑠

𝜕𝑥𝑖 ∂𝑥𝑗
|

1≤𝑖≤𝑗≤3

, (11) 

ℛ𝑡𝑣(𝑠) = log(𝑡𝑣(𝑠) + 𝜀𝑡𝑣) ≃
𝑡𝑣(𝑠)

sg(𝑡𝑣) + 𝜀𝑡𝑣
, (12) 

where sg(⋅) indicates the same stop-gradient operation as above, and 𝜀𝑡𝑣 is determined from the 

input image stack 𝑔 as the smallest standard deviation of second-order difference 𝑡𝑣(𝑔), that is, 

ε𝑡𝑣 = min (𝜎𝑏 (|
𝜕2𝑔

𝜕𝑥𝑖 ∂𝑥𝑗
|)) , 1 ≤ 𝑖 ≤ 𝑗 ≤ 3. (13) 

 Second, L1 regularization ℛL1(𝑠) helps to render the structure s with spatially sparse 

features by adding a penalty based on the absolute value of s as follows, 
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ℛL1(𝑠) = log(|𝑠| + 𝜀𝐿1) ≃
|𝑠|

sg(|𝑠|) + 𝜀𝐿1
 . (14) 

Here 𝜀𝐿1 = 𝜎𝑏(|𝑔𝑏𝑓𝑟|) and the same logarithmic tone mapping function20 (Eq. 12) is applied on 

the top of the absolute value.  

 Lastly, NLD regularization25 ℛNLD(𝑠) constrains the magnitude of the first-order 

difference of the structure 𝑠, computed along the depth axis z. This suppresses slowly varying 

spatial components while preventing the structure from fitting to rapidly varying axial features that 

sparsity-promoting regularizations might favor. This regularization balances the influence of the 

first two terms, allowing the structure to retain desirable details. It is written as 

ℛNLD(𝑠) = |
𝜕𝑠

𝜕𝑧
||

 𝛿,[𝑎,𝑏]

, (15) 

where 𝑓|𝛿,[𝑎,𝑏] ≡ max(𝑓, 𝑏) + 𝛿 max(𝑎, min(𝑓, 𝑏))  +  min(𝑓, 𝑎). For all results presented in this 

manuscript, 𝛿 = 0.1, 𝑎 = 0.005, 𝑏 = 2.0. 

 Together, the summation of the regularization terms is expressed as 

ℛ(𝑠) = 𝜆𝑡𝑣ℛ𝑡𝑣(𝑠) + 𝜆L1ℛL1(𝑠) + 𝜆NLDℛNLD(𝑠), (16) 

where 𝜆𝑡𝑣 = 0.005, 𝜆L1 = 0.01, 𝜆NLD = 10−6.  

 

Baseline term in image formation  

The baseline term 𝑏 is modeled as low rank to account for the offset due to baseline fluorescence 

or noise and potential power decrease along the depth axis caused by scattering in deep tissue 

imaging. 𝑏 is represented as the sum of rank-1 tensors, with rank 𝑅 less than the number of pixels 

along x, y, and z-axes, 𝑁𝑥, 𝑁𝑦 , 𝑁𝑧, and set to 𝑅 = 5 here: 

𝑏 = ∑ 𝑏𝑧,𝑟 × 𝑏𝑦,𝑟 × 𝑏𝑥,𝑟

𝑅

𝑟=1

, (17) 

where 𝑏𝑥,𝑟 , 𝑏𝑦,𝑟 , 𝑏𝑧,𝑟 are learnable 2D tensors to represent baseline components along the 𝑥, 𝑦,  and 

𝑧 axes, respectively. These tensors are initialized with the value (0.1 𝜎𝑏(|𝑔𝑏𝑓𝑟|))
1/3

. By limiting 

the rank of the baseline model, we constrain it to capture only low-spatial-frequency baseline 

features, thereby effectively separating the baseline from the sample features.  
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Two-step learning process 

The weights of the neural network 𝜃 representing structure 𝑠, Zernike coefficients 𝛼 (thus PSF 

ℎ(𝒓; 𝛼)), and baseline term b in the image-formation model are optimized in a two-step learning 

process27. The first step only adjusts neural network weights for s, while the Zernike coefficients 

𝛼 and baseline b remain fixed after initialization. It conditions the randomly initialized neural 

network, using the loss function: 

𝜃∗ = argmin 
𝜃

(SSIM (𝑐𝑔𝑙𝑝 , 𝑓𝜃(𝒓))) , 𝑐 ≥ 1 (18) 

where 𝑔𝑙𝑝  is a low pass filtered image stack with an isotropic Gaussian filter. Optimization is 

performed using the RAdam optimizer44 with an initial learning rate of 10−2, 𝛽1 = 0.9, and 𝛽2 =

0.999 for 5000 epochs. The learning rate schedule follows an exponential decay down to 10−3 by 

the end of the epoch. 

The second step updates neural network weights 𝜃, Zernike coefficients 𝛼, and baseline b 

using the loss function (Eq. 3). For this learning process, the initial learning rate is set to 4 × 10−3 

with the same RAdam optimizer, keeping 𝛽1 and 𝛽2 unchanged, running for 5000 epochs. The 

learning rate schedule again follows an exponential decay, this time down to 10−6 by the end of 

the epoch. 

All computational implementations are performed on a machine equipped with an NVIDIA 

RTX 4090 GPU, an Intel i9-13900K CPU, and 80 GB of RAM. The estimation times for the results 

in the main figures are detailed in Table S2, along with their corresponding experimental settings. 

 

Preprocessing of 3D image stacks from in vivo experiments 

In our experimental settings, the raw 3D experimental fluorescence image stacks have dimensions 

of 𝑁𝑓 × 𝑁𝑧 × 𝑁𝑦 × 𝑁𝑥, where 𝑁𝑓 denotes the number of frames per 𝑧-axis slice, 𝑁𝑧 the number of 

𝑧-axis slices, and 𝑁𝑥  and 𝑁𝑦 the number of pixels along the 𝑥- and 𝑦-axes, respectively. Here 𝑁𝑓   

frames are acquired per 𝑧-axis slice to reduce the effect of Gaussian noise through averaging. In 

in vivo imaging experiments, the frames acquired at the same z need to be registered before 

averaging to correct for the artifacts between frames. We used a customized ImageJ plugin to 

register the frames for each 𝑧-axis slice and average the registered frames to obtain the image stack 

with dimensions of 𝑁𝑧 × 𝑁𝑦 × 𝑁𝑥. This plugin is available in our public repository. 
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Motion correction of image stacks by NeAT 

Image stacks acquired in vivo can contain motion artifacts caused by heartbeats or body 

movements. Although preprocessing removes the motion artifacts for frames acquired at the same 

z depth as described above, motion between frames at different z depths also needs to be corrected. 

Failing to so would lead to errors in aberration estimation and structural recovery (Fig. S3). NeAT 

incorporates motion correction across z slices into its learning process and outperform existing 

algorithms such as StackReg in ImageJ (Fig. S8). 

 NeAT assigns an affine transformation matrix, 𝐴𝑛𝑧
 (𝑛𝑧 = 1,2, ⋯ , 𝑁𝑧), to each z slice to 

correct translation, rotation, scaling, and shear caused by the sample’s motion. It corrects motion 

by updating these matrices throughout the learning process. The matrices are initialized as identity 

matrices. We used the RAdam optimizer44 for the motion correction process, with an initial 

learning rate of 0.1, 𝛽1 = 0.9, and 𝛽2 = 0.999. More details are available in our public repository.   

 

Calculation of signal-to-noise ratio 

We assumed a linear relationship between grayscale value (p) and photon count per pixel (c), with 

𝑝 = 𝛽𝑐. Since the photon count per pixel theoretically follows a Poissionian distribution, 𝛽 can be 

computed as the ratio of the variance of p to its mean. For the cutoff SNR analysis, we calculated 

𝛽 for the PMT in the custom-build microscope under different control voltages, observing gains 

of 7.83 at a control voltage of 0.7 V (used for acquiring images from 1-µm fluorescence beads, 

Figs. 2j-l) and 21.8 at a control voltage of 0.8 V (used for fixed Thy1-GFP mouse brain slice 

imaging, Figs. 2m-o).  

 Next, we classified the pixels in an image stack as either signal or background pixels using 

a classification method described previously27. We then calculated the SNR of the image stack as 

SNR =  
�̅� 𝛽⁄

√�̅� 𝛽⁄
= √�̅�/𝛽, (19) 

where �̅� is the mean of the signal pixels. 

 

In vivo imaging of visually evoked glutamate and calcium activity 
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Visual stimuli were generated in MATLAB using the Psychophysics Toolbox45,46and presented 

15 cm from the left eye of the mouse on a gamma-corrected, LED-backlit LCD monitor with a 

mean luminance of 20 cd·m−2. We divided the monitor into a 3 × 3 grid and presented 1-s-long 

uniform flashes in a pseudorandom sequence in one of the 9 grids, while recording fluorescence 

images with a 2 mm by 2 mm FOV. Analyzing these images allowed us to identify the cortical 

region that responded to the center of the monitor. We then imaged this cortical region at smaller 

pixel sizes to measure glutamate and calcium activity of synapses and neurons towards oriented 

drifting grating stimulation in mice under light anesthesia (0.5% isoflurane in O2). Full-field 

gratings of 100% contrast, a spatial frequency of 0.04 cycles per degree, and a temporal frequency 

of 2 Hz drifting in eight directions (0° to 315° at 45° increments) were presented in pseudorandom 

sequences. For glutamate imaging (x and y pixel size: 0.125 µm/pixel), each grating stimulus lasted 

2 s with a 1-s presentation of a gray screen before and after the stimulus. For calcium imaging (x 

and y pixel size: 0.945 µm/pixel), each grating stimulus lasted 2 s with a 1-s gray screen 

presentation before and a 3-s gray screen presentation after the stimulus. Each stimulus was 

repeated for 10 trials per imaging session. 

 

Functional image analysis 

Images were processed with custom Python code. Glutamate time-lapse images were registered 

using iterative phase correlation with polar transform, and calcium time-lapse images were 

registered with the StackReg package47. Regions of interest (ROIs) were manually drawn in 

ImageJ using the circular selection tool on the mean intensity projection of the glutamate time-

lapse images and elliptical selection tool for the GCaMP6s time-lapse images. The ROIs were then 

imported into a Python environment to extract pixel values within the ROIs, which were averaged 

to obtain the raw fluorescence signal 𝐹 for each ROI.  

 The glutamate transient ∆𝐹/𝐹0 was calculated as (𝐹 − 𝐹0)/𝐹0, where 𝐹0  represents the 

basal fluorescence, defined as the average fluorescence signal during the 1-s pre-stimulus gray-

screen presentation period, excluding the highest 5% of values in F from the calculation.  

 For calcium images, due to higher labeling density, we removed neuropil contamination. 

We calculated 𝐹neuropil as the averaged fluorescence signal from the neuropil area32 (defined as the 

pixels that were 2 to 20 pixels off the ROI border) and computed ∆𝐹neuropil  as 𝐹neuropil  −

 𝐹0,  neuropil , where 𝐹0,  neuropil  is the mean of 𝐹neuropil  during the 1-s pre-stimulus period. Then, 
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∆𝐹neuropil was multiplied by 0.7 and subtracted from 𝐹 to obtain 𝐹true. ∆𝐹/𝐹0 was then computed 

as (𝐹true − 𝐹0,true)/𝐹0,true, with 𝐹0,true defined as the mean of 𝐹true during the 1-s pre-stimulus 

period. 

 Trial-averaged ∆𝐹/𝐹0 was calculated as the average of 10 trials. Peak ∆𝐹/𝐹0 was defined 

as the maximal trial-averaged ∆𝐹/𝐹0 within the 2-s drifting grating presentation. Response 𝑅 for 

each drifting grating direction was defined as the averaged ∆𝐹/𝐹0 across the 2-s drifting-grating 

stimulus presentation, with negative responses set to zero.  

 For glutamate images, an ROI was considered responsive to visual stimulation if its peak 

∆𝐹/𝐹0 was greater than 3 times the standard deviation of the trial-averaged ∆𝐹/𝐹0 within the 2-s 

stimulus period48,49 and if the peak ∆𝐹/𝐹0 was above 5%50. For calcium images, an ROI was 

considered active if its maximal ∆𝐹/𝐹0 was above 10%42,51 and visually responsive if its activity 

during at least one visual stimulus type was significantly higher than its activity during the pre-

stimulus period, as determined by one-way ANOVA with 𝑝 < 0.01. 

 

Orientation selectivity analysis 

For each ROI, its tuning curve 𝑅𝑓𝑖𝑡(𝜃) was defined as the fitted curve to 𝑅(𝜃) with a bimodal 

Gaussian function30: 

𝑅𝑓𝑖𝑡(𝜃) = 𝑅0 + 𝐴1 𝑒
−

𝑎𝑛𝑔(𝜃−𝜃𝑝𝑟𝑒𝑓)
2

2𝜎2 + 𝐴2 𝑒
−

𝑎𝑛𝑔(𝜃−𝜃𝑝𝑟𝑒𝑓+180∘)
2

2𝜎2 , (20) 

where 𝑎𝑛𝑔(𝑥) = min(|𝑥|, |𝑥 − 360∘|, |𝑥 + 360∘|) , which wraps the angular values onto the 

interval between 0∘ and 180∘. Responses to the different drifting direction 𝑅(𝜃) were fitted to the 

model to minimize the mean square error between the model and responses, with 𝑅0, 𝐴1, 𝐴2 

constrained to non-negative values, and 𝜎 constrained to be larger than 22.5°52, given that the angle 

step was 45°.  

 ROIs were considered orientation-sensitive (OS) if their responses across 8 different 

drifting grating stimuli were significantly different by one-way ANOVA (𝑝 < 0.05)31,50 and if 

their responses were well-fit to the bimodal Gaussian model51. The goodness of the fit was assessed 

by calculating the error 𝐸 and the coefficient of determination ℜ2: 

𝐸 = ∑ (𝑅(𝜃) − 𝑅𝑓𝑖𝑡(𝜃))
2

|
𝜃=(45𝑛)∘

7

𝑛=0

, ℜ2 = 1 −
𝐸

∑ (𝑅(𝜃) − �̅�)2|𝜃=(45𝑛)∘
7
𝑛=0

, (21) 
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where �̅� is the mean of 𝑅(𝜃). The criteria for a good fit were 𝐸 < 0.01 and ℜ2 > 0.5. The fitted 

response was used to calculate orientation sensitivity index (OSI) as 
𝑅pref − 𝑅ortho

𝑅pref + 𝑅ortho
, where 𝑅pref and 

𝑅ortho are the responses at θpref and 𝜃ortho(= θpref + 90∘), respectively. 

 

Statistics 

Standard functions from the Scipy package in Python were used to perform statistical tests, 

including two-sided paired t-test, one-way ANOVA, and Kolmogorov-Smirnov test. Statistical 

significance was defined as *𝑝 < 0.05, ***𝑝 < 0.01, and ***𝑝 < 0.001. 

 

Data availability 

This section will be completed once the public repository is created following the peer review and 

patent publication. 

 

Code availability 

This section will be completed once the public repository is created following the peer review and 

patent publication. 
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Figures 

 

  

Figure 1. NeAT estimates aberration and recovers structure from a 3D input image stack. (a) 

Schematic of NeAT’s functions and its systematic integration into adaptive optics (AO) imaging pipeline. 

A 3D two-photon (2P) fluorescence image stack, acquired through z-axis scanning, serves as the input, and 

the 3D structure is the output. Lateral (xy) and axial (xz) maximum intensity projections (MIPs) of the input 

image stack and structure are shown. NeAT’s capabilities include motion correction, as well as aberration 

and structural estimation, all of which are performed during the learning process in c. If present, NeAT 

estimates and compensates for conjugation errors within the imaging system. The estimated aberration is 

then used for correction using deformable mirrors (DM) or spatial light modulators (SLM). Scale bar: 5 

µm. (b) If present, motion artifacts in 𝑔 are corrected by applying learnable transformations 𝐴. (c) The 

structure is represented as a neural field, while Zernike coefficients define the point spread function (PSF, 

h). Axial MIP of the PSF is shown. Together, they generate a computationally reproduced image stack, 

which is updated during the learning process to closely match Ag, achieved by optimizing network weights 

(𝜃), Zernike coefficients (𝛼), and motion correction transformations (𝐴). (d) Upon completion of the 

learning process, any conjugation errors in the imaging system, if present, are estimated as �̂�  and 

compensated for by applying its inverse to the corrective phase pattern (�̂�), derived from the learned Zernike 

coefficients. The fully corrected aberration pattern (�̂�−1�̂�) can then be used for real-time aberration 

correction and for acquiring an image stack in the subsequent AO iteration. Scale bars: (a, b) 5 µm, (c) 10 

µm. 
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Figure 2. Performance characterization with direct wavefront sensing (DWS) AO in a custom-built 

2P microscope. (a) Lateral (xy) and axial (xz) maximal intensity projections (MIPs) of an input image stack 

to NeAT from a fixed Thy1-GFP line M mouse brain slice. (b) Lateral and axial MIPs of the 3D neuronal 

structure recovered and (c) aberration estimated by NeAT, as well as aberration measured by DWS. (d) 

Zernike coefficients of aberrations in c. (e) Lateral and axial MIPs of an input image stack acquired in vivo 

from a Thy1-GFP line M mouse brain, with motion artifacts visible in xz. (f,g) Lateral axial MIPs of the 

structures recovered by NeAT without (f) and with (g) motion correction. (h) Aberrations estimated by 

NeAT without and with motion correction, respectively, and measured by DWS. (i) Zernike coefficients 

for aberrations in h. (j,k) Performance versus SNR using 1-µm-diameter beads under primary astigmatism 

(j) and primary coma (k). PCC: Pearson correlation coefficient between recovered structures; WFE: 

wavefront error. (l) Performance versus aberration severity evaluated using 1-µm-diameter beads. (m,n) 

Performance versus SNR using a fixed mouse brain slice under primary coma (m) and secondary 

astigmatism (n). (o) Performance versus aberration severity evaluated using brain slice. Scale bars: 5 µm. 
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Figure 3. NeAT corrects for conjugation errors in a commercial microscope. (a) Conjugation errors 

transform corrective pattern 𝜑Corr on SLM to 𝜑BFP = 𝐻𝜑𝐶𝑜𝑟𝑟 + 𝛷𝑆𝑦𝑠 at objective lens back focal plane. 

𝛷𝑆𝑦𝑠: system aberration. (b) H with example affine parameters translates, rotates, scales, and shears a unit 

square (black dashed square) to a parallelogram (red). (c) H is determined from image stacks of 200-nm-

diameter beads acquired with a calibration aberration (𝛷𝑛 , 𝑛 = 1,2, ⋯ , 5) applied to SLM. Lateral (xy) and 

axial (xz) MIPs of the calibration image stacks are shown. (d) Lateral and axial MIPs of image stacks of 

200-nm-diameter beads acquired without system aberration correction (‘No AO’), after one iteration of AO 

without (‘AO1 w/o H’) and with (‘AO1 w/H’) conjugation correction, and after two iterations of AO with 

conjugation correction (‘AO2 w/H’). (e) Axial signal profiles of the bead marked by yellow arrowhead in 

d. (f) Residual aberrations estimated by NeAT from image stacks in d. (g) Left to right: aberrations (with 

0.3 wave RMS) applied to SLM, estimated aberration by NeAT without conjugation correction, and 

estimated aberration by NeAT with conjugation correction from bead image stacks acquired with the 

applied aberration. Numbers to the bottom right of estimated aberrations: difference (in wave RMS) 

between estimated aberration and applied aberration. Scale bars: 5 µm. 
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Figure 4. Real-time aberration correction by NeAT for in vivo structural imaging. (a) Lateral (xy) and 

axial (xz) MIPs of image stacks of tdTomato-expressing dendrite and dendritic spines at 350 µm depth 

acquired with system aberration correction only (“No AO”, used as input to NeAT), with corrective 

wavefront estimated by NeAT with both conjugation and motion corrections (“Full correction”), with 

motion correction only (“Without H”), and with conjugation correction only (“Without motion correction”). 

(b) Estimated aberrations by NeAT without and with conjugation correction. (c) Lateral signal profiles 

along dashed lines and axial signal profiles of spine indicated by arrowhead in a. (d) Lateral and axial MIPs 

of Thy1-GFP line M mouse dendrites at 280 µm depth acquired without (used as input to NeAT) and with 

correcting sample-induced aberration by NeAT. (e) Estimated aberration by NeAT. (f) Axial profiles of 

dendritic spines marked by arrowheads in d. (g) Lateral and axial MIPs of neuronal processes at 500 µm 

depth, acquired with system aberration correction only (“No AO”), aberration correction at 280 µm (“AO280 

µm”, used as input to NeAT; wavefront in e), and aberration correction at 500 µm (“AO500 µm”) (h) Sample-

induced aberration at 500 µm. (i) Lateral profiles along dashed line and axial profiles of spines indicated 

by arrowheads in g. (a, d, g) Top: lateral (xy) MIPs. Bottom: axial (xz) MIPs. Scale bars: 5 µm. 
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  Figure 5. Real-time aberration correction by NeAT for in vivo glutamate and calcium imaging. (a) 

Lateral (xy) and axial (yz) MIPs of input stacks to NeAT (“No AO”) and stacks acquired after aberration 

correction by NeAT (“AO”) of dendrites expressing iGluSnFR3 at 400 µm depth in mouse V1. (b) 

Estimated aberration by NeAT. (c) Axial profiles of spines indicated by arrowheads and lateral profiles 

along dashed line in a. (d) Average of time-lapse images of dendrites measured without and with AO. (e) 

Zoomed-in views of structures in box in d.  (f) Trial-averaged signal traces (F), glutamate transient traces 

(ΔF/F0), orientation tuning curves and OSI values of 4 ROIs (1-4 in e). Shade and error bars: s.e.m. (g) OS 

spines in d color-coded by their preferred orientations measured without and with AO. (h-k) Comparisons 

of basal fluorescence (F0; h), glutamate transient (ΔF/F0; i), OSIs (j,k) of 52 OS spines out of 86 total spines 

before and after AO correction. Two-sided paired t-test (h-j), p < 0.001. Kolmogorov-Smirnov test (k), p < 

0.001. (l) Superimposed images of sparse tdTomato-expressing neurons (1000-nm excitation) and dense 

GCaMP6s-expressing neurons (920-nm) at 280 µm depth. (m) Lateral (xy) and axial (xz) MIPs of dendrites 

(yellow box in l) measured without (“No AO”, input to NeAT) and with AO. (n) Estimated aberration by 

NeAT. (o) Axial profiles for spines indicated by arrowheads and lateral profiles along dashed line in m. (p) 

Standard deviation of time-lapse images of GCaMP6s-expressing neurons in white box in l, acquired 

without and with AO. (q) Trial-averaged signal traces (F), calcium transient traces (ΔF/F0), orientation 

tuning curves, and OSI values of 5 ROIs (1-5 in p). Shade and error bars: s.e.m. (r-u) Comparisons of basal 

fluorescence (F0; h), calcium transient (ΔF/F0; s), OSIs (t,u) of 125 OS ROIs out of 255 somatic and 

neuronal structures before and after AO correction. Two-sided paired t-test, p < 0.001 (r,t), p < 0.05 (s). 

Kolmogorov-Smirnov test (u), p < 0.001. Scale bars: (a,d,e,g) 5 µm; (l,p) 100 µm; (m) 10 µm. 
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Supplementary Materials 

Figure S1. Algorithmic architecture of NeAT. 

Figure S2. Detailed schematic of home-built and commercial 2P microscopes for AO. 

Figure S3. Motion correction performance under different SNRs and maximum displacements.  

Figure S4. Image stacks and their corresponding recovered structures for cutoff SNR analyses. 

Figure S5. Image stacks and their corresponding recovered structures for cutoff RMS analyses. 

Figure S6. Robustness to downsampling image stacks along the x, y-axes. 

Figure S7. Robustness to downsampling image stacks along the z-axis. 

Figure S8. Motion correction using a pre-registered image stack. 

Figure S9. Comparison between aberration estimations and corrections at different wavelengths. 

Table S1. Differences between NeRF and NeAT. 

Table S2. Experimental settings and estimation time of NeAT. 
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 Figure S1. Algorithmic components of NeAT. (a) Structure is represented as a neural field, an implicit 

function modeled by a coordinate-based neural network that takes spatial coordinates as input and outputs 

the 3D structure. The numbers below the network layers indicate the number of features per layer. (b) 

Zernike coefficients are represented as a 1D tensor, following the numbering convention of the ANSI 

standard. (c) Motion correction is applied using affine transforms, which are applied to each slice along the 

z-axis of the raw image stack. (d) The baseline term is represented by three 2D tensors, which are combined 

multiplicatively to generate a low-rank 3D baseline. (e) The loss function for the learning process is defined 

as shown in Eq. 3.  
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Figure S2. Optical schematics of the custom-built and commercial AO 2P microscopes. (a) Custom-

built microscope with a DM perfectly conjugated with Galvo X, Galvo Y, and back focal plane of the 

objective lens. (b) Commercial microscope (Bergamo II, Thorlabs; orange dashed box) with an SLM 

module and unconjugated galvos.  
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Figure S3. Motion correction performance under different SNRs and maximum displacements. 

NeAT’s motion correction performance on simulated image stacks with an aberration of 0.187 wave RMS 

is evaluated across varying maximum displacements across different SNRs: SNR = 3 (low SNR, a), 6 

(intermediate SNR, b), and 12 (high SNR, c). The results are based on simulated data, where SNR was 

controlled according to the signal-noise model: 𝑔 = 𝑃𝝀(𝒉 ⊛ 𝒔) + 𝒏 , where 𝑃𝝀(⋅)  denotes a Poisson 

random number generator with a mean of 𝜆, ℎ and 𝑠 represent the simulated PSF and structure, respectively, 

and n is a Gaussian random variable. Lateral (xy) and axial (xz) MIPs of the image stacks are shown. Scale 

bar: 5 µm. 
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Figure S4. Image stacks and corresponding recovered structures by NeAT for cutoff SNR analysis. 

(a) Lateral (xy) MIP and xz-slice of input 2P fluorescence image stacks of 1-µm fluorescence beads at 

varying SNR levels, acquired with primary astigmatism aberration (0.11 wave RMS) applied to the DM 

after system aberration correction, along with the corresponding structures recovered by NeAT. (b) Same 

as a but with primary coma (0.11 wave). (c,d) Same as a,b, but of image stacks of a fixed Thy1-GFP line 

M mouse brain slice acquired with primary coma aberration (0.11 wave; c) and secondary astigmatism (0.11 

wave; d). Lateral (xy) and axial (xz) MIPs of the image stacks, along with the corresponding structures, are 

shown. Scale bar: 5 µm. 
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Figure S5. Image stacks and corresponding recovered structures by NeAT for cutoff RMS analysis. 

(a) Lateral (xy) MIP and xz-slice of input 2P fluorescence image stacks of 1-µm fluorescence beads acquired 

with randomly generated aberrations of varying aberration severity (in wave RMS) applied to the DM after 

system aberration correction, along with the corresponding structures recovered by NeAT. (b) Same as a, 

but of image stacks of a fixed Thy1-GFP line M mouse brain slice. Lateral (xy) and axial (xz) MIPs of the 

image stacks and the corresponding structures are shown. Scale bars: 5 µm. 
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Figure S6. Impact of pixel size and downsampling of image stacks along x and y axes on NeAT’s 

performance. Lateral (xy) and axial (xz) MIPs of input image stacks and the corresponding structures, and 

aberration output by NeAT of a fixed mouse brain slice (a) and an in vivo mouse brain (b) at different pixel 

sizes (dx, dy) and downsampling factors along the lateral axes. Zernike coefficients of NeAT output are 

compared with those from direct wavefront sensing (DWS). Scale bars: (a) 10 µm, (b) 5 µm. 
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Figure S7. Impact of pixel size and downsampling of image stacks along z axis on NeAT’s 

performance. Lateral (xy) and axial (xz) MIPs of input image stacks and the corresponding structures, and 

aberration output by NeAT of a fixed mouse brain slice (a) and an in vivo mouse brain (b) at different pixel 

sizes (dz) and downsampling factors along z axis. Zernike coefficients of NeAT’s output are compared with 

those from direct wavefront sensing (DWS). Scale bars: (a) 10 µm, (b) 5 µm. 
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Figure S8. Comparison between motion correction by NeAT and pre-NeAT motion correction by 

StackReg. (a) Lateral (xy) and axial (xz) MIPs of the input image stack acquired with an aberration of 0.187 

wave RMS and simulated motion artifacts, along with the structure estimated by NeAT using its learnable 

motion correction procedure. (b) Lateral and axial MIPs of the input image stack obtained by pre-registering 

the input stack in a with StackReg ImageJ plugin and the structure estimated by NeAT. (c) Zernike 

coefficients for applied aberration, aberration estimated by NeAT in a (‘w/ motion correction’), and 

aberration estimated by NeAT in b (‘w/ pre-registered stack’). (d) Lateral and axial MIPs of image stacks 

of dendrites acquired in vivo without AO, with aberration correction by NeAT with its learnable motion 

correction procedure, and with aberration correction by NeAT using a pre-registered input stack by 

StackReg. (e) Lateral signal profiles along dashed lines in d. Scale bars: 5 µm. 
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Figure S9. Aberration correction using estimated aberrations at the same or different wavelengths 

for estimation and correction. (a) Correction at 920 nm and 1000 nm excitation wavelengths, based on 

aberrations estimated at 920 nm. Lateral (xy) MIPs of 200-nm green and red fluorescence beads are shown, 

with axial intensity profiles compared with and without AO (indicated by yellow arrowheads). (b) 

Correction at 1000 nm and 920 nm excitation wavelengths, based on aberrations estimated at 1000 nm. 

Lateral MIPs and axial intensity profiles are compared with and without AO for each case. Scale bars: 10 

µm. 
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Table S1. Differences between NeRF and NeAT. 

 NeRF NeAT 

Input 
A set of 2D images from various 

viewpoints 

A 3D image stack from a single 

viewpoint 

Output Color, density Zernike coefficients, structure 

Image formation model Ray tracing for 3D scene reconstruction Two-photon fluorescence microscopy 

Loss function Mean squared error Hybrid loss (SSIM, relative MSE) 

Application Computer graphics, virtual reality In vivo imaging with adaptive optics 

Additional features - 
Conjugation error correction, motion 

correction, aberration estimation 
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Table S2. Experimental settings and estimation time of NeAT. 

 Fig. 2a, b Fig. 2e-g Fig. 3c Fig. 4a Fig. 4d Fig. 4g Fig. 5a Fig. 5m 

Sample type 

Thy1-

GFP line 

M brain 

slice 

Thy1-

GFP line 

M in vivo 

200-nm 

fluore-

scence 

beads 

C57BL/6J 

in vivo 

(tdTomato) 

Thy1-

GFP 

line M 

in vivo 

Thy1-

GFP 

line M 

in vivo 

C57BL/6J 

in vivo 

(iGluSnFR3) 

C57BL/6J 

in vivo 

(tdTomato, 

GCaMP6s) 

Excitation 

wavelength 

(nm) 

920 920 920 1000 920 920 920 1000 

Post-

objective 

power 

(mW) 

4 6 4 21 23 50 72 29 

Numerical 

aperture 
1.1 1.1 1.05 1.05 1.05 1.05 1.05 1.05 

Input stack 

size (µm3) 

34.2 × 

34.2 × 20 

76 × 76 

× 10 

25 × 25 × 

10 

25 × 25 × 

10 

25 × 25 

× 10 

25 × 25 

× 10 
28 × 28 × 8 

25 × 25 × 

10 

Pixel size 

(dx, dy, dz) 

(µm) 

(0.086, 

0.086, 

0.2) 

(0.19, 

0.19, 0.2) 

(0.125, 

0.125, 0.2) 

(0.125, 

0.125, 0.2) 

(0.125, 

0.125, 

0.2) 

(0.125, 

0.125, 

0.2) 

(0.125, 

0.125, 0.2) 

(0.125, 

0.125, 0.2) 

Motion 

correction 
No Yes No Yes Yes Yes Yes Yes 

Estimation 

time (s) 
493 436 83 245 245 245 200 245 
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